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Abstract

Meta-analysis of multiple genome-wide association (GWA) studies has become common practice

over the last few years. The main advantage of this technique is the maximization of power to

detect the subtle genetic effects for common traits. Moreover, one can use meta-analysis to probe

and identify heterogeneity in the effect sizes across the combined studies. In this review we

systematically appraised and evaluated the characteristics of GWA meta-analyses with 10,000 or

more subjects published until June 2012. We overview the current landscape of variants

discovered by GWA meta-analyses and we discuss and assess with extrapolations from empirical

data the value of larger meta-analyses for the discovery of additional genetic associations and new

biology in the future. Finally, we discuss some emerging logistical and practical issues related to

the conduct of meta-analysis of GWA studies.
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INTRODUCTION

The advent of genome-wide association (GWA) studies has led to the discovery of hundreds

of thousands of genotype-phenotype associations with robust statistical significance (42,

66). For example, as of October 2012 the Catalog of Published Genome-Wide Association

Studies, hosted by the National Human Genome Research Institute (http://

www.genome.gov/gwastudies/) (29), listed more than 7,500 associations between single-

nucleotide polymorphisms (SNPs) and complex traits with P<10−5 coming from more than

1,400 GWA publications. These studies survey most of the genome by examining available

samples for phenotype associations against up to 3,000,000 polymorphisms. Performance of

GWA studies was largely facilitated by technological advances in high-throughput

genotyping technologies providing accurate and reproducible genotyping (81) in

combination with the progressive drop in genotyping costs. Additionally, the results of the

International HapMap Consortium and the 1000 Genomes Project provided further useful

insights about human genetic variation by systematically cataloguing common and low-

frequency variation, and by characterizing linkage disequilibrium patterns in the human

genome (1, 33-35); this information is now used routinely in GWA studies.

Over the last years, GWA studies have made major contributions to the efforts of gene

mapping (2, 42) yielding numerous novel genetic associations, many of which have been

successfully replicated in subsequent studies (77). However, early studies utilized small

sample sizes and were, thus, underpowered to detect the small effect sizes expected for

common traits under the common disease-common variant model (83); these variants would

require large sample sizes, especially when their frequency is low (76). Consequently, some

of the early GWA findings were later disputed in larger studies (18, 36, 68). Although not

very common with GWA studies in general, this lack of replication was very common for

the results of candidate-gene studies. Results of many such studies had shown surprisingly

low reproducibility rates in subsequent larger studies and meta-analyses thereof (38, 39, 63,

96), revealing a large amount of false-positive discoveries (13, 41). Hence, meta-analysis of

available GWA data from different studies was soon recognized as the appropriate method

in order to achieve adequate sample sizes and optimal power for the discovery of genetic

associations with modest effect sizes (19, 87).

As a statistical method which allows the quantitative synthesis of results from different

studies in order to estimate a common summary effect (55), the major advantage of meta-

analysis is that it maximizes power, i.e. reduces the probability of false negative results (19).

Additional potential advantages include the increased precision of the effect estimates for

the identified associations, reduction of the extent of the winner’s curse phenomenon (when

adequate power is achieved), and opportunities to evaluate and measure the degree of

consistency or heterogeneity of the genetic effect across the combined studies (28, 40).

Meta-analysis of GWA studies has emerged as an efficient strategy for prioritizing GWA

results for further follow-up through functional analyses, or further replication efforts, cross-

phenotype checks, or mendelian randomization studies (7). Meta-analysis of multiple GWA

datasets is now a well-established and validated strategy for both discovery and replication

of genetic association studies (7, 21, 52).
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GWA meta-analysis has been made feasible due to technical advances in imputation of

missing genotypes between different studies (14, 61), but also due to the creation of

consortia that facilitate sharing of data between the different studies. Nevertheless, despite

the numerous successes of GWA studies and meta-analyses thereof, the loci discovered so

far explain only a small fraction of the estimated total heritability for most common traits

(67).

In this review, we demonstrate the power of meta-analysis in GWA studies by summarizing

the characteristics of GWA meta-analyses performed so far and estimating the contribution

of their discoveries to the genetic variance of the respective common trait. We overview the

features of GWA discovered variants and we discuss the potential applications and

challenges of even larger GWA meta-analyses in the future.

PART 1: EMPIRICAL APPRAISAL OF PUBLISHED GWA META-ANALYSES

1.1. METHODS

We searched the publicly available database “A Catalog of Published Genome-Wide

Association Studies” hosted by the National Human Genome Research Institute. This is an

online regularly updated database of SNP-trait associations with P<10−5 extracted from

published GWA reports, which attempt to assay at least 100,000 SNPs. The last search was

performed on June 15, 2012.

We identified GWA studies with a sample size ≥10,000 in the discovery stage. We used this

threshold so as to focus on GWA studies where discovery efforts have had decent power to

identify common variants with modest effects (per allele odds ratio >1.20 and minor allele

frequency >5%), since with smaller sample sizes many variants with sizeable effects would

have been missed and thus there is still substantial uncertainty about the architecture of

genetic risks and about what meta-analysis of sufficient data can achieve for the probed

phenotypes of interest. Subsequently, we accessed the full-text publications and selected

those papers that had performed meta-analyses of 2 or more GWA datasets in the discovery

stage regardless of any replication efforts. We included meta-analyses in populations of

different ancestries as separate entries. When 2 or more reports were available for the same

trait in the same population ancestry, we included the one having the largest sample size.

