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Abstract

Although pooled-population sequencing has become a widely used approach for estimating allele frequencies, most work has

proceeded in the absence of a proper statistical framework. We introduce a self-sufficient, closed-form, maximum-likelihood esti-

mator for allele frequencies that accounts for errors associated with sequencing, and a likelihood-ratio test statistic that provides a

simple means for evaluating the null hypothesis of monomorphism. Unbiased estimates of allele frequencies< 5=N (where N is the

number of individuals sampled) appear to be unachievable, and near-certain identification of a polymorphism requires a minor-allele

frequency> 10=N. A framework is provided for testing for significant differences in allele frequencies between populations, taking

into account sampling at the levels of individuals within populations and sequences within pooled samples. Analyses that fail to

account for the two tiers of sampling suffer from very large false-positive rates and can become increasingly misleading with

increasing depths of sequence coverage. The power to detect significant allele-frequency differences between two populations is

very limited unless both the number of sampled individuals and depth of sequencing coverage exceed 100.
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Introduction

An increasingly popular approach to characterizing the ge-

netic variation in a population involves pooling DNA from a

large number of individuals into one sample from which a

single DNA library is extracted. The sample is then sequenced

to a high depth of coverage, with a goal of identifying the

distribution of allele frequencies across the genome. Without

individual tags, such a procedure eliminates the possibility of

diploid-genotype identification, and except for sites close

enough to be contained in the same sequence reads, there

is also no possibility of linkage-disequilibrium estimation.

Nonetheless, within certain constraints, pooled sampling has

a number of potentially useful applications, for example, dis-

covering single-nucleotide polymorphisms (SNPs), ascertaining

the site-frequency spectrum within a population (i.e., the frac-

tion of sites with different allele-frequencies), determining pat-

terns of variation at various classes of sites (e.g., silent- vs.

replacement-sites in protein-coding genes), and evaluating

the amount of genetic differentiation among populations (in-

cluding the identification of candidate markers associated

with adaptive divergence) (Van Tassell et al. 2008; Futschik

and Schlötterer 2010; Kofler et al. 2011; Boitard et al. 2012,

2013; Chubiz et al. 2012; Lamichhaney et al. 2012; Zhu et al.

2012; Gautier et al. 2013; Navon et al. 2013; Konczal et al.

2014; Lieberman et al. 2014).

However, the method of pooled-population sequencing

introduces a number of statistical problems (Cutler and

Jensen 2010), and an understanding of the limits of the ap-

proach is desirable. Some attempts have been made to derive

estimators of summary statistics such as heterozygosity and

population subdivision (e.g., Ferretti et al. 2013), but at least

three issues remain unresolved. First, a statistically defensible

allele-frequency estimator remains to be developed. The typ-

ical approach is to rely on arbitrary coverage cutoffs in infer-

ring the validity of an SNP at a particular site, with the

contributions from sequencing errors being dealt with in arbi-

trary or undisclosed ways. However, as will be demonstrated

below, the observed frequency of raw reads at a site will

generally yield a biased estimate of the true allele frequency.

This can be especially problematical for rare alleles, which typ-

ically dominate polymorphic sites. Second, assuming that an

appropriate allele-frequency estimator can be developed, it is

unclear how the accuracy of estimation relates to the numbers

of pooled individuals and the overall depth of sequence cov-

erage for the sample. Although it is unlikely that a confident

inference on the presence of an allele can be made if its
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frequency is less than the error rate, the actual cutoff for fea-

sible SNP detection may be substantially greater than the error

rate if the sample size is small. Finally, there is need for a

formal basis for allele-frequency comparison across popula-

tions that accounts for the dual level of sampling that is

unique to pooled sequencing (i.e., individuals within popula-

tions and sequences within pooled samples).

