
Cooperative synchronized assemblies enhance
orientation discrimination
Jason M. Samonds*, John D. Allison†, Heather A. Brown*, and A. B. Bonds*†‡

Departments of *Biomedical Engineering and †Electrical Engineering, Vanderbilt University, Nashville, TN 37235

Communicated by Russell L. De Valois, University of California, Berkeley, CA, March 9, 2004 (received for review June 7, 2003)

There is no clear link between the broad tuning of single neurons
and the fine behavioral capabilities of orientation discrimination.
We recorded from populations of cells in the cat visual cortex (area
17) to examine whether the joint activity of cells can support finer
discrimination than found in individual responses. Analysis of joint
firing yields a substantial advantage (i.e., cooperation) in fine-
angle discrimination. This cooperation increases to more consid-
erable levels as the population of an assembly is increased. The
cooperation in a population of six cells provides encoding of
orientation with an information advantage that is at least 2-fold in
terms of requiring either fewer cells or less time than independent
coding. This cooperation suggests that correlated or synchronized
activity can increase information.

Traditionally, research in sensory cortex has sought to link
sensory information with changes in the impulse rate of

single neurons (1), under the presumption that the rate code is
the primary signaling modality. The principle of a rate code has
also been applied to a population of cells (2, 3), but concerns still
arise about the ambiguities of rates, and the ability of a rate code
to account for perceptual phenomena such as association, gen-
eralization, hyperacuity, and contextual modulation has been
debated (2–8). Alternative theories of cortical function (4–8)
require a reliable means of preserving the temporal information
of impulses in a cortical network of unreliable synapses. Infor-
mation-theoretic methods demonstrate the existence of links
between the temporal structure of neural responses and sensory
input (9–11), and mechanisms capable of generating predictable
temporal patterns (e.g., bursts and oscillations) by means of
intrinsic cellular properties and network interactions have been
well documented (12–14). However, temporal information is
relevant only when an appropriate decoding mechanism exists
(15). Synchronization between neural assemblies provides one
such mechanism for encoding, and possibly decoding, temporal
structure because synchrony is dependent on temporal patterns
(17–19) and is correlated with the orientation (17–19) and
coherence (17, 18, 20) of visual stimuli.

We have previously shown (21) that the orientation selectivity
of dependency (a numeric measure reflecting synchrony) be-
tween two cells is on average 35.5% narrower than the selectivity
of their individual rate tuning. Similar results have been docu-
mented with other methods (19, 22). We also measured positive
synergy (i.e., cooperation; information available only in the joint
activity of the cells) among pairs of cells, at least for discrimi-
nating fine differences in orientation (21). The average bin width
(4.6 ms) and discharge history (total time of 9.2 ms) of this
analysis suggested that the cooperation results from correlated
(or synchronous) activity. Traditionally, correlation among cells
has been considered a limitation in the information capacity of
population coding (23). However, because correlation (i.e.,
synchrony and cooperation) is deterministically stimulus-
dependent, it can actually contribute information.

Here we explored the spatial characteristics of cooperative
orientation discrimination across larger assemblies. We wished
to discover how the relatively small amount of cooperation found
among pairs of cells scaled with more cells. Because cooperation
is a percentage, even if it held constant across a larger popula-

tion, the amount of cooperative information would grow. Be-
cause we find an increase in cooperation vs. assembly size, this
implies an even greater impact on cortical function.

Materials and Methods
Recording and Stimulation. Preparation, stimulation, and record-
ing details are described elsewhere (21). Experimental proce-
dures were performed under the guidelines established by the
American Physiological Society and Vanderbilt University’s
Animal Care and Use Committee. We recorded with a 5 � 5
(400-�m spacing) Bionics multielectrode array (Bionics, Salt
Lake City) from the area centralis of area 17 in three cats (22,
25, and 23 cells) anesthetized with propofol and N2O and
paralyzed with Pavulon. The array was pneumatically inserted to
a maximum depth of 0.6 mm (exact depth varies because of the
brain curvature and the insertion procedure). Two-second drift-
ing sinusoid gratings (10° diameter) were displayed with the
VSG2�4 controller board (Cambridge Research Systems, Roch-
ester, U.K.) and a 21-inch Trinitron graphics display (Sony,
Tokyo) with a frame rate of 120 Hz and a mean luminance of 73
cd�m�2 at a distance of 0.5 m. Waveform classification and noise
and artifact removal were performed with the Bionics classifi-
cation software.