From each eligible GWA report and the corresponding meta-analyses, we extracted the

following information: first author, year and journal of publication, disease/trait, sample size

in the discovery and replication stages, population ancestries in the discovery and replication

stages, platform used for genotyping and SNPs passing quality control, number of datasets

combined through meta-analysis in the discovery stage, method of synthesis (i.e. fixed-

effects, random-effects, other), heterogeneity testing, threshold used for determining

genome-wide significance, imputation methods and number of imputed SNPs, quality

control, criteria for replication, generalizability to diverse ancestry groups, extension to

testing for diverse phenotypes and which, phenotypic cross-checks performed, and finally

functional analyses performed.
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Additionally, from each eligible GWA meta-analysis we extracted the independent SNPs

discovered and the corresponding gene loci, chromosomal regions, minor and reference

alleles with their corresponding frequencies, effect sizes and measures of uncertainty (i.e.

standard error or 95% CI). Subsequently we expressed these effect sizes as the contribution

of the respective susceptibility locus to the total genetic variance of the trait using the

approach by Park et al. (78).

1.2. RESULTS

As of June 15, 2012, the catalog included a total of 1,271 published GWA reports. Of those,

88 reports (references S1-S88; listed in Supplement) included a total of 139 eligible meta-

analyses of GWA datasets published between 2009 and 2012 in 20 different journals (Table

1). The majority (44%) of the reports appeared in Nature Genetics, followed by PLoS

Genetics (14%), Circulation Cardiovascular Genetics (7%), Human Molecular Genetics

(6%), JAMA (5%), and other journals (24%). 106 (76%) meta-analyses pertained to disease

phenotypes and 33 (24%) pertained to quantitative traits. The median sample size of these

discovery meta-analyses was 20,611 (IQR, 14,392-38,238). The majority (n=109) had been

performed in populations of European ancestry, while the remaining had been performed in

Asian (n=20), African (n=2) or mixed populations (n=8). Additional replication efforts had

been performed for the findings of 101 meta-analyses. The median sample size used in these

replication efforts was 16,378 (IQR, 8,112-48,607). The majority (n=81) had been

performed in European populations and only 20 had been in populations of non-European

ancestries.

As shown in Supplementary Table 1, for all but 2 meta-analyses the respective individual

studies included in the meta-analysis had performed imputation of non-genotyped SNPs.

The imputation method used different types of hidden Markov models depending on the

specific imputation software. Additionally, in all meta-analyses the respective studies used

HapMap data (33-35) to impute missing genotypes, except for 2 meta-analyses (1 %), which

used exclusively data from the 1000 Genome Project (1), and another one that used data

from both HapMap and the 1000 Genome Project. Commercial Affymetrix and Illumina

platforms were the most common genotyping platforms used, with Perlegen platforms being

used in 23 meta-analyses. The median number of datasets combined through meta-analysis

was 9 (IQR, 5-15; range, 2-46). Fixed-effects model had been used in all 139 meta-analyses

as the primary method of data synthesis across the different datasets, while additional

models had been used in a total of 16 meta-analyses pertaining to random-effects (n=13),

Bayesian approaches (n=1), both random-effects and Bayesian approaches (n=1), and P-

value based methods (n=1). Fixed-effects models assume that there is a common true

genetic effect across all studies and any variation in it is attributed to random error; on the

other hand, random-effects models assume that there are different effect sizes in the

included studies and any variation, i.e. heterogeneity, is due to real population differences

(15, 40). In this context, the observed domination of fixed-effects synthesis is expected as

this approach is more powerful than random-effects for discovery purposes, while the latter

is preferable when the aim is to determine and generalize the magnitude of the genetic effect

size (80). The method of weighting was reported in a total of 137 meta-analyses. Of those,

127 meta-analyses used inverse-variance weighting; 7 used sample-size weighting; 1 used
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both inverse-variance and sample-size; and 2 meta-analyses used the Mantel-Haenszel

effect-size based method. The median number of SNPs discovered, i.e. passing the

respective significance or other thresholds, in these 139 meta-analyses was 4 (IQR, 2-9). Of

note, 18 meta-analyses had made no discoveries. The maximum number of discovered SNPs

was 115 (S41).

Supplementary Table 2 shows the SNP quality control criteria used in the eligible 88 GWA

reports. In 69 of those, the individual studies had used non-identical quality control criteria

and in only 18 there was apparent uniformity among the individual studies (report did not

provide details but referred to previous publications). Minor allele frequency (MAF), SNP

call rate and deviation from Hardy-Weinberg equilibrium (HWE) were among the most

common parameters applied. A MAF cut-off of 1% was used for inclusion of SNPs in the

analyses in 41 reports, while 4 reports included SNP with MAF of 5% or more, 3 included

SNPs with MAF of 2% or more and 1 report included SNPs with MAF of 0.1% or more.

When information was provided, 11 reports used a SNP call rate cut-off of 95%, 4 used a

cut-off of 90%, 1 used 97%, 4 used 98%, and 2 used 99%. The P-value used to denote

deviation from HWE varied from 10−4 to 10−7, with only 1 study using P=5×10−20. Twenty-

one reports used some additional stated criterion other than MAF, HWE and SNP call rate.

Finally, in most reports the individual studies included in the respective meta-analyses

retained data with high imputation quality, with variable quality thresholds and different

software used for imputation.

