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SUMMARY

Mitochondrial respiratory chain disorders are characterized by loss of electron transport chain

(ETC) activity. Although the causes for many such diseases are known, there is a lack of effective

therapies. To identify genes that confer resistance to severe ETC dysfunction when inactivated, we

performed a genome-wide genetic screen in haploid human cells with the mitochondrial complex

III inhibitor, antimycin. This screen revealed that loss of ATPIF1 strongly protects against

antimycin-induced ETC dysfunction and cell death by allowing for maintenance of mitochondrial

membrane potential. ATPIF1 loss protects against other forms of ETC dysfunction and is even

essential for the viability of human ρ0 cells lacking mitochondrial DNA, a common system for

studying ETC dysfunction. Importantly, inhibition of ATPIF1 ameliorates complex III blockade in

primary hepatocytes, a cell type afflicted in severe mitochondrial disease. Taken together, these

results suggest that inhibition of ATPIF1 can ameliorate severe ETC dysfunction in mitochondrial

pathology.

To whom correspondence should be addressed. sabatini@wi.mit.edu.

AUTHOR CONTRIBUTIONS W.W.C., K.B., and D.M.S. conceived the project. W.W.C. and K.B. designed and performed most
experiments and data analyses with input from D.M.S. M.M.M., B.Y., and E.C.B. assisted with experiments. J.E.C. and T.R.B.
assisted with haploid genetic screening. C.B.C. performed metabolite profiling and analysis. H.S., I.S., and D.D.S. performed electron
microscopy analysis. W.W.C., K.B., and D.M.S. wrote and edited the manuscript.

The authors declare that no competing financial interests exist.

NIH Public Access
Author Manuscript
Cell Rep. Author manuscript; available in PMC 2014 October 10.

Published in final edited form as:
Cell Rep. 2014 April 10; 7(1): 27–34. doi:10.1016/j.celrep.2014.02.046.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



INTRODUCTION

Defects in the activity of the electron transport chain (ETC) are the causative pathology in a

diverse family of genetic diseases known as mitochondrial respiratory chain disorders.

Patients with these diseases can often present with abnormalities in multiple organ systems

(Pfeffer et al., 2012, DiMauro and Schon, 2003, Spinazzola et al., 2006). Although some

mitochondrial respiratory chain disorders cause relatively mild abnormalities, such as

exercise intolerance, there are severe forms of respiratory chain disorders that can lead to

life-threatening loss of tissue parenchyma and organ failure (Morris, 1999, Lee and Sokol,

2007, DiMauro and Schon, 2003, Spinazzola et al., 2006). Yet despite an extensive

characterization of the mechanisms underlying these diseases, there is a paucity of effective

therapies to ameliorate severe respiratory chain dysfunction. Indeed, most efforts to date,

such as dietary supplementation with small molecules and vitamins that can increase ETC

activity or decrease reactive oxygen species have not demonstrated any clear efficacy across

clinical trials, thus underscoring the need for novel therapeutic strategies (Pfeffer et al.,

2012, Schon et al., 2010).

Genetic and chemical screens in mammalian cells have previously identified modulators of

mitochondrial dynamics (Lefebvre et al., 2013, Kitami et al., 2012, Gohil et al., 2010, Yoon

et al., 2010), but to our knowledge there have been no genetic screens carried out in

mammalian cells to identify gene products that, when inactivated, increase survival under

ETC dysfunction. Beginning with a positive-selection screen in human cells using the

mitochondrial complex III inhibitor antimycin, we find that loss of ATPIF1 is protective

against complex III blockade, as well as a multitude of other insults to the ETC, leading us

to propose inhibition of ATPIF1 as a strategy for ameliorating severe mitochondrial

respiratory chain disorders.

RESULTS AND DISCUSSION

To identify genes whose products modulate sensitivity to ETC inhibition, we performed a

genome-wide, insertional mutagenesis screen in the near-haploid KBM7 human cell line

with antimycin, a complex III inhibitor of the ETC. This technology has been used

successfully in the past to identify numerous proteins essential for the cytotoxicity of

microbial factors (Carette et al., 2011b, Guimaraes et al., 2011), as well as transporters for

toxic small molecules (Birsoy et al., 2013). In brief, we generated a library of mutagenized

haploid KBM7 cells harboring approximately 70 million insertions that encompass more

than 95% of all genes expressed in KBM7 cells (Carette et al., 2011a). Mutagenized cells

were then treated with antimycin for three weeks and the surviving cells expanded and

pooled. Insertions in the surviving population were mapped to the human genome using

massively parallel sequencing. To identify genomic loci enriched for gene-trap insertions,

we performed a proximity index analysis and identified several candidate genes: ATPIF1 (P