Data Analysis. Type analysis methods are described in detail
elsewhere (21, 24). Briefly, the responses are broken down into
discrete bins (optimized for each measurement between 2 and 6
ms) and assigned a letter depending on which cells fired within
each bin. Probabilities are calculated for each letter and for each
bin to form a type (estimated probability distribution):

PA�k� �
no. times the letter k occurs for stimulus A

M stimulus repetitions
.

[1]

Conditional probabilities are calculated for a letter occurring
depending on the letters that occur in previous bins (D):

P�kb�kb�1,kb�2,. . .,kb�D� �
P�kb,kb�1,. . .,kb�D�

P�kb�1,kb�2,. . .,kb�D�
. [2]

We have found (21) that the Kullback–Leibler distance (KL
distance) depends on previous firing history only as far as one
previous bin (by using 2–6 ms for bin width). We also performed
Markov analysis on this dataset and again find a Markov order
of one to be reasonable. However, we are limited (21, 24) on how
many previous bins (D) we can examine and cannot definitively
say whether the KL distance depends on more discharge history
(N cells, M stimulus repetitions):

D �
log(M � 1)
log�2N � 1�

. [3]

Abbreviation: KL distance, Kullback–Leibler distance.
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We do find that as we increase the number of cells, we measure
more cooperation with larger bins and that a Markov order of
two provides greater KL distance for four cells than a Markov
order of one, but we find there is no significant difference
between the KL distances for D � 1 and D � 2 (90% confi-
dence). The accumulated KL distance d(p�q) between two types
(P1 and P2) for bins 1 to B and for K possible letters from M
stimulus repetitions and a Markov order D (the number of
previous bins) is

d�P1�P2� � �
b�1

B �
k�0

K�1

P1�kb,kb�1,. . .,kb�D�

� log2

P1�kb�kb�1,kb�2,. . .,kb�D�

P2�kb�kb�1,kb�2,. . .,kb�D�
. [4]

One-half of the resistor average of the KL distances d(P1�P2) and
d(P2�P1) (24) is actually used when we refer to KL distances.

The simplest example of the KL distance would be two
responses that are represented by Poisson distributions of spikes
differing only in the average rate. The spike probabilities would
differ between the responses for each bin across time leading to
a constant increase in accumulated KL distance that would not
depend on the bin width used to characterize the responses. A
second example would be two responses that differ in their
temporal structure. The KL distance would show large increases
in the bins where precise spike times differ between the re-
sponses. Last, from the perspective of joint coding among cells,
the KL distance will increase when two responses differ in the
number of synchronous events among the cells. The increase in
KL distance occurs because there will be a difference in the
probabilities of the letters that represent synchronous firing
between the two responses.

The synergy is the ratio between the KL distance calculated by
using an ensemble alphabet (including joint firing) and the sum
of KL distances calculated for each cell (only two letters: the cell
did or did not fire):

synergy �
densemble � dindependent

dindependent
�100%� . [5]

When the synergy is positive, we refer to it as cooperation; when
the synergy is zero, we refer to it as independent; and when the
synergy is negative, we call it redundancy.

As we extend the KL distance and synergy to larger popula-
tions, we must consider the possibility of artifacts arising from
the higher dimensionality of the data representation. To address
this issue as well as to provide a more conservative definition of
cooperation, we used a second baseline (beyond simple inde-
pendence) against which the enhancement provided by popula-
tion dependency was compared. This baseline was created by
shuffling the trials of each cell to remove the short-term
dependencies from direct neural interactions. The shuffled KL
distance retains information from factors such as temporal
synchronization by stimulus features (9–11, 21) as well as the
same statistical structure (i.e., dimensionality) as our original
ensemble KL distance measure. The difference between the
ensemble KL distance and the shuffled ensemble KL distance
thus provides a more conservative estimate of that information
contributed by direct neural interaction, and the additional KL
distance provided by the ensemble measure is not simply a result
of the high dimensionality of the measurement itself.