Supplementary Table 3 shows the selected genome-wide significance thresholds, the

methods of investigating heterogeneity across studies, and the replication processes applied

in the eligible met-analyses. In all meta-analyses, investigators used primarily P-value

thresholds to claim genome-wide significance. In two of them, they used additionally

Bayesian methods (Bayes factor and posterior probability of association). The P-values

thresholds used were P=5×10−8 for 123 meta-analyses; P=5×10−7 for 8 meta-analyses;

P=1×10−8 for 3 meta-analyses; P=7.2×10−8 for 2 meta-analyses; and P=2.5×10−8, P=4×10−7

and P=1.6×10−7 for each one of the remaining 3 meta-analyses. Methods of investigating

heterogeneity were reported in 103 meta-analyses. These pertained to Cochran’s Q test alone

(n=37), I2 alone (n=27), or both Q and I2 (n=37), while one meta-analysis reported Q, I2 and

τ2 and another one had used the Breslow-Day test. Cochran’s Q statistic follows a χ2

distribution and tests whether the observed differences in results are compatible with chance.

I2 measures the percentage of variability in effect estimates that is attributed to heterogeneity

rather than chance (28). Heterogeneity in GWA studies can be attributed to differences

between the included studies such as different populations, different linkage disequilibrium

patterns, different environmental exposures, different genotyping platforms and different

imputation accuracies, or it may represent unexplained statistical heterogeneity (27, 40, 80,

103).

Replication efforts had been performed for the results of 104 meta-analyses, showing that

the practice is widely accepted in the field (9, 38). The rationale beyond SNP selection for

replication testing is described in detail in Supplementary Table 3. It included mostly

statistical significance criteria and to a lesser extent biological and/or functional plausibility.
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As shown in Supplementary Table 4, the results of only 27 (19%) meta-analyses used

populations of mixed ancestry in the discovery stage or followed up the meta-analyses

findings in populations of different ancestries than the discovery population. Loci and even

more effect sizes may be difficult to generalize across different ancestries (75). For a total of

79 meta-analyses, investigators had performed further association analyses between SNPs

discovered in the discovery GWA meta-analysis and traits or diseases other than those

examined in the meta-analyses. Additionally, for 19 (14%) meta-analyses investigators had

extended their association testing to diverse phenotypes. These diverse phenotypes resulted

from using cut-offs in order to transform a continuous trait to binary disease outcome

(ankle-brachial index and peripheral artery disease; systolic blood pressure and

hypertension; diastolic blood pressure and hypertension; BMI and obese/overweight; urinary

albumin excretion and microalbuminuria; common and internal carotid intima media

thickness and plaque); from using different definitions of the indexed trait (waist

circumference and waist to hip ratio to measure adiposity; forced expiratory volume in 1

second (FEV1) and FEV1/FVC (forced vital capacity) to measure pulminary function; time

to event and time to death to measure aging); from using other products of the same

metabolic pathway (proinsulin and 32,33-split proinsulin/insulinogenic index/C-peptide;

urinary albumin excretion and urinary albumin to creatinine ratio); and finally from using

sub-phenotypes included and measured the indexed traits (different types of white blood cell

count; different types of stroke; components of the metabolic syndrome; types of personality

dimensions; Alzheimer’s disease and age of onset of the same disease).

Table 2 describes the 45 GWA reports where at least one type of functional work

accompanying the respective meta-analyses had been performed in the same paper where

the GWA meta-analysis was published. Expression quantitative trait loci (eQTL) analyses

were the most common type of functional testing (mentioned in 26 reports). Other

expression analyses included gene expression (n=19 reports) and RNA expression (n=2).

Animal models (50) had been used in 9 reports and pathway analyses in another 13. Three

reports had investigated protein-protein interactions for the products of discovered gene loci.

Examination of the relationships between genes in different diseases using GRAIL (Gene

Relationships Across Implicated Loci) analysis (82) was included in 8 reports, while the role

of coding variation in the respective loci was listed in another 8 reports. Finally, other

reported functional tests included analyses using the Online Mendelian Inheritance in Man

(OMIM) database (n=3 reports); gene-interactions and gene ontology (n=2 reports for each);

gene-environment interactions, DNA methylation, mutation analysis, and transcript profiling

(n=1 report for each). 28 reports (62%) reported more than 1 functional analysis; 15 (33%)

reported more than 2; and 6 reported more than 3. The extent of selective reporting of

functional analyses in these papers (e.g. whether only specific methods/analyses with most

interesting results are reported) is unknown.

Finally, Table 3 lists the contribution of the discovered loci to the total genetic variance of

the respective traits across the 62 meta-analyses with suitable data available for estimating

the variance. Ankylosing spondylitis was the trait with the largest portion of genetic

variance explained, as the 7 loci reaching genome-wide significance explained 79% of the

variance. This is largely attributed to the effect of rs4349859 in HLA-B with OR=56 and
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P<10−200. This locus is a well-established risk factor and diagnostic test for the disease.

Several other phenotypes had over 20% of their variance explained: Crohn’s disease (71%),

rheumatoid arthritis (52% in Europeans and 33% in Asians), multiple sclerosis (49%),

ulcerative colitis (39%), type 1 diabetes (36%), and Parkinson’s disease (20%). There was a

weak correlation (r=0.28, P=0.03) between the number of discovered/validated SNPs and

the proportion of variance explained, e.g. 115 validated SNPs explained less than 7% of the

variance of height. Many phenotypes had very low proportions of variance explained. The

lowest explained variance was found for ankle-brachial index (only 1 SNP was genome-

wide significant and explained <0.1% of the total genetic variance). For most phenotypes

there is apparently a substantial number of additional but yet undiscovered loci, which could

increase the portion of the genetic variance explained (78), as we discuss in Part 2.