Here we present a maximum-likelihood (ML) estimator for

the frequency of an allele in a pooled sample, taking into

account the sampling strategy and factoring out the contribu-

tion from sequencing errors in a way that yields unbiased es-

timates with minimum sampling variance. After outlining the

method, we use simulated data to evaluate false-positive rates

associated with monomorphic sites (i.e., the false inference of

a polymorphism encouraged by the presence of sequencing

errors) and false-negative rates associated with polymorphic

sites (i.e., the failure to detect a true polymorphism). Some

“rules-of-thumb” will also be presented for identifying mini-

mal detectable allele frequencies as a function of the error

rate, sample size, and coverage. Finally, we will present a

simple likelihood-based approach for detecting allele-

frequency differences between populations, again evaluating

its power as a function of the experimental setting.

Allele-Frequency Estimation

We start with the assumption of a nucleotide site containing

no more than two alleles with major-allele frequency p in the

sample and an error rate E per read. A biallelic model is justi-

fied by the extreme rarity triallelic variation at nucleotide sites,

and in the unusual situation in which such a situation did exist,

the frequencies of the two most common alleles and of the

error rate would be slightly overestimated. Assuming each

sampled nucleotide has a probability �=3 of being misread

as any one of the alternative nucleotides, the probability

that a random read is recorded as a major allele is

�M ¼ pð1� �Þ+½ð1� pÞð�=3Þ�

¼ p½1� ð4�=3Þ�+ð�=3Þ,
ð1aÞ

whereas the probability that the read is recorded as a minor

allele is

�m ¼ p½ð4�=3Þ � 1�+ð1� �Þ, ð1bÞ

with the expected total fraction of reads corresponding to the

two alternative (error) states being ð1� �M � �mÞ.

Given a total coverage of nT sequence reads at the site,

which partitions to nM putative major, nm putative minor, and

ne putative error reads (of the two alternative nucleotides), the

likelihood of the observed data conditional on major-allele

frequency p and error rate E is then

L / �nM

M �nm
m ð�=3Þ

ne , ð2Þ

ignoring the trinomial coefficient, which is a constant inde-

pendent of p and E with no influence on the form of the

likelihood function. This expression arises under the assump-

tion that errors are random and equal in all directions, so that

one-third of errors are to each of the alternative nucleotides,

one of which may be a legitimate allelic state, that is, the

major or minor allele. Taking the partial derivatives of equation

(2) with respect to p and E and setting them equal to zero

yields the ML estimators of the error rate and major-allele

frequency,

�̂ ¼ 3p̂e=2, ð3aÞ

p̂ ¼
p̂M½1� ð2�̂=3Þ� � ð�̂=3Þ

1� ð4�̂=3Þ
, ð3bÞ

where p̂e ¼ ne=nT is the fraction of observed reads that are

putative errors, and p̂M ¼ nM=ðnM+nmÞ is the fraction of pu-

tatively nonerroneous reads that are of the candidate major

type.

To evaluate whether an allele-frequency estimate is signif-

icantly greater than zero, we require the log likelihood of the

data given the fitted model, which from equation (2) is

LLp ¼ nM lnð�̂MÞ+nm lnð�̂mÞ+ne lnð�̂=3Þ, ð4aÞ

where �̂M and �̂m are defined as earlier with the ML estimates

p̂ and �̂ substituted for the parametric values. The log likeli-

hood of the data under the assumption of monomorphism for

the major allele is given by

LLm ¼ nM lnð1� �̂rÞ+ðnT � nMÞ lnð�̂r=3Þ, ð4bÞ

where nM is the most abundant nucleotide read, and

�̂r ¼ ðnT � nMÞ=nT. The likelihood-ratio test statistic,

LR ¼ 2ðLLp � LLmÞ, ð5Þ

is then expected to be asymptotically �2-distributed with 1

degree of freedom (with cutoff values of 3.841, 6.635, and

10.827 for significance at the 0.05, 0.01, and 0.001 levels,

respectively).