Bootstrap analysis was used to make bias and confidence
interval estimates, but does not guarantee accurate estimates for
an insufficient number of samples (25). The KL distance and
synergy estimates were made with M � 516 � 33 stimulus
repetitions, which falls above the limits for any bin-based,

Markov-chain estimate with the dimensionality that we employ
to represent our data (see Eq. 3 and refs. 24 and 26). This limit
does not necessarily guarantee accurate KL distance estimates
(24), but the bootstrapping analysis does suggest reliability in our
estimates. Undersampling effects were mitigated by the appli-
cation of the Krichevsky–Trofimov estimate (24, 27). There is no
known methodology (e.g., bootstrapping) that can resolve these
uncertainties within the restrictions of a limited data set. We
therefore use the synergy as an upper limit and the distance
between the shuffled and unshuffled KL analyses (i.e., the
increase in distance gained by inclusion of short-term firing
relationships) as a lower limit of the cooperative information.

The dependency is the accumulated zero Markov order KL
distance (see above) between the original type and a forced-
independent type that has been recalculated by assuming the
cells are independent (24). The dependency quantifies how much
the response varies based on the null hypothesis that if the cells
in an assembly fire independently, the probability of all cells
firing within the same bin should be equal to the product of the
probabilities of each neuron firing within a bin (i.e., mutual
exclusivity). We find the dependency to indicate synchronous or
correlated firing by comparing our measurements with gravita-
tional clustering (28) and cross-correlation analysis (19, 29). The
latter measurements are, however, limited to calculations be-
tween pairs of cells, so any direct comparisons are not practical.
The bias and confidence intervals for dependency are also
calculated with the bootstrap method.

Results and Discussion
(Fig. 1A) shows the preferred orientations for a population of 22
cells recorded simultaneously in the primary visual cortex of a
cat with a 5 � 5 electrode array. We first identified cell
assemblies based on similarity of preferred orientation as well as
synchronized firing, which was determined with both gravita-
tional clustering (28) and cross-correlation (19, 29) analysis.
Cells that had the same preferred orientation were usually
synchronized. Of 96 pairs of cells with similar preferred orien-
tations, 79 (82.3%) showed at least a moderate peak in their
cross-correlogram (‘‘effective connectivity’’; refs. 19, 21, and 29).
The high percentage is because of selecting cells with similar
orientation (from 784 possible pairs) and measuring the syn-
chrony when stimulating the cells with their preferred orienta-
tion. The green bars represent a synchronized assembly of six
cells preferring 270° oriented gratings, whereas the red bars
represent a second assembly from the same recording of six cells
synchronized for 180° oriented gratings. Because the populations
of cells were recorded at a shallow depth (0.6 mm) with
low-impedance electrodes, the majority (20 of 24) of the cells
analyzed for cooperation were complex. Fig. 1B displays the
receptive field plots that correspond to the synchronized assem-
blies in Fig. 1 A by demonstrating synchronization among cells
with both overlapping and discrete receptive fields. Fig. 1C
shows a 100-ms sample of the responses of five cells from another
recording, where the cells synchronize their responses within a
window of 5 ms for a grating with the preferred orientation of
20°, but do not synchronize for a grating oriented at 34°.

Quantifying Synchrony and Discrimination. Array recordings from
three cats yielded six different six-cell assemblies for analysis.
Each population was exposed to drifting sinusoidal gratings of
fixed spatial frequency (0.5 cycle per degree), temporal fre-
quency (2 Hz), and contrast (50%) with orientations varied in
both large (10°) and small (2°) increments. Because we had no
a priori assumptions regarding the form of group interactions, we
performed type analysis (21, 24) on responses from each of the
identified assemblies. Type analysis is a generalized information
measure that makes almost no assumptions on the nature of the
neural code (24) and yields the KL distance, synergy, and
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dependency (see Materials and Methods for details). The KL
distance is a formal quantification, based on classification the-
ory, of the difference between neural responses to two different
stimuli. Each response is a single- or multineuron vector in time,
and comparisons are calculated between responses to spatial
stimulus variations (e.g., two different angles). The error in
classifying the two responses with an optimal classifier is reduced
proportionally by 2�KL distance. The KL distance in effect repre-
sents a theoretical upper bound in performance (i.e., lower
bound in error) for distinguishing responses. Because the KL
distance for the responses to drifting gratings grows essentially