PART 2: THE FUTURE OF GWA META-ANALYSIS

2.1. FEATURES OF GWA VARIANTS DISCOVERED AND TO BE DISCOVERED

With such a large number of discovered common variants in GWA studies and meta-

analyses thereof, one can empirically characterize their features to understand what we have

learned and what more we can expect to discover in the future. There has been substantial

criticism of GWA studies, and the most commonly cited justification is the inability of

discovered SNPs to account for all of the heritability of a disease or trait. On the other hand,

proponents of GWA studies cite the numerous novel loci and novel biological mechanisms,

which are arising from the study of these traits and diseases in humans. It’s the typical ‘glass

half-full or half-empty’ argument. Whether the cost of the GWA experiments that resulted in

these biological findings justified the effort is difficult to quantitate, but what is abundantly

clear is that the number of novel loci identified from large-scale unbiased association tests of

representative common markers across the genome could not have been identified using

other approaches such as candidate gene approaches or linkage studies in Mendelian

pedigrees. Meta-analysis of GWA datasets has been essential for accomplishing these

discoveries.

Several features of the genome led to the ability to perform GWA studies; i) that most

common genetic variation is shared amongst individuals, particularly within the same ethnic

group, and also ii) that segments of chromosomes are often inherited intact, resulting in

batches of correlated markers. However, these features also bias this approach towards

detecting association with common genetic markers (44). To examine this empirically, we

examined the frequency distribution of SNPs that reach genome-wide association in studies

of > 10,000 individuals, SNPs typically examined in GWAS studies including imputation

and HapMap SNPs (Figure 1A) and there is a clear excess of common variants in the

category of associated variants.

It has been proposed that distant, rare variants may be responsible for association signals

with common variants (17) and there are several examples of rare functional variants that

were not assayed in the GWA studies because of an absence from the HapMap SNP dataset,

such as the PCSK9 R46L variant (85) and three rare coding variants in NOD2 (31) that are

not tagged by GWA arrays (6). However, the prevalent theory currently is that most loci that

show association with common variants will ultimately identify a functional variant from
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amongst the most strongly associated SNPs (3) that impacts regulation of nearby genes, as

recently described for the SORT1 functional variant at an LDL locus (71) identified by

GWA studies (45, 98).

The hypothesis that most GWA discovered loci will have an underlying common variant

that impacts regulation of gene expression was recently tested by Stamatoyannopoulos and

colleagues (69). They first examined regions of the genome where the chromatin is

unpacked and available for binding transcription factors, as marked by hypersensitivity to

cleavage by DNase I enzymes. The next step was to look for an enrichment of disease and

trait-associated loci from GWA studies in these DNase hypersensitive regions. The authors

identified a 40% enrichment of these disease- and trait-associated SNPs from GWAS (P <

10−55) in these DNase hypersensitive regions indicating regulatory function. We also

assessed, as a simple proxy for function, the distance to the nearest gene for three categories

of variants; those that show association from GWA studies, those examined in GWA

studies, and HapMap SNPs (Figure 1B). For the first category, 90% of variants are within 87

kb of a gene, however, for the third category, 90% of variants are within 367 kb of a gene.

The increased commonality of GWA discovered variants relative to those in the genome

(Figure 1A) is likely a result of the chips used to assay the genome and properties of linkage

disequilibrium. Which leaves us all wondering whether there are additional rare variants

waiting to be identified if we could just examine them in large numbers of individuals.

These variants have been much more difficult to test using GWA panels.

The ability of GWA meta-analyses to identify rare associated variants can be improved with

imputation (61). The development of methods for imputing markers from fully genotyped

reference panels into phenotyped samples with GWA markers has improved the genomic

coverage, and therefore power of GWA meta-analyses. However, there are many more rare

variants in the genome than common variants, and these variants typically have fewer highly

correlated proxies. This makes rare variants much more difficult to impute from GWA

marker panels. Methods for estimating the accuracy of imputed markers are also somewhat

less informative for rare variants than for common. However, in spite of these limitations,

preliminary imputation experiments have shown that rare variants can be imputed and may

play at least some role in common diseases (65).

Another interim approach between GWA studies and sequencing is to assay rare (and

common) variants in coding regions of the genome using inexpensive chip technology. A

chip assaying most variation identified from exome sequencing >12,000 individuals is

available from Illumina and soon from Affymetrix (http://genome.sph.umich.edu/wiki/

Exome_Chip_Design). This will allow for testing of rare variants (except for private

mutations and the ~15% of variants that cannot be designed for chip-based assays) that are

the most likely to be functional by changing the amino acid make-up of a protein. There are

still hurdles with experiments of this type. In the early stage of an experiment, one challenge

is to call rare variants using clustering algorithms designed for common variants, and some

progress towards rare-variant-specific approaches has been made (23). A challenge in the

later stages of an experiment is to use statistical tests that aggregate the evidence for

association across all functional variants in a biologically-equivalent unit (gene or pathway

Panagiotou et al. Page 8

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://genome.sph.umich.edu/wiki/Exome_Chip_Design


(4)). We expect to find a mix of functional and non-functional variants in most genes, but

identifying which variants are likely to be functional has been challenging. Although

prediction methods such as Polyphen2 (90) and SIFT (53) can predict that a variant might be

functionally deleterious, these approaches are not completely accurate. Sensitivity and

specificity may be low for subtle functional effects. A combined score might be more

accurate than any single score (24, 64). Others have used frequency as a predictor of

deleteriousness and either use thresholds so that only rare variants are considered (60) or use

weights such that common variants are downweighted (56).