Two key issues are whether equation (3b) yields unbiased

estimates of the allele frequency, that is, whether on average

p̂� p ¼ 0, and whether the approach yields estimates with

minimum sampling variance. A simple benchmark for the

latter is derived by noting that pooled sequencing involves

two levels of sampling: N individuals sampled from the popu-

lation, and nT sequences subsequently extracted from the

pooled DNA. The minimum achievable sampling variance of

the allele frequency is then

�2
min ¼ pð1� pÞ

1

2N
+

1

nT

� �
, ð6Þ

assuming diploidy (with N being substituted for 2N with hap-

loidy or completely inbred lines). Note that even with infinite

coverage, the expected sampling variance is no less than

pð1� pÞ=ð2NÞ, and little is gained in terms of precision by

pushing the coverage per site much beyond 2N. Similarly, if

the sample size substantially exceeds the coverage per site, the
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sampling variance is expected to asymptotically approach

pð1� pÞ=nT, as nearly every read will be from a different

chromosome.

To evaluate the performance of the estimator, we created

simulated data sets, sampling N diploid individuals and then

resampling the random pool for sequencing at depth-of-

coverage n, assigning errors to each alternative nucleotide

for each read with probability �=3. For each set of conditions,

500,000 simulations were done to obtain the mean and

sampling variance of the ML estimates. For the range of

sample sizes and error rates likely to be encountered in this

sort of work, the ML estimator yields unbiased estimates of

allele frequencies greater than roughly 5/N (fig. 1). At lower

frequencies, the true allele frequency is overestimated, and

the error rate is underestimated. This behavior occurs because

when only two nucleotides are observed at a site, the

ML estimator always interprets the rarer read as the minor al-

lele, returning a zero error rate. When the true minor-allele

FIG. 1.—Performance of the ML estimator evaluated with simulation data. Upper left and right: Average estimates of the minor-allele frequency and the

error rate using equations (3a) and (3b) for various numbers of individuals sampled (N), coverage per sequenced site (n), and error rate (E); the diagonal line on

the left and the horizontal lines on the right give the expected pattern in the absence of estimation bias. Lower left: Sampling standard deviation of the ML

allele-frequency estimates; dotted lines are the theoretically minimum possible values, defined by equation (6). Lower right: The power to detect a minor

allele at the P< 0.001 level with the likelihood-ratio test statistic.
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frequency is on the order of E or smaller, and the sample size is

small, a large fraction of cases in which only two nucleotides

are observed are ones in which the second most abundant

nucleotide is simply an error (not the minor allele).

The results in figure 1 suggest a simple way to correct for

the bias in allele-frequency estimates. After a first pass

through a data set, one will have estimates of p and E for

the full set of sites. For the subset with significant major-

allele frequency estimates p̂ < 0:9, one can generally safely

assume that the estimate �̂ is unbiased, and an average value

of �̂ over all such sites will provide an estimate �0 that can be

back-applied to all sites for which p̂ > 0:9 in the first round of

estimation. That is, after substituting �0, equation (3b) can be

used to obtain essentially unbiased estimates of p for high-

frequency alleles. Some of these estimates might slightly

exceed 1.0, but that is an essential feature of an unbiased

estimator.

The simulation results also show that the sampling standard

deviation of the ML allele-frequency estimates is extremely

close to the theoretical minimum defined by equation (6),

provided the minor-allele frequency exceeds 0.01 for the con-

ditions shown (fig. 1). Thus, as desirable for a sample statistic,

the ML estimator yields asymptotically unbiased and minimum

sampling variance estimates with increasing sample sizes and

allele frequencies, and the deviations of theory from expecta-

tions will decline when the secondary modifications noted in

the previous paragraph are implemented.