linearly over time, we report KL distances as average rates. The
synergy is the ratio between the (total) KL distance calculated
from the joint (multineuron) firing within an assembly and the
sum of the independent KL distances calculated for each cell
individually, and thus represents the information advantage
from simultaneous examination of the members of an assembly.
The dependency is a probabilistic quantification of the interac-
tion between the cells (e.g., correlated or synchronized firing).
The dependency is also a function of time and is reported as
an average rate. We use these quantitative measures to demon-
strate how a synchronized assembly can encode finer differences
in orientation than are discriminable on the basis of informa-
tion available from the cells if they are analyzed individually.
The relationship between these measures and population size
was quantified by varying the number of cells used in the
calculations from 1 to 6 (2 to 6 cells for synergy and dependency
measurements).

As found earlier (21), the selectivity of dependency with
respect to orientation (i.e., bandwidth) is narrower than the rate
tuning (Fig. 2A Upper). In addition, as the source for information
is increased from two to four cells there is a growth in peak
dependence that accelerates for larger assemblies (Fig. 2B
Upper). The accelerated growth of average dependency (Fig. 2B
Lower) is not surprising when considering the possible interac-
tions among an assembly. For example, the dependency for two
cells measures only one interaction, whereas the dependency of
three cells considers the interaction between cell 1 and 2, cell 2
and 3, and cell 1 and 3 in addition to the simultaneous interaction
among all three cells (24). It may also represent the dispropor-
tionate growth of the indirect influence from cells that are not
directly recorded but communicate with the assembly members.

We calculated the dependency for all possible combinations of
pairs (n � 105), triplets (n � 140), quadruplets (n � 105), and
quintuplets (n � 42) of cells for each of seven six-cell assemblies
(Fig. 2 Lower). Fig. 2A Lower shows that the dependency
bandwidth (half-height) for larger numbers of cells is on average
31% narrower than the bandwidth for the average individual cell
firing rate (n � 42). The slight increase in bandwidth with larger
assemblies is likely because of sample restrictions. To construct
assemblies with reasonable populations, we had to include cells

Fig. 1. (A) A map of a microelectrode array recording session (cortex viewed
from above). The bars represent the preferred orientation (drifting in the
direction of the arrow) of the cell recorded at each electrode location. The
dashed and dotted lines represent moderate synchronization when activated
by a drifting sinusoid grating at the preferred orientation (red: 180°; green:
270°). (B) Receptive field plots for the two assemblies described above (cor-
responding colors). LAC, left area centralis. (C) An example of 100-ms re-
sponses from another recording session from 5 cells to 20° (Upper) and 34°
(Lower) orientated drifting gratings.

Fig. 2. The dependency for an assembly is more selective for orientation than
the firing rate (A Upper) and grows at an accelerated rate (B Upper). (A Lower)
The half-height bandwidth of dependency vs. the number of cells (error bars
are standard error). (B Lower) The dependency rate vs. the number of cells
included in the calculation (error bars are the average of 90% confidence
interval for estimates from 101 � 7 stimulus repetitions).
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with differences as great as 20° in preferred orientation, which
would broaden the entropy-based (21) dependency merely from
the influence of the aggregate activity of the assembly. The
bandwidth accuracy is also experimentally limited to 10° incre-
ments. Fig. 2 A shows that the dependency of the larger assem-
blies is still highly selective for orientation, which is noteworthy
given the increase in aggregate bandwidth of the population.
Bandwidth of the individual cells is not necessarily a limiting
factor in the amount of information that can be conveyed by
populations of cells (30). However, presumably the bandwidth of
the dependency (representative of the population of cells) would
be suggestive of the information available from the neural
dependencies.