= 3.04 × 10−43), WT1 (P = 1.78 × 10−40), and TP53 (P = 6.93 × 10−8) (Figure 1A). Because

both WT1 and TP53 are tumor suppressors (Sherr, 2004) and would therefore be less

attractive therapeutic targets, we focused our attention on ATPIF1. ATPIF1 is a highly-

conserved mitochondrial protein that inhibits the ATPase activity of the F1-F0 ATP

synthase and has been found to affect a variety of metabolic parameters, such as aerobic
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glycolysis (Sánchez-Cenizo et al., 2010), ATP synthase dimerization (García et al., 2006),

and mitochondrial cristae density (Campanella et al., 2008, Campanella et al., 2009).

To investigate the role of ATPIF1 loss in protecting cells against complex III blockade, we

isolated a KBM7 clone harboring a gene-trap insertion of ATPIF1 (ATPIF1_KO) and

confirmed that it did not express detectable amounts of ATPIF1 protein (Figures 1B and

1C). Consistent with the results of our screen, ATPIF1_KO cells were substantially more

resistant to antimycin-induced cell death than their wildtype (WT) counterparts (Figure 1D).

Additionally, re-expression of ATPIF1 in ATPIF1_KO cells almost completely restored

their sensitivity to antimycin (Figure 1E). As an independent confirmation of our findings,

WT KBM7 cells expressing shRNAs targeting ATPIF1 also exhibited increased resistance

to antimycin as well (Figure S1).

To probe the mechanism by which ATPIF1 loss can confer resistance to complex III

inhibition, we examined the effects of antimycin on the metabolism and mitochondrial

function of WT and ATPIF1_KO KBM7 cells. Upon inhibition of the ETC, mitochondrial

membrane potential (ΔΨm) decreases and the F1-F0 ATP synthase reverses, consuming ATP

to pump protons into the intermembrane space (Campanella et al., 2008, Campanella et al.,

2009, Lefebvre et al., 2013, Lu et al., 2001). Normally an inactive tetramer, ATPIF1

dissociates into active dimers upon a large decrease in ΔΨm and subsequently inhibits

reversal of the F1-F0 ATP synthase, an adaptive mechanism to prevent ATP consumption

during periods of nutrient and oxygen deprivation (Cabezon et al., 2001, Fujikawa et al.,

2012, Lu et al., 2001, Campanella et al., 2008, Campanella et al., 2009). However, in short-

term experiments, decreased ATPIF1 activity during ETC dysfunction allows for

maintenance of ΔΨm at the expense of ATP via reversal of the F1-F0 ATP synthase, but it is

unclear whether maintenance of ΔΨm or conservation of ATP is the more important process

for survival under ETC dysfunction (Campanella et al., 2008, Campanella et al., 2009,

Lefebvre et al., 2013). Consistent with the F1-F0 ATP synthase operating in reverse, we

observed that ATPIF1_KO cells had decreased ATP but increased ΔΨm upon antimycin

treatment, as compared to WT KBM7 cells (Figure 1F). Metabolite profiling of

ATPIF1_KO cells under antimycin treatment also revealed a greater depletion of glycolytic

intermediates, in agreement with the increased ATP demand under conditions of ETC

inhibition (Figure S2, Table S1). Importantly, the differences seen in ATP, ΔΨm, and overall

survival under antimycin could be eliminated by co-treatment with oligomycin, a potent

inhibitor of the F1-F0 ATP synthase (Figures 1F and 1G). It is unlikely that the effects of

oligomycin on antimycin-treated cells were a result of additive toxicity because oligomycin

itself had no effect on the viability of either WT KBM7 or ATPIF1_KO cells (Figure 1G).

Of note, the addition of oligomycin to antimycin-treated ATPIF1_KO cells decreased ΔΨm,

increased ATP levels, but led to decreased survival, suggesting that maintenance of ΔΨm is

more important than preservation of ATP in ameliorating complex III blockade in KBM7

cells. To rule out any effects of ATPIF1 loss on general mitochondrial metabolism and

cellular physiology, we also examined the mitochondrial mass, mitochondrial DNA

(mtDNA) copy number, mitochondrial ultrastructure, and resting ΔΨm, ATP, viability, and

oxygen consumption of WT and ATPIF1_KO KBM7 cells, but found no significant

differences (Campanella et al., 2008) (Figure S3). Collectively, these data demonstrate that
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ATPIF1 loss confers resistance to complex III blockade through maintenance of ΔΨm via

reversal of the F1-F0 ATP synthase.