There have been some early success stories from sequencing of candidate genes for common

diseases and traits, e.g. IFIH1 rare alleles provide some protection from type 1 diabetes (73)

and sequencing candidate genes LDLR and PCSK9 (12) has identified rare variants

associated with high and low LDL levels, respectively. Despite much debate and statistical

modeling, it is currently unknown how substantial a role rare variants will play in common

diseases. Large-scale sequencing studies in tens of thousands of individuals may be needed

to resolve this debate and meta-analysis or mega-analysis of data from many investigators

may be essential, as discussed below.

2.2. WHY DO LARGER META-ANALYSES?

It is important to consider whether further increases in sample size will continue to yield

new, worthwhile insights. The new discoveries achieved by larger GWA studies take the

form of new associated loci, and of new variants at known loci. Each of these has different

potential benefits. New loci can aid in the identification of new causal genes or pathways,

new variants can help define mechanism or causal genes at associated loci, and both new

loci and new variants increase the phenotypic variance explained, which could aid in

prediction.

In theory, GWA studies could at some point reach saturation for discovering new loci. It is

becoming clear that many associated loci have multiple causal common variants, so at some

point new variants could fall largely or exclusively in already-identified loci. This outcome

is similar to a saturation mutagenesis scan in model organisms, where discovery of multiple

alleles at each locus suggests that few new loci will be discovered by analyzing more

mutants. If the main goal of GWA studies is to identify new loci and hence new biology

(30) , then a diminishing return in new loci would strongly suggest that little would be

gained by continuing. However, if the goal is to account for as yet unexplained heritability

(67) then larger studies may yield more information, even if few new loci emerge. In either

case, a key consideration is whether the new information – either new loci or increased

variance explained – will be helpful in understanding the underlying biology and in treating

or preventing disease. Often, these considerations will depend in an idiosyncratic fashion on

the particular clinical features of the disease and on available treatments and preventive

measures.

2.3. CAN ONE PREDICT THE OUTCOME OF LARGER META-ANALYSES?

The ability to discover a new association depends on the effect size and allele frequency for

the associated variant and on the sample size encompassed by the meta-analysis. Because
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the effect sizes and frequencies for as yet undiscovered associations are by definition

unknown, it is not easy to predict precisely what a given sample size will yield in new

associations. Different groups have made different assumptions about the distributions of

effect sizes (22, 100). Some of these attempts to fit mathematical distributions to the effect

sizes based on results from early association studies produced inaccurate predictions of the

effect sizes seen in subsequent, larger meta-analyses (54). However, consideration of

empirical results across a number of different polygenic diseases and traits can provide some

sense of the general pattern of outcomes as meta-analyses increase in size, even if the actual

distribution of effect sizes does not fit a simple mathematical formula.

One approach to predicting the outcome of future studies rests on the observation that most

GWA meta-analyses are actually quite underpowered to discover the loci that reached

genome-wide significance in those studies. In other words, given the variance explained of

these loci when estimated in independent samples, the power to reach genome-wide

significance was low, and the investigators were “lucky” to find the association. Besides the

discovered loci, many more loci with similar effect sizes remained undiscovered. For

example, if there are 20 variants that explain equal small amounts of phenotypic variance,

then a study with 10% power for any one variant will identify 2 new associations on

average, and miss the remaining 18. From these considerations of power, it is possible to

extrapolate from current results to future studies, at least for variants that have an effect size

(variance explained) that is at least as large as some of the variants discovered in the earlier

study (54, 78, 99). These methods have been reasonably accurate in predicting future

discovery of loci with similar effect sizes to those identified in existing studies, although

they cannot estimate the number of loci that have even smaller effect sizes than any of those

already discovered.

It is also possible to use genome-wide association data to estimate the total amount of

phenotypic variation that can be explained by common genetic variation (101). However, it

is not possible to extrapolate from the total amount of heritability accounted for in toto to the

variance explained by any individual undiscovered locus, and therefore difficult to use these

estimates to predict the likely number of new loci or variants that would be identified by

future GWA studies. Bayesian approaches have been used to infer the effect size (and

frequency) distribution of undiscovered variants (89), although predictions from this method

have not yet been compared to results from subsequent studies. Of course, if the total

variance explained already approaches the estimated total heritability, further studies are

unlikely to be useful. The variance explained in the usual additive models may also

underestimate the total heritability accounted for, both because of multiple variants within

each locus (20, 26, 54, 84, 102), and also in theory because of complex interactions that

could lead to underestimation of the variance explained (104).

Although current theoretical and empirical estimates of future success are fraught with

uncertainty, it is possible to use traits where large meta-analyses have already been

performed to try to predict outcomes for GWA meta-analyses of traits and diseases where

the sample size has not yet increased as rapidly. Such an analysis may be a useful guide for

deciding whether to put new resources into increasing sample size. In two empirical

attempts to catalogue the relationship between increasing sample size and number of loci
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discovered across multiple traits (48, 93), it appears that, once some loci have been

discovered, the number of loci tends to increase more or less linearly with sample size.