Synchrony and Cooperative Discrimination. The accelerated growth
of dependency will not necessarily make a substantial contribu-
tion to KL distance (i.e., discrimination of orientation) and
consequently guarantee cooperation (24). In other words, the
absolute amount of dependency is less important than how it
changes with different stimuli, which we demonstrated above.
Because assemblies of cells that have a greater amount of
dependency typically have a greater amount of cooperation (Fig.
3), our data suggest that dependency is indeed enhancing
orientation discrimination. Each set of points in Fig. 3 represents
the synergy and dependency for all of the associated subgroups
(two to five cells) drawn from each six-cell assembly associated
with a particular orientation range. Differences in the correla-
tion slopes probably result from different assembly characteris-
tics (e.g., firing rates, strength of synchrony, tuning bandwidths)
that are currently unidentified.

The contribution of dependency to discrimination is also
reflected in Fig. 4A, which shows that the synergy, representing
the fraction of the KL distance that is available only when
examining the cells simultaneously, continues to grow as the
number of cells increases. When combined with the algebraic
growth of information from independent contributions, this
yields (Fig. 4B) an accelerated increase in the total KL distance
(for a 4° difference in orientation) with more cells. Because the
increase in cooperation and KL distance measurements might be
an artifact of the high dimensionality of the data representation,
we used the shuffled KL distance as a second, more conserva-
tive, baseline (see Materials and Methods for details). Use of
either the shuffled KL distance or the independent KL distance

as a baseline qualitatively yields the same results for our data,
with the difference between the ensemble KL distance and
either baseline (e.g., synergy) increasing with a greater number
of cells (Fig. 4B).

Fig. 4B shows that for a 4° orientation difference the average
KL distance rate for a single cell is only 0.20 bit�s. Even with
6-fold cells considered independently, the average KL distance
rate for this same difference would be 1.18 bits�s (dashed line),
which would reduce the error of classifying the responses by only
�2.3 after 1 s. However, when considering the interactions
among the six-cell assemblies, the average KL distance rate
added is at least 1.28 bits�s (by using the shuffled KL distance),
resulting in at least a 5.5-fold reduction in classification error
after 1 s.

With cooperative coding, we find that six cells can achieve a
level of discrimination that would require at least 12 cells when
an independent coding scheme is used. We also can consider the
advantage of cooperation in terms of time because the KL
distance is integrated over time. For a 4° angular difference, a
cooperative code across six cells can reach the same level of
discrimination in less than half the time required by independent
coding. The advantage with such a small population can be
considered conservative, because the relationship of coopera-
tion vs. population size suggests continued growth with assembly
growth. However, the KL distance will be limited by the input
information to the population and cannot accelerate indefinitely
with respect to population size (31). The advantage in coding
efficiency may also apply to discrimination with greater acuity
rather than with smaller populations or shorter times. The
hyperacuity found in behavioral orientation discrimination does
suggest some form of population coding (32).

A Neural Mechanism for Hyperacuity. Fig. 5 shows how cooperation
depends on angular difference. The independent KL distance
rate for 2° approaches zero, suggesting that orientation differ-
ences of 2° cannot be discriminated (i.e., zero KL distance) by
individual cells, but the ensemble (six cells) KL distance rate is
still substantial. This implies that the orientation discrimination
performance of humans cannot be accounted for by single cells
(32), suggesting the brain takes advantage of some form of
population code. The independent KL distance does not repre-
sent a true population gain because the discriminability of a
population of independent cells is only as good as that of each
individual cell (31). This does not mean that cooperation is the
only way to achieve the same fidelity of orientation coding
represented by our cooperative assembly (31). For example,

Fig. 3. Synergy and dependency rate cross-plotted for all possible two- to
six-cell combinations for the four six-cell assemblies (preferred orientations
given in the key). R2 values were calculated for each set of data points with
linear regression analysis.