We next sought to determine if the effects of ATPIF1 loss on KBM7 cells were

generalizable to other cell lines and additional forms of ETC dysfunction. Consistent with

the results in KBM7 cells, SH-SY5Y and HeLa cells expressing an shRNA targeting

ATPIF1 were more resistant to antimycin than cells expressing a control hairpin (Figure

2A). In addition, we found that overexpression of ATPIF1 in Malme-3M, a cell line with

low endogenous levels of ATPIF1, increased their sensitivity to antimycin (Figure 2B). To

investigate whether the protective effect of ATPIF1 loss was limited to only complex III

inhibition, we tested a variety of pharmacological and genetic models of ETC dysfunction.

ATPIF1_KO KBM7 cells were substantially more resistant to both piericidin, an inhibitor of

complex I (Darrouzet et al., 1998), and tigecycline, an inhibitor of mitochondrial translation

(škrtić et al., 2011), when compared to their WT counterparts (Figure 2C). Taken together,

these data demonstrate that the levels of ATPIF1 can modulate sensitivity to different forms

of ETC dysfunction in various human cell lines.

The observation that ATPIF1_KO KBM7 cells were more resistant to inhibition of complex

I, complex III, and mitochondrial protein synthesis raised the possibility that ATPIF1 loss

could ameliorate the effects of dysfunction in multiple components of the ETC. To test this

genetically, we examined ρ0 cells, which are devoid of any mtDNA and consequently have

defects in complexes I, III, and IV, resulting in undetectable ETC activity (Jazayeri et al.,

2003). To our surprise, we found that HeLa ρ0 cells intrinsically possess low mRNA and

protein levels of ATPIF1, when compared to their WT counterparts (Figure 2D). Previous

work has shown that ρ0 cells maintain ΔΨm by using the electrogenic exchange of ATP and

ADP, coupled to ATP hydrolysis by an F1-F0 ATP synthase defective in pumping protons,

and that this activity is important for cellular health (Buchet and Godinot, 1998, Appleby et

al., 1999). We therefore hypothesized that there could be a strong selective pressure to

decrease ATPIF1 levels under severe ETC dysfunction in order to facilitate reversal of the

F1-F0 ATP synthase. A reduction of ATPIF1 in 143b ρ0 cells was observed recently,

although the functional significance of this reduction on cell viability was not investigated

(Lefebvre et al., 2013). To address this, we overexpressed WT ATPIF1 or a mutant ATPIF1

harboring an E55A substitution that renders the protein unable to interact with the F1-F0

ATP synthase (Ichikawa et al., 2001). Overexpression of WT ATPIF1, but not E55A

ATPIF1, strongly impaired proliferation in HeLa ρ0 cells but not in HeLa WT cells (Figure

2E). The differences observed between WT and E55A ATPIF1 were not simply a result of

E55A ATPIF1 protein instability because both variants of ATPIF1 were overexpressed to a

similar degree, as seen in the immunoblots of HeLa WT cells (Figure 2E). Intriguingly, at

the time of collection, we found that the surviving HeLa ρ0 cells infected with virus

expressing WT ATPIF1 had lower amounts of ATPIF1 than those infected with virus

expressing E55A ATPIF1, which is consistent with a selection against ATPIF1 activity on

the F1-F0 ATP synthase in the ρ0 state (Figure 2E). Collectively, these data demonstrate that

reduced ATPIF1 activity is essential for the viability of human ρ0 cells lacking a

mitochondrial genome.
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Failure to maintain proper amounts of the mitochondrial genome is a distinctive feature of a

class of severe respiratory chain disorders known as mtDNA depletion syndromes (Lee and

Sokol, 2007). Because of our interest in ATPIF1 inhibition as a potential strategy for

ameliorating severe ETC dysfunction, we asked if loss of ATPIF1 alone was sufficient to

improve cell viability during progressive mtDNA depletion. To do this, we cultured WT and

ATPIF1_KO KBM7 cells with 2′,3′-dideoxyinosine (ddI), an inhibitor of mtDNA

replication (Lewis et al., 2003, Walker et al., 2002), for approximately 51 days and

monitored cellular behavior at defined time points (Figure 3A: see Experimental Procedures

for exact time points at which phenotypes were assayed). ddI led to an immediate decrease

in mtDNA copy number in the initial days of treatment, concomitant with a decrease in cell

proliferation that was roughly equivalent between WT and ATPIF1_KO KBM7 cells (Figure