Finally, we note that the power to detect a minor allele (1.0

minus the false-negative rate) increases with both the sample

size and depth of coverage, and decreases with increasing

error rate, as expected (fig. 1). If the significance cutoff level

for detection by the likelihood-ratio test statistic is set at the

P¼0.001 level, for the conditions shown, a minor allele must

have a frequency in excess of 10/N to be detectable with near

certainty, and even for a power to detect 10% of the time, the

minor-allele frequency must exceed ~2=N. The false-positive

rate, that is, the frequency at which the test is viewed as sig-

nificant when the true value of p is 1.0 (minor-allele

frequency ¼ 0:0), is generally well behaved, but can some-

times exceed the probability level of the statistical test.

A somewhat different view is given in figure 2, which illus-

trates the minimum minor-allele frequency beyond which

there is a high (95%) probability of detection with the likeli-

hood-ratio test statistic, as a function of the error rate. Even

with a negligible error rate, these critical values are on the

order of 10/N, unless n<N, in which case they can be

higher by 50% or so. Error rates on the order of 0.01 elevate

the critical values by a factor up to 2-fold.

Example

To evaluate the performance of the proposed allele-frequency

estimator when applied to real data, we examined pooled-

sequencing data for sites on chromosome 2L in library B6

produced by Zhu et al. (2012), using sequence files kindly

provided by the first author. This library contained even por-

tions of DNA from 92 Drosophila Genetic Reference Panel

(DGRP) (Mackay et al. 2012) strains, distributed over two sub-

sidiary libraries (B2 and B4), with the total pooled sequence of

B6 yielding a 40� average depth of coverage per site. To

obtain the site-specific quartets of nucleotide read counts in

the B6 sample, we first made mpileup files of libraries B2 and

B4 using SAMtools (Li et al. 2009), then extracted the read

quartets with sam2pro (http://guanine.evolbio.mpg.de/mlRho/

sam2pro_0.3.tgz, last accessed May 15, 2014), and finally

combined the quartets for libraries B2 and B4. To avoid

the use of potentially mismapped reads, we removed sites

predicted to be in repetitive sequences (downloaded

from ftp://ftp.ensembl.org/pub/release-65/fasta/drosophila_

melanogaster/dna/, last accessed May 15, 2014) as well as

those with coverage greater than twice the mean, leaving a

total of 21,357,137 sites.

As benchmarks, the estimated allele frequencies at each site

in the original DGRP data were calculated by extracting the

nucleotides recorded for the genome sequences correspond-

ing to the strains in library B6 (downloaded from http://www.

hgsc.bcm.tmc.edu/projects/dgrp/freeze1, last accessed May

15, 2014). Unfortunately, genome sequences of only 85 out

of the 92 strains were found in the DGRP database, and the

number of sites with genotype data varied among strains due

to variation in coverage. The final yield was 16,692,769 sites

FIG. 2.—The critical minor-allele frequency within a population above

which there is a 95% probability of detection with the likelihood-ratio test

with significance levels set at 0.01 (solid lines), 0.001 (dashed lines), and

0.0001 (dotted lines). Color coding for sample sizes and error rates is the

same as that given in figure 1.
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with allele-frequency estimates obtained both directly from

the DGRP data and estimated from pooled-sequence data

with our ML method. Of these sites, 15,948,891 were

deemed monomorphic from the DGRP data.

Among the 15,948,891 monomorphic sites, the null hy-

pothesis of monomorphism was rejected by the ML esti-

mator at the 5% significance level at 641,457 sites. This

suggests an overall false-positive rate of the ML estimator

of 0.04, close to the expectation of 0.05, although the

assumption here is that the DGRP data reflect the true

situation. For the 743,878 sites deemed polymorphic

from the DGRP data, the null hypothesis of monomor-

phism was accepted by the ML estimator at the 5%

significance level at 373,673 sites, suggesting an overall

false-negative rate of the ML estimator of 0.50, again as-

suming that the DGRP data themselves are correct. Not

surprisingly, the false-negative rate is strongly influenced

by the minor-allele frequency at a site, rapidly decreasing

as the DGRP frequency increases, although still >10%

even as the allele frequency approached 0.5 (fig. 3, left).