Fig. 4. (A) Synergy vs. the number of cells (24 individual cells, 60 pairs, 80
triplets, 60 quadruplets, 24 quintuplets, and 4 sextuplets; error bars are
average 90% confidence interval for estimates from 516 � 33 stimulus repe-
titions). (B) The ensemble KL distance rate, shuffled ensemble KL distance rate,
and the independent KL distance rate for a 4° variation from the preferred
orientation vs. the number of cells (error bars are average 90% confidence
interval for estimates).
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populations that do not exhibit cooperation can take advantage
of noise removal through averaging (2, 3). This will likely be less
efficient than cooperation (using our independent KL distance
as a comparison) because of the redundancy that results from
integration (2, 33). As we move to coarser angles, where
discrimination is more obvious from the rate code, assembly
coding becomes more independent (21). Discrimination of
coarser angles can be achieved whether the assembly is active or
not.

Fig. 5 also permits a comparison of the ensemble KL distance
with the shuffled KL distance. Because the independent KL
distance does not represent an actual population gain, compar-
ing it with the ensemble KL distance can be ambiguous and
misleading (31). The shuffled KL distance provides us with a
more meaningful comparison because it allows us to identify
directly how short-term neural interactions contribute to orien-
tation discrimination. The results when comparing the ensemble
KL distance with the shuffled KL distance or the independent
KL distance, in our case, are qualitatively the same. The
percentage gained by using the ensemble KL distance (e.g.,
synergy) increases as we test the coding limits of the single cells
(i.e., smaller angle differences or more difficult orientation
discrimination tasks). At least over the limited range of orien-
tation differences (2–10°) that we investigated, the absolute KL
distance contributed by joint analysis appears to increase only
slightly (1.29 to 1.67 bits�s) relative to the total KL distance (3.32
to 7.70 bits�s). The cooperation, which is the percentage differ-
ence between the ensemble KL distance and the independent
KL distance, therefore decreases as the orientation increment
increases.

One question that could be raised is whether cells encode
specifically for their preferred orientation. Theoretical popula-
tion codes have examined those regions on the rate tuning curves
of single cells with the greatest amount of Fisher information
(i.e., the steepest slope) where the cells would not encode for
their preferred orientation, but rather away from the peak of the
tuning function (34). Our hypothesis is that the assemblies
behave as filter-like structures where the stimulus that results in
the greatest synchrony (Fig. 1C Upper) yields a signal that has the
greatest chance of reaching the next layer in visual processing (6,
22). Stimuli that differ from this preferred feature (orientation)
result in weaker synchronization across the assembly (Fig. 1C
Lower) and smaller probabilities of their collective spikes being
transmitted across synapses. In two cases our KL distances were
calculated within 10° of the preferred orientation and for two
additional cases, the KL distance analysis was performed in the
region of the rate-tuning curves where their slopes were steepest.
Whereas the cooperation was greater when analyzing near the

preferred orientation, it was still substantial even away from the
preferred orientation, implying that information from cooper-
ation is useful for fine angular discrimination across a broad
range of the rate tuning curves.

Our results do not conflict with alternative models of popu-
lation codes that have sought to explain hyperacuity perfor-
mance (2, 3, 35), but only demonstrate that there is considerable
information available in the joint activity of cells that could
provide a more efficient representation of visual information.
The fact that we find a substantial effect within a limited sample
of cells that have only moderate synchrony makes the results
even more appealing. Because the analysis makes almost no
assumptions about the nature of the code, we can definitively
state only that the available information is from the point of view
of an optimal classifier. However, the assumptions we make
about temporal resolution and discharge history (ref. 20; see also
Materials and Methods), along with the dependency and shuffling
analysis, suggest that interspike intervals and synchrony between
cells play a major role in producing this information about
orientation. Our results provide a simple demonstration of the
potential importance of considering simultaneous multiunit
activity for understanding brain function. Even in the case of
encoding elementary features such as orientation, there is a
substantial amount of additional information available only from
the dependencies that occur among a population of cells. Access
to larger populations and use of more complex stimulus varia-
tions will likely yield even greater gains.