We repeated this analysis for GWA studies where at least one locus had reached genome-

wide significance for any of three quantitative traits: height (8, 11, 25, 43, 54, 57, 72, 84, 88,

92, 94, 95), lipid levels (triglycerides, HDL-cholesterol and LDL-cholesterol; (5, 10, 16, 45,

46, 49, 51, 58, 91, 98)) and blood pressure (systolic and diastolic blood pressure (32, 47, 59,

74)). For multistage studies (where top results from an initial GWAS are taken forward into

additional samples), we extracted the sample sizes at each stage and the statistical threshold

for moving SNPs forward into the next stage. We then calculated the sample size for which

a one-stage design would have equivalent power as the actual study, and plotted this

“effective” sample size against the number of loci that reached genome-wide significance

(P<5×10−8 (70, 79)). As had been seen previously, the number of loci reaching genome-

wide significance increases with sample size (Figure 2), and, where there is a broad range of

sample sizes, the increase appears to be approximately linear. Furthermore, if we omit the

largest study and use the remaining studies to estimate the linear relationship between

effective sample size and number of genome-wide significant loci, we can predict the

number of loci that should reach genome-wide significance in the largest study. As seen in

Figure 2, the observed number of loci in the largest study matches (for lipids) or exceeds

(for height and blood pressure) the predicted number of loci.

Based on these observations, it is reasonable to assume that, once GWA studies of a disease

or trait have begun to yield associated loci, then larger sample sizes will yield additional

associated loci, and that the number of loci will scale at least linearly with sample size. Of

course, at some point increasing sample size will yield diminishing returns. This point might

be recognized by a fall-off of associated loci from a linear pattern (this presumably would

happen because new variants are being largely found in already-discovered loci).

Alternatively, if new loci consistently contain genes in already recognized pathways, then

the gain in biological insight may be limited even if large numbers of new loci remain to be

discovered. Moreover, the effect sizes (variance explained) of new discovered loci will tend

to be on average smaller than those of early discovered loci.

2.4. META-ANALYSES VERSUS MEGA-ANALYSES

Currently, most consortia in human genome epidemiology perform meta-analysis: individual

cohorts are analyzed separately, and then summary statistics are combined (typically with a

fixed-effects model, such as that implemented in METAL (97)). The alternative, in which

individual-level genotypes are combined into a single dataset before analysis, is sometimes

called “mega-analysis.” In theory, mega-analysis may avoid whatever information loss (and

hence a small power loss) is inherent in sharing summary statistics rather than pooling

individual level data. Although the power loss from this loss of information is minimal for

studies of common variants (62), it may be more sizeable for rare/uncommon variants. There

are also other potential advantages of mega-analysis. For example, in meta-analyses, any

analyses, whether simple associations or more complex ones (such as interactions or

conditional analyses) need to be coordinated across each of the analysts of the participating

teams. In addition, meta-analysis would not be able to detect cryptic relatedness between
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individuals from different studies, while this is feasible in mega-analysis. Mega-analysis

may be particularly valuable for studies of rare variants, where pooling individuals may both

increase the number of minor allele carriers in a given analysis (which lends robustness to

statistics) and where more complex analytical methods (4) will require more complex

methods of meta-analysis.

However, there are also several practical advantages to meta-analysis. For example, in meta-

analysis the association testing of a particular study is more likely to be done by an analyst

who is quite familiar with the genotype and phenotype data from that study. It may be

computationally more feasible to analyze studies separately rather than as single cohorts of

>100,000 samples, and the distribution of effort across multiple investigative groups may

also ease the computational burden. Finally, it is more appropriate to analyze studies

separately if there is heterogeneity in their ascertainment, ancestry, phenotyping, etc. Such

heterogeneity is almost always present when the constituent studies have been designed

independently in the past. Thus, meta-analysis would still be preferred even if all the

individual data became centrally available.

2.5. META-ANALYSIS AND CONSORTIUM CULTURE

The participation of multiple investigative groups requires careful attention to the creation of

a community of collaborating investigators within a consortial setting. Because the

consortial approach (37, 86) is a new way of doing science for most biologists, investigators

sometimes need to adapt to a new scientific culture characterized by data sharing and

openness. Many well-functioning consortia share several guiding principles, including “no

surprises” (declaring to other consortium members the intent to initiate projects, or submit

abstracts, publications, grants, etc.) and “don’t use other people’s data to gain a competitive

advantage over them.” In addition, a general sense of trust, common purpose and

willingness to share credit is essential, and care must be taken to manage or avoid

participation in separate but overlapping efforts. Typically, consortia work best when

investigators recognize that the advantages of increased power to make discoveries and

access to a large shared data set outweighs the perceived cost of sharing data and credit.

Academic institutions need to recognize properly the contributions made by investigators

who may not be (co-)first or (co-)last authors. It is important that tenure committees,

dissertation committees, and other groups that evaluate academic achievement be willing

and able to recognize that many authors make key, invaluable contributions to consortium-

style papers.