On average, the ML estimates are very close to those de-

rived directly from the DGRP data, consistent with the es-

timator being unbiased (fig. 3, right). The sampling

standard deviations of the ML estimates somewhat

exceed those predicted by equation (6). This may be a

consequence of excess variation in sample size (N) and

depth of coverage (nT) per site, which can result from

variation in the amount of DNA associated with each ge-

notype loaded into a pooled sample. However, some ad-

ditional error is also expected to result from inaccuracies in

the baseline DGRP allele-frequency estimates.

Population Comparison

The preceding likelihood estimator (eqs. 3a and b) provides

a convenient means of rapidly obtaining estimates of allele

frequencies from pooled samples. However, although the like-

lihood given by equation (4a) continues to increase with in-

creasing depth of coverage, this only provides increasing

confidence in the sample estimate, not in the parametric

value of allele frequency in the population itself (even

though the sample estimate is an unbiased estimator of the

latter). This issue becomes important when the goal is to com-

pare allele frequencies in two different samples.

For purposes of statistical testing, we require a method that

accounts for sampling of both individuals within populations

and sequences within each pooled-population sample. This is

accomplished by use of the following likelihood function:

L /
X2N

i¼0

2N
i

� �
p̂ i

Mð1� p̂MÞ
2N�i�nM

Mi�
nm

mi , ð7Þ

where p̂M is the ML estimate of the major-allele frequency in

the sample; nM and nm are the numbers of counts for major

and minor alleles in the sample, respectively; and �Mi and �mi

FIG. 3.—Left: False-negative rates (failure to detect at the 0.05 probability level) for bins of DGRP allele frequencies (obtained as described in the text).

Right: Mean and standard deviations of ML estimates of binned DGRP allele frequencies. The diagonal line denotes positions of perfect correspondence, and

the dashed lines denote single standard deviations above and below the expectation derived from equation (6) with 2N being set equal to the number of fly

strains (ignoring diploidy because the lines were inbred) and nT being set equal to the average depth of coverage (40).
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are defined as in equations (1a) and (1b) with i=ð2NÞ substi-

tuted for p. This expression approximates the total likelihood

for a set of reads by summing over the probabilities of all

possible samplings of the alleles from the population and ac-

counting for the probability of the observed quartet given the

sample. The trinomial coefficient defining the multiplicity of

read counts and a term involving errors are ignored, as both

remain constant in interpopulation comparisons and hence

have no influence on the following statistical test.

To test for the significance of an allele-frequency difference

between two samples, we first require the joint likelihoods of

the observed reads in both samples starting with the assump-

tion of population homogeneity. For such purposes, we start

with summed quartets over both populations to obtain an

estimate of the total major-allele frequency p̂T using equation

(3b). Substituting this estimate for p̂M in equation (7), and

using the major- and minor-allele counts in the first population

(nM1 and nm1), we then have an estimate of the likelihood of

the observed quartet in population 1 under the assumption of

population frequency p̂T, which we refer to as L01. Likewise,

using nM2 and nm2 as the counts for the second population,

the likelihood for the reads observed in population 2 under the

null model is L02: The likelihood of the quartet in population 1

under the full model (assuming population frequency hetero-

geneity) is obtained in the same manner, but by using the

estimated allele frequency p̂M1 specific to this population (as

well as nM1 and nm1), yielding LF1, with similar treatment for

population 2 yielding LF2. The likelihood-ratio test statistic for

allele-frequency heterogeneity is then given by

LR ¼ 2½lnðLF1LF2Þ � lnðL01L02Þ�, ð8Þ

which is expected to be approximately �2-distributed with 1

degree of freedom.