3B). It has been observed from previous studies that this amount of mtDNA depletion still

allows for residual ETC function (Jazayeri et al., 2003) and so it is unlikely that ATPIF1

was maximally activated in the WT KBM7 cells at this point. mtDNA was progressively

depleted with each successive week of ddI treatment and, by day 25, both WT and

ATPIF1_KO KBM7 cells had trace amounts of mtDNA (Figure 3C). While both WT and

ATPIF1_KO KBM7 cells proliferated slower than their untreated counterparts, ATPIF1_KO

cells demonstrated a significantly faster rate of proliferation than WT KBM7 cells,

consistent with loss of ATPIF1 improving cell viability under conditions of severe ETC

dysfunction (Figure 3C). Taken together, these data demonstrate that loss of ATPIF1 is

sufficient to improve cell viability during progressive mtDNA depletion.

Given that low ATPIF1 levels were necessary for viability in HeLa ρ0 cells, we

hypothesized that WT ρ0 KBM7 cells would express low amounts of ATPIF1 as well. In

accordance with this, we observed a gradual decrease in ATPIF1 over 50 days of ddI

treatment, with WT KBM7 cells exhibiting substantially reduced amounts of ATPIF1 and

undetectable quantities of mtDNA (i.e. ρ0 state) at the end of the time course (Figures

3B-3D). Furthermore, WT ρ0 KBM7 cells with reduced ATPIF1 expression proliferated to a

similar extent as ATPIF1_KO ρ0 KBM7 cells, suggesting that complete loss of ATPIF1

activity had no additional benefit on cell proliferation in the terminal ρ0 state (Figure 3D).

Because severe forms of mitochondrial respiratory chain disorders can lead to cell death and

loss of tissue parenchyma in organs such as the liver (Morris, 1999, Lee and Sokol, 2007),

we transitioned to a more physiological context and asked if loss of ATPIF1 in hepatocytes

could ameliorate ETC dysfunction and improve cell viability. WT and ATPIF1 -/- mice were

obtained from the International Knockout Mouse Consortium (Brown and Moore, 2012)

(Figures S4A and S4B) and primary hepatocytes isolated from ATPIF1 -/- mice had

undetectable amounts of ATPIF1 (Figure 4A). Consistent with the results seen in cell lines,

antimycin treatment led to a greater decrease in cellular ATP (Figure 4B) and a greater

increase in ΔΨm (Figure 4C) in ATPIF1 -/- hepatocytes than in WT hepatocytes, indicating

that there was greater reversal of the F1-F0 ATP synthase in ATPIF1 -/- hepatocytes.

Importantly, ATPIF1 -/- hepatocytes had increased cell viability relative to WT hepatocytes

following treatment with antimycin (Figure 4D), which demonstrates that the beneficial

effects of ATPIF1 loss under severe ETC dysfunction are not limited to rapidly proliferating

cancer cell lines, but can also occur in post-mitotic, differentiated cells that better
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recapitulate the metabolism of tissues affected in severe mitochondrial respiratory chain

disorders (Vander Heiden et al., 2009). The smaller effects of ATPIF1 loss on hepatocyte

viability during antimycin treatment, as compared to KBM7 cells, are partially due to the

frailty of primary mouse hepatocytes when cultured ex vivo (Edwards et al., 2013, Klaunig

et al., 1981). Taken together, these data demonstrate that ATPIF1 loss in primary

hepatocytes can ameliorate the effects of complex III blockade.

Our results suggest that ATPIF1 inhibition can be a strategy for ameliorating severe ETC

dysfunction in mitochondrial respiratory chain disorders. Impaired ETC function in the

presence of normal ATPIF1 activity leads to a persistent loss of ΔΨm, which hinders

mitochondrial import of proteins (Neupert, 1997) and eventually promotes apoptosis

(Gottlieb et al., 2003). However, upon ATPIF1 inhibition, increased reversal of the F1-F0

ATP synthase can bolster ΔΨm and improve mitochondrial and cellular health (Figure 4E),

although it remains to be seen whether ATPIF1 loss is beneficial to all cell types in vivo

since the ratio of ATPIF1 to F1-F0 ATP synthase expression, the amount of glycolysis, and

the consumption of ATP can vary substantially between different tissues. Regardless,

because several mitochondrial respiratory chain disorders, such as Alpers-Huttenlocher