It is important to stress that the presence of a consortium need not preclude projects

performed by smaller groups or based on ideas from individual investigators. Indeed, such

“side projects” are often enabled by providing many groups access to a large, shared data

set, so that new ideas can be tested in a more powerful way. If multiple investigators have

similar interests, then open communication of ideas and plans can permit collaboration or at

least coordination of efforts that take advantage of the large, shared resource. Finally, broad

access to summary results and individual level data maximizes the utility of both meta-

analytic efforts and of the underlying data, permitting use of the data and results not only by

members of the consortium but also by the broader scientific community.
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2.6. CONCLUDING COMMENTS

In summary, almost all of what we presently know about the genetics of human polygenic

disorders and quantitative traits has derived from meta-analysis of genome-wide association

data. Continued meta-analyses on larger samples are likely to continue to yield useful

information. Meta-analysis is also likely to remain a key approach as studies extend into

rarer variation, although some methodological changes may be necessary. Consortia or other

forms of collaboration are likely to continue to be vital to generate, assemble and analyze

large genetic and genomic data sets. The academic community should understand the nature

and value of individual contributions to these shared efforts and provide the appropriate

academic recognition for collaborative work. Fostering collaboration will continue to enable

the shared efforts like meta-analysis of genome-wide association studies that have helped

propel human genetics forward over the last several years.
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Mini-Glossary

• Cochran’s Q: a χ2 statistic for detecting between-study heterogeneity by testing

whether the observed differences in results are compatible with chance

• common variants: polymorphisms with frequency of >5% in a given population

• exome sequencing: the process of sequencing the exons (i.e. coding sequence)

of all genes across the genome

• fixed-effects model: a method of combining individual studies under the

assumption of common genetic effect; variation is attributed to chance

• heterogeneity: the variation in the genetic effects observed among the combined

studies

• HapMap Project: an extensive catalogue of the common variation in the human

genome

• HWE (Hardy-Weinberg equilibrium): a theoretical description according to

which the genotype frequencies are equal to the product of the allele frequencies

• I2: a measure of quantifying between-study heterogeneity; it describes the

percentage of variability in effect estimates attributed to heterogeneity rather

than chance

• imputation: a method used to infer the genotypes of SNPs that have not been

directly genotyped

• linkage disequilibrium: a measure of the extent that two SNPs are found

together in a population more often than expected by chance.

• MAF (minor allele frequency): the frequency of the less common of two alleles

in a given population

• mega-analysis: an approach where individual data at the genome-wide level are

pooled before the analysis

• meta-analysis: a statistical method that allows the combination of multiple

different datasets estimating a common summary effect

• power: the probability of rejecting the null hypothesis of no association when

the null hypothesis is false

• random-effects model: a method of combining individual studies under the

assumption of different genetic effects; variation is attributed to genuine

differences

• rare variants: polymorphisms with frequency of 5% or less in a given

population

• variance explained: the proportion of the variability in a complex trait that can

be explained by genetic factors
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Summary Points

• Meta-analysis of GWA datasets has become increasingly common for the

detection of subtle genetic effects on complex traits with most of them being

performed within international consortia achieving very large sample sizes.

• Among 139 GWA meta-analyses published to-date, each GWA meta-analysis

has discovered on average 4 SNPs (range 0-115) with many more SNPs being

followed-up in replication and functional studies.

• For most traits, the GWA-discovered SNPs to-date explain <20% of the genetic

variance and there is a weak correlation between the number of SNPs and the

proportion of variance explained.

• Larger GWA meta-analyses could increase our knowledge by identifying new

loci thus increasing the proportion of variance explained and potentially

providing also new insights into the biology of human disease.

• The number of loci reaching genome-wide significance seems to increase at

least linearly with increasing sample size.

• Meta-analysis methods can be extended for application in sequencing studies

and those focusing on rare variants.

• Meta-analysis is preferable to mega-analyses of GWA data (pooling individual

data before analysis), when the combined studies are potentially heterogeneous,

but the latter might also have some uses under select circumstances.
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Future Issues

• Meta-analyses of GWA data are expected to become even more common in the

future as individual teams worldwide create more consortia and share data.

• Given the wide-spread role of consortia, mega-analyses of individual GWA data

could increase power for detecting subtle effects, especially for rare variants,

and could also detect cryptic relatedness, overcoming some of the limitations of

GWA meta-analyses.

• Detection of rare variation will be greatly enhanced by advancements in

imputation of these variants and by sequencing thousands of individuals within

the consortial setting.

• The potential for clinical translation of this information will largely depend in an

idiosyncratic fashion on the particular clinical features of the disease and on

available treatments and preventive measures.

• Continued meta-analyses on larger samples are likely to continue to yield useful

information, being a key approach besides imputation and sequencing for

extending into rarer variation, although some methodological changes may be

necessary.

• Contributions from individual teams to shared efforts and recognition for

collaborative work within the consortial setting are vital for maximizing the

potential of future discoveries.
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Figure 1.
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SNPs associated via GWA studies in > 10,000 individuals were compared to the entire set of

SNPs typically examined in a GWA study including imputation and to the HapMap Phase II

SNPs. A) The proportion of SNPs in each minor allele frequency bin are shown in and B)

the cumulative proportion of SNPs that show a gene within a certain distance (kb) is plotted.
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Figure 2.
The effective sample size (see text for details) is plotted against the number of loci reaching

genome wide significance for genome-wide association studies for height (top), the

combination of three lipid traits (middle; HDL-cholesterol, LDL-cholesterol, and

triglycerides), and the combination of two blood pressure traits (bottom; systolic and

diastolic blood pressure). In each case, the largest study is removed, and a line through the

origin is fitted to the remaining studies (circles). The number of loci in the largest study