Application of this method to simulated data sheds light on

the conditions under which allele-frequency differences can

be detected (fig. 4). First, unless a rare allele in one population

has a frequency exceeding several times 1/N, there is effec-

tively no chance of detecting a difference between a popula-

tion with a still lower frequency. Second, the power of

detecting a difference in allele frequency is largely determined

by the level of the survey with the smallest sample size. That is,

the power for the situation in which a pool of N¼100 indi-

viduals is sequenced to nT ¼ 1000� total coverage is not

much different than that for a pool of 1,000 individuals se-

quenced to 100� total coverage, nor even much different

than the N ¼ nT ¼ 100 situation. Because sequencing is cur-

rently usually more expensive than sampling of individuals, this

clearly implies that there is little advantage to sequencing at a

depth of coverage much greater than the numbers of individ-

uals in the pool—provided nT is on the order of N or smaller,

essentially every sequence will be derived from a different

chromosome. Third, even with very large sample sizes at

both levels, there is effectively no power to detect a difference

in which both populations have allele frequencies on the order

of the error rate or smaller. Fourth, the test statistic behaves

optimally in the sense that, for alleles with detectable frequen-

cies, the false-positive rate is very close to the probability level

of the corresponding evaluation level. This can be seen by

referring to the positions in the figure in which the allele fre-

quencies in both populations are identical. In all cases the

false-positive rate is approximately 0.01, which is the signifi-

cance level of the plotted power analyses.

Example

As an example of the limited power of the experimental de-

signs in recent comparative studies, consider the analysis of

Burke et al. (2010), which compared a control with an exper-

imental Drosophila population selected for rapid develop-

ment. Pooling N¼ 125 individuals from each population,

and then sequencing each of the two samples to 20� cover-

age, the authors detected 688,520 SNPs. They then focused

only on the reduced set of 37,185 SNPs found at nonsynon-

ymous sites in protein-coding genes, 662 of which were

deemed to be significant at the 0.0001 level using a Fisher’s

exact test for frequency differences. If the underlying assump-

tions of the statistical model were correct, this would lead to

only 0:0001� 37, 185 ’ 3:7 false positives in the final anal-

ysis, leading the authors to infer the presence of 658 candi-

date SNPs associated with the causative differences between

the two populations.

A central problem with this analysis is that the statistical test

does not account for the two tiers of sampling noted earlier,

and at increasingly higher levels of coverage, the authors

would have concluded that more and more SNP frequencies

differed significantly between the two samples even if they

were invariant in the actual populations. Applying equations

(7) and (8) with an assumed sequencing error rate of 0.01, the

power of this experiment to detect significant differences at

the 0.0001 level is illustrated in figure 5. To achieve even a

relatively low power of detection of 50%, if an allele were

completely absent from one population, the frequency in the

other population would have to exceed 0.5. Similarly, if the

actual frequency in one population were 0.1, that in the other

would need to exceed 0.69 for a 50% power of detection;

and if one frequency were 0.4, the other must exceed 0.95.

In other words, over the entire frequency spectrum for this

particular experiment, there is a <50% chance of detecting a

frequency difference between populations smaller than ap-

proximately 0.5 using an appropriate statistical framework.

Even for a 10% probability of detection, the critical difference

in frequencies is approximately 0.4. This implies that, depend-

ing on the actual allele-frequency distribution, the number of

candidate loci involved in differentiation of the two popula-

tions in this study must be substantially different than 658,

most of the stated differences being a simple consequence of

limited sampling (at most 20 alleles per sample).
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It is also worth noting that prior to analysis the two sets of

populations were maintained for t ¼ 600 generations at total

population sizes of approximately M¼1,000 individuals.

Because effective population sizes are typically much smaller

than actual population sizes, this means that the standard

deviations of allele-frequency changes for purely neutral loci

must substantially exceed 0:9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
, where p is the initial

allele frequency and the 0.9 is obtained from the expectation

for the cumulative amount of drift, ½1� e�t=ð2MÞ�
0:5, so sub-

stantial differences in these populations will have arisen by

random genetic drift alone. Thus, given the design of the

overall experiment, it is difficult to conclude anything about

the causal source of divergence. Notably, in a full scan of the

genome, the authors found no evidence of selective sweeps

associated with the fixation of advantageous alleles although

there were some regions with apparent heterozygosity

reduction.