Syndrome and Pearson’s Syndrome, lead to progressive liver failure (Lee and Sokol, 2007),

our findings in primary hepatocytes at least suggest that hepatic delivery of RNAi constructs

targeting ATPIF1 either via adeno-associated virus or lipid nanoparticles, both of which

have seen clinical efficacy in gene therapy of the liver, may have therapeutic value

(Nathwani et al., 2011, Fitzgerald et al.). Notably, ATPIF1 -/- mice appear phenotypically

normal and their hepatocytes exhibit no significant alterations in ATP synthase activity or

mitochondrial structure (Nakamura et al., 2013). In agreement with these findings, we did

not observe any significant differences in the mitochondrial mass of WT and ATPIF1 -/-

primary hepatocytes (Figure S4C). Taken together, these data suggest that ATPIF1

inhibition is relatively well-tolerated.

In conclusion, we have used a positive-selection screening method in human cells to identify

loss of ATPIF1 as protective against complex III blockade. We have further shown that

ATPIF1 inhibition protects different cell types against numerous insults to the ETC. In

particular, our work demonstrates that loss of ATPIF1 activity is essential for the viability of

human ρ0 cells, a widely used system to study mitochondrial dysfunction, and that inhibition

of ATPIF1 can ameliorate the effects of complex III blockade in primary hepatocytes, a cell

type that is often affected in severe respiratory chain disorders. Given the lack of therapies

for severe mitochondrial respiratory chain disorders, we thus believe that inhibition of

ATPIF1 is a promising approach that warrants further investigation.

EXPERIMENTAL PROCEDURES

FACS assays

For measurements of ΔΨm, 100,000 cells were incubated with TMRM (25 nM) and the

indicated amounts of drugs for the indicated amounts of time before collection. For

measurements of mitochondrial mass, 100,000 cells were incubated with MitoTracker Green

FM (50 nM) for one hour. For primary hepatocytes, cells were assayed in suspension

immediately after harvest from the liver and incubated with verapamil (20 μM) to facilitate
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retention of TMRM and MitoTracker Green FM signals. Afterwards, cells were collected by

centrifugation, washed once with PBS, and resuspended in PBS with 7-AAD (2 μg/mL) for

analysis. KBM7 cells and primary hepatocytes were centrifuged at 2000 rpm for 5 minutes

and 500 rpm for 5 minutes at 4°C, respectively.

Cell viability assays

For KBM7 cells, 100,000 cells were seeded and treated with the indicated drugs for the

indicated amounts of time before then being analyzed with 7-AAD staining and FACS

according to the manufacturer’s instructions (BD Pharmingen), unless indicated otherwise.

For HeLa, SH-SY5Y, and Malme-3M cells, 500 – 2,000 cells were seeded per well of white,

clear-bottom 96-well plates (Greiner Bio-One), treated with drugs, and then analyzed using

CellTiter-Glo according to the manufacturer’s instructions (Promega). For primary

hepatocytes, 100,000 cells were seeded per well of a 24-well TPP plate (Light Labs), treated

with antimycin, and then analyzed using CellTiter-Glo.

Cell proliferation assays

For KBM7 cells, cell proliferation was assessed with a Beckman Z2 Coulter Counter using a

size range of 8 – 30 μm. For all other cell lines, cell proliferation was assessed using

CellTiter-Glo according to the manufacturer’s instructions and by normalizing all readings

to initial values measured at the start of the experiment.

Long-term exposure to ddI

mtDNA copy number analysis was performed on cells treated with ddI for 8 days, 26 days,

and 41 days. Rates of proliferation were measured for cells treated with ddI for 5 days, 31

days, and 51 days. Immunoblot analysis was done on cells treated with ddI for 5 days, 11

days, and 50 days.

Statistical analysis

All data are expressed as mean ± s.e.m. Significance was determined using the two-tailed

unpaired Student’s t test. Differences with a P value less than 0.05 were considered

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Haploid genetic screen identifies loss of ATPIF1 as protective against complex III
inhibition
(A) Mutagenized KBM7 cells were treated with antimycin and resistant cells were pooled.

Gene-trap insertions were identified by massively parallel sequencing and mapped to the

human genome. The y-axis represents the statistical significance of a given gene, while the

x-axis represents the collection of genes with insertions. The red line indicates the cut-off of

statistical significance chosen to determine whether a gene scored as a hit in the screen. For

ATPIF1, WT1, and TP53, the number of unique insertions per gene is given in parentheses.