(filled triangle) is greater than or equal to that predicted by extrapolating the line to the

effective sample size of the largest study (open triangle).
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Table 2

Functional work accompanying meta-analyses

GWA
report

Gene
expression

eQTL RNA
expression

Animal
models

Pathway
analyses

Protein-
protein

interactions

GRAIL Coding
variation

Other

(S19) X X X X OMIM

(S77) X X

(S12) X

(S55) X X

(S52) X

(S40) X

(S85) X

(S75) X X

(S53) X

(S54) X X X

(S25) (S46) X X X X X Transcript
profiling

(S10) X X X

(S49) X

(S70) X X X GxE interactions

(S64) X Gene ontology

(S31) X X X

(S1) X

(S39) X

(S76) X X

(S83) X X GxG interactions

(S21) GxG interactions

(S38) X X

(S35) X

(S88) X X Gene ontology

(S65) X X

(S28) X

(S66) X

(S2) X X X

(S32) X X DNA methylation

(S18) X X

(S22) X X X

(S72) X X X

(S20) X X

(S27) X X X X X

(S73) X X

(S41) X X X X OMIM

(S50) X
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GWA
report

Gene
expression

eQTL RNA
expression

Animal
models

Pathway
analyses

Protein-
protein

interactions

GRAIL Coding
variation

Other

(S78) X X

(S81) X X X X

(S74) X

(S37) X Mutations

(S16) X X

(S44) X

(S24) X

eQTL, expression quantitative trait loci; GxG, gene-gene; GxE, gene-environment; GRAIL software, software for Gene Relationships Across
Implicated Loci (http://www.broadinstitute.org/mpg/grail/): OMIM, Online Mendelian Inheritance in Man (www.ncbi.nlm.nih.gov/omim)
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Table 3

Genetic variance explained by the total number of independent loci discovered in the eligible GWA meta-

analyses

Disease/Trait SNPs Discovered % Genetic Variance Explained

Stroke (S29) 2 4.97

Atrial fibrillation (S4) 2 4.23

Major mood disorders (S44) 1 0.94

Alanine aminotransferase (ALT) (S33) 2 0.60

Aspartate aminotransferase (AST) (S33) 2 0.84

Blood urea nitrogen (S33) 3 0.89

Gamma glutamyl transpeptidase (y-GT) (S33) 2 1.96

Hemoglobin (S33) 2 0.61

Hematocrit (S33) 2 0.56

Mean corpuscular hemoglobin (S33) 15 6.98

Mean corpuscular hemoglobin concentration (S33) 7 2.07

Mean corpuscular volume (S33) 15 6.56

Platelets count (S33) 6 2.19

Red blood cells count (S33) 8 3.47

Total protein (S33) 2 0.69

White blood cells count (S33) 5 1.28

Serum creatinine (S33) 1 0.22

Height a (S51) 8 1.78

Intracranial aneurysm (S87) 6 12.20

Birth weight (S23) 2 0.51

Heart failure (S68) 1 1.12

Rheumatoid arthritis b (S74) 6 51.65

Vitamin D insufficiency (S84) 3 12.86

Phosphorus levels (S36) 7 0.39

Type 2 diabetes b (S81) 10 13.09

Calcium levels (S50) 1 0.09

Asthma (S47) 6 5.71

Height b (S41) 115 6.56

Gout (S86) 2 14.34

Waist-hip ratio (S27) 12 0.60

Crohn’s disease (S22) 52 71.21

Renal cell carcinoma (S58) 6 5.38

Parkinson’s disease (S32) 11 20.17

Ulcerative colitis (S2) 33 39.17

Coronary heart disease (S66) 13 9.01

Alzheimer’s disease (S28) 6 5.78

Glioma (S62) 6 12.19
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Disease/Trait SNPs Discovered % Genetic Variance Explained

Adiposity (% body fat) (S38) 2 0.27

Sudden cardiac arrest (S3) 2 6.757

Ankylosing spondylitis (S21) 7 78.63

Proinsulin levels (S76) 7 0.67

Type 2 diabetes a (S39) 1 2.09

Coffee consumption (S1) 1 0.005

Plaque (S5) 3 2.48

Bipolar disorder (S64) 4 3.70

Pulmonary function (S70) 8 0.69

Type 1 diabetes (S8) 19 36.42

Height c (S49) 2 0.30

Allergic rhinitis (S60) 1 1.22

IgE sensitization to grass (S60) 3 5.54

Aortic stiffness (carotid-femoral pulse wave velocity) (S46) 1 0.26

Multiple sclerosis (S54) 9 49.08

Atopic dermatitis (S53) 2 1.76

Ankle-brachial index (S48) 1 0.002

Metabolic syndrome (S40) 1 2.07

Rheumatoid arthritis a (S52) 7 32.90

Chronic kidney disease (S55) 2 2.74

Adiponectin levels (S12) 10 0.72

Obesity (childhood) (S9) 7 10.15

Head circumference (infant) (S77) 3 0.77

Bone mineral density- Femoral neck (S19) 22 3.89

Bone mineral density- Lumbar spine (S19) 26 5.62

GWA, genome-wide association; SNP, single-nucleotide polymorphism

a
It pertains to populations of Asian ancestry

b
It pertains to populations of European ancestry

c
It pertains to populations of African ancestry
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