Independent Cells. Theoretical studies have revealed that in some
cases, dependencies or correlation can enhance response dis-
crimination (31, 36). However, past experimental studies have
found that the information between cortical cells is mostly
independent (33, 37). The discrepancy with our finding is most
likely not an issue of cell proximities, because both here and in
our earlier study on pairs (21) we found synergy in both nearby
(recorded on the same single electrode) and widely separated (2
mm) cortical cells. The cooperation that we found is likely a
result of selecting, from a larger population, cells with similar
preferred orientations that are at least moderately synchronized
and testing the small differences in orientation, where single cells
fail to discriminate. For larger orientation differences, group
activity approaches independence.

A more general issue about information-theoretic analysis of
population coding is that the synergy measurement that is
generally applied (e.g., Eq. 5) may not reliably represent coop-
eration, because by this definition both cooperative and nonco-
operative structures can appear to exhibit positive and negative
synergy (cooperation and redundancy) (31). As mentioned
above, the usual independent baseline is misleading. For exam-
ple, the independent KL distance can grow indefinitely, whereas
true population KL distances cannot grow indefinitely (limited
by the input information) and will eventually reach an asymptote
and appear to be redundant (31). When single cells cannot
reliably encode a feature, we end up with a very small slope
for the independent KL distance (e.g., Fig. 4B) and reveal
large amounts of cooperation. If the individual cells can re-
liably encode a feature, the slope will be larger and reveal
the population to be independent or redundant. Therefore, the
traditional synergy measurement is highly dependent on the
stimulus set, as well as the population size. By using our shuffled
baseline (which will also be asymptotic vs. population size), we
end up with a more suitable and definitive indication of the
cooperation.

The Relevance of Synchrony. Whether the synchrony shown here
can serve as a neural substrate for orientation discrimination and
further visual processing depends primarily on two questions: (i)
Can this joint information be used (i.e., is its detection physio-

Fig. 5. Comparing ensemble KL distance to independent KL distance and
shuffled ensemble KL distance (vs. the difference in orientation).
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logically plausible)? (ii) How is this cooperative information
transmitted through the visual hierarchy to yield a percept?
There has been much debate on the role of synchrony in
perception (20, 38, 39). Most results demonstrating no apparent
perceptual affects of synchrony have focused on temporally
induced synchrony (38). Here we examine synchrony that is
dependent instead on the spatial structure of the visual stimulus.
Von der Malsburg (5) suggested that a resolution of 2–5 ms
would be required to distinguish between synchronous and
asynchronous activity. Our results do in fact fall within this level
of temporal acuity (21). Synaptic unreliability might argue
against the preservation of information on this temporal scale
(2), but the mere fact that the synchronous activity is found on
this, or even finer, time scales (38) proves this is not an obstacle
for a coding system that is based on synchrony (40). Synaptic
unreliability is overcome through coincident inputs (6), temporal
integration and synaptic facilitation (12, 19), oscillations (7), and
activity-dependent changes in integration times (21, 38, 41–43).
These mechanisms can maintain and propagate synchrony
throughout the visual hierarchy to form new synchronized
assemblies at the perceptual level (4–7). Just as the distinction
between temporal and rate coding depends on the definition of
a time scale (11), we should note that the distinction between
integration and synchrony is also blurred as a result of the time

scale (an essential point because of the dynamic nature of time
constants mentioned above) and might be considered more as a
continuum (43). Synchrony might also inherently arise among a
network to reliably propagate rate information (44).

Synchronized assemblies can remove the ambiguities of rates
in independent cells (5, 7), and assemblies can dynamically
integrate at various levels of the perceptual hierarchy to perform
more complex filtering and feature detection for different
sensory inputs (5). Our proposal for orientation discrimination
is the simplest example of an assembly filter. Synchrony may also
have implications for associations (4) and contextual modula-
tions such as figure–ground discrimination (5), in addition to
enhanced orientation discrimination. The fact that the presence
of synchrony impedes rate coding and enhances temporal coding
(2, 16), along with the correlation found with perceptually
relevant features (17–22), suggests that synchrony does play
some role in sensory perception. Deciphering exactly what that
role is remains elusive.
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