(B) Map of unique insertions in ATPIF1 in the resistant cell population. The arrow denotes

5′-3′ directionality, boxes represent exons, and black bars indicate insertions. (C)

Immunoblots for indicated proteins in WT and ATPIF1_KO KBM7 cells. (D) Micrographs

(left) and viability (right) of WT and ATPIF1_KO KBM7 cells treated with antimycin for 4

days. Error bars are ± s.e.m. (n = 3). Scale bars, 20 μm. (E) Immunoblots for indicated

proteins in WT, ATPIF1_KO, and ATPIF1_KO KBM7 cells with restored ATPIF1

expression (left) and viability of cells treated with antimycin (135 μM) for 2 days (right).

Error bars are ± s.e.m. (n = 3). ***P < 0.001. (F) Cellular ATP (left) and ΔΨm (right) in WT

and ATPIF1_KO KBM7 cells treated with antimycin (135 μM) and oligomycin (1 μM).

Error bars are ± s.e.m. (n = 3). (G) Viability of WT and ATPIF1_KO KBM7 cells treated

with antimycin (135 μM) and oligomycin (1 μM) for 2 days. Error bars are ± s.e.m. (n = 3).

***P < 0.001. See also Figures S1, S2, S3, and Table S1.
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Figure 2. Loss of ATPIF1 is beneficial in both pharmacological and genetic models of ETC
dysfunction
(A) Immunoblots for indicated proteins in SH-SY5Y cells expressing a control shRNA

against Luciferase (shLuc) or an shRNA against ATPIF1 (shATPIF1_3) (left). Viability of

SH-SY5Y (middle) and HeLa (right) cells treated with antimycin for 4 days. Error bars are ±

s.e.m. (n = 3). (B) Immunoblots for indicated proteins in Malme-3M cells overexpressing

control RAP2A or ATPIF1 (left). Viability of Malme-3M cells treated with antimycin for 4

days (right). Error bars are ± s.e.m. (n = 3). (C) Viability of WT and ATPIF1_KO KBM7

cells treated with piericidin (top) or tigecycline (bottom) for 4 days. Error bars are ± s.e.m.

(n = 3). (D) Relative ATPIF1 mRNA levels (top) and immunoblots for indicated proteins

(bottom) in HeLa WT and ρ0 cells. Error bars are ± s.e.m. (n = 3). **P < 0.01. (E)

Immunoblots (left) and relative proliferation (right) of HeLa WT and ρ0 cells transduced

with control vector, ATPIF1 (WT), or ATPIF1 (E55A) constructs. Error bars are ± s.e.m. (n

= 3).
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Figure 3. Loss of ATPIF1 improves cell viability during progressive mtDNA depletion
(A) Schematic depicting experimental paradigm of long-term treatment of WT and

ATPIF1_KO KBM7 cells with ddI. Early (days 0 – 10), middle (days 10 – 40), and late

(days 40 +) periods of ddI treatment are indicated and demarcated by dotted lines. During

each period, mtDNA copy number, cell proliferation over four days, and ATPIF1 expression

were analyzed. (B – D) mtDNA copy number (left), cell proliferation (middle), and

immunoblots for indicated proteins (right) of WT and ATPIF1_KO KBM7 cells treated with

ddI during the early (B), middle (C), and late (D) periods. Error bars are ± s.e.m. (n = 3).

***P < 0.001.
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Figure 4. Inhibition of ATPIF1 ameliorates the effects of complex III blockade in primary
hepatocytes
(A) Immunoblots for indicated proteins of primary hepatocytes derived from WT and

ATPIF1 -/- mice. (B) Cellular ATP of WT and ATPIF1 -/- primary hepatocytes treated with

antimycin (0.625 μM) for 1.5 hours. Error bars are ± s.e.m. (n = 3). ***P < 0.001. (C) ΔΨm

of WT and ATPIF1 -/- primary hepatocytes treated with antimycin (10 μM) for 1.5 hours.

Error bars are ± s.e.m. (n = 3). **P < 0.01. (D) Viability of WT and ATPIF1 -/- primary

hepatocytes treated with antimycin (1.25 μM) for 2 days. Error bars are ± s.e.m. (n = 3). **P

< 0.01. (E) Schematic diagramming the behavior of cells with ETC dysfunction under

conditions where ATPIF1 is active or inhibited. Inhibition of ATPIF1 is depicted by absence

of the protein but represents any strategy to block ATPIF1 activity on the F1-F0 ATP

synthase. See also Figure S4.
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