Numerous other studies involving pooled comparisons

have utilized sampling strategies similar to that noted earlier.

For example, in a study involving a north–south cline in

D. melanogaster, Kolaczkowski et al. (2011) relied on

N ’ 40 and nT ’ 10: The authors qualitatively inferred

FIG. 4.—The power to detect a difference in allele frequencies between two populations at the P¼ 0.01 level. In each of the four panels, the number of

diploid individuals sampled (N) and the sequencing coverage per sample (nT) are assumed to be the same for both populations. For simulated data (50,000

data sets at each pair of frequencies), each line gives the fraction of times a difference was detected for a full range of allele frequencies in one population

relative to a reference population with fixed frequency (given in the inset), using the 0.01 level of significance as a benchmark (one minus this probability is

the false-negative rate, i.e., the probability of not detecting a difference when one exists). The false-positive rates (i.e., the probabilities of concluding that a

difference exists when the two samples are from populations with identical frequencies) are equivalent to minima in the probability curves.
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numerous chromosomal regions of interest based on mea-

sures of population subdivision, although because of the

lack of information on the amount of divergence expected

via genetic drift alone, interpretation of the observed re-

sults is difficult. In another “select-and-sequence” study,

Turner et al. (2011) studied body-size differentiation in D.

melanogaster populations with N¼ 75 and nT ¼ 20, and

after accounting for the contributions of random genetic

drift, concluded that > 5, 500 SNPs had diverged in fre-

quency as a consequence of selection, while acknowledging

that the study was unable to evaluate the behavior of low-

frequency alleles. Similarly, in an experiment involving diver-

gent selection for courtship-song structure in D. melanogaster

with N¼120 and nT ¼ 200, Turner and Miller (2012) con-

cluded that thousands of SNPs changed in frequency by ap-

proximately 2.5%. Although the number of changes

exceeded that expected after accounting for the expected

contribution from genetic drift, no single variant exhibited a

significant change.

Discussion

The statistical procedures outlined above provide a logical

framework for extracting population-genetic information

from high-coverage genomic sequences derived from

pooled-population samples. The method for allele-frequency

estimation is efficient in terms of computational speed, allows

for site-specific error rates, and yields estimates that are unbi-

ased with minimal sampling variance (within the bounds dic-

tated by the sampling scheme). With appropriate attention to

error-rate estimation, as described earlier, it may be possible to

obtain estimates of allele frequencies somewhat lower than

the error rate, provided the population sample size and

coverage are adequately large. The method for evaluating

population differences is also statistically well behaved and

accounts for sampling at both the population and sequencing

levels.

Evaluation of the behavior of the likelihood statistics

provides several insights into the limitations of pooled se-

quencing. First, to achieve a very high level of confidence in

an allele-frequency estimate, the population-level frequency

needs to exceed approximately 10� the reciprocal of the

number of individuals sampled, for example, a minor-allele

frequency of 0.1 for a sample size of 100. Second, unless

the sample sizes at the population (N) and sequencing (n)

levels are both substantially exceed 100, the power to

detect differences in population frequencies is limited. Third,

for fixed depth of sequence coverage (nT), little is gained in

terms of statistical power by pooling many more individuals

than N ¼ nT.

Finally, we note that one practical issue that requires atten-

tion in any pooled-population analysis is the need to equili-

brate the concentrations of DNA from each individual

contributing to a pooled sample. The allele-frequency estima-

tors that we provide are unlikely to biased in the face of un-

equal molar concentrations unless there is an association

between particular nucleotide variants and the sizes of indi-

viduals. However, the sampling variance of the estimates will

be inflated by unequal representation as the effective sample

size would be smaller than the actual number of individuals in

the pool.
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