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Abstract

The goal for treatment in acute spinal cord injury (SCI) is to reduce the extent of secondary
damage and facilitate neurologic regeneration and functional recovery. Although multiple studies
have investigated potential new therapies for the treatment of acute SCI, outcomes and
management protocols aimed at ameliorating neurologic injury in patients remain ineffective.
More recent clinical and basic science research have shown surgical interventions to be a
potentially valuable modality for treatment; however, the role and timing of surgical
decompression, in addition to the optimal surgical intervention, remain one of the most
controversial topics pertaining to surgical treatment of acute SCI. As an increasing number of
potential treatment modalities emerge, animal models are pivotal for investigating its clinical
application and translation into human trials. This review critically appraises the available
literature for both clinical and basic science studies to highlight the extent of investigation that has
occurred, specific therapies considered, and potential areas for future research.
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Acute spinal cord injury (SCI) is an important cause of morbidity and mortality with an
annual incidence of 10000 to 12000 cases in the United States (Ackery et al., 2004). With
life expectancy increasing for those with SCI, the prevalence worldwide is now approaching
2 million (Kirshblum et al., 2002; Ackery et al., 2004). The United States National Institute
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of Neurological Disorders and Stroke (NINDS) now estimates that over $4 billion are spent
annually on medical treatment alone for acute SCI and management of chronically
debilitated patients (Kirshblum et al., 2002; Ackery et al., 2004). The current standard of
care for acute SCI is medical therapy with steroids; however, there have been multiple
studies investigating the role of surgical intervention compared to conservative and medical
treatments, as well as concerning the optimal therapeutic window for surgical intervention.
Surgery has the potential advantage of obtaining greater neurological recovery and
facilitating earlier rehabilitation through decompression of the spinal cord and nerve roots,
in addition to preventing further neurological deterioration and secondary damage following
SCI. Surgery has been widely used in patients with signs of progressive neurological
deterioration, especially in which the injury is related to a herniated disk, intra-spinal
hematoma, burst fracture, or other surgically correctable problems (Hawryluk et al., 2008).
Despite recent advancements in understanding the pathophysiology of acute SCI, treatment
outcomes and management protocols aimed at ameliorating neurologic damage in patients
remain ineffective.

Study objectives and methodology

The continuing debate over whether the currently accepted standard of care,
methylprednisolone, is truly efficacious or safe in the treatment of acute SCI has forced
clinicians to look to alternatives in improving neurologic outcomes; however, adopting a
novel treatment approach to acute SCI is not without its challenges. To overcome some of
these obstacles, spinal cord injury clinical research must collaborate with neurobiological
investigation in order to work toward the establishment of a successful translational model
for patient care.

In this article, the authors will review the clinical and experimental evidence regarding the
efficacy, therapeutic window, and optimal surgical interventions for the treatment of acute
non-penetrating spinal cord injury in clinical studies as well as animal models, discuss
experimental constraints, highlight the extent of investigation that has occurred, specific
therapies considered, and potential areas for future research.

The authors conducted an evidence-based review of clinical studies as well as experimental
research in animal models using a MEDLINE search of the literature from 1990 to 2013.
The MEDLINE database was queried using the medical subject headings of “acute spinal
cord injury,” “decompression,” and “surgical intervention.” For a summary of basic science
research, the initial search yielded 130 articles, which were further limited to animal studies
and the English language finally yielding 8 articles for appraisal. Histologic and behavioral
outcomes in addition to surgical procedure and therapeutic time frames were compared and
analyzed to meet inclusion criteria. For clinical studies over 100 articles were appraised and
analyzed based on surgical intervention and therapeutic time window to meet inclusion and
exclusion criteria. Each article underwent a detailed review by the investigators and the
reference lists from select articles were further evaluated for relevance. Two tables are
provided with the first table summarizing the clinical studies on the timing and type of
surgical decompression after SCI (Table 1), and the second table summarizing the basic
studies on decompression in animal models of SCI (Table 2).
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Mechanisms of secondary injury

Acute SCI involves a combination of primary mechanical and secondary cellular injury
leading to neural tissue destruction (Tator and Fehlings, 1991; Rowland et al., 2008).
Primary mechanisms refer to the initial rapid spinal cord compression and trauma induced
by a fracture or shearing force (Tator and Fehlings, 1991; Rowland et al., 2008). Primary
trauma to the cord is irreversible, and initiates a cascade of pathologic and molecular
changes that contribute to secondary injury. Secondary injury mechanisms include
hemorrhage, vasospasm, ischemia, edema, excitotoxicity, inflammation, and apoptosis
(Tator and Fehlings, 1991; Tator and Koyanagi, 1997). Current therapy modalities focus on
preventing and reducing damaging effects of secondary injury to improve neurological
outcomes. Recent evidence suggests that neural tissue destruction is also enhanced by a
persistent compression on the spinal cord, a reversible form of secondary injury following
trauma (Vaccaro et al., 1997; Fehlings and Arvin 2009; Fehlings et al., 2012). Based on
these data, surgical intervention has been explored as a potential treatment method. Surgery
in acute SCI serves to decompress the spinal cord and restore spinal stability; thus reducing
secondary injury and deterioration of function.

Pharmacological treatments for SCI

The National Acute Spinal Cord Injury Studies (NASCIS trials Il and I11) have shown that
patients treated with the steroid methylprednisolone within 8 h of acute SCI exhibit
improved neurologic outcomes at 1 year compared to placebo (Bracken et al., 1990; Bracken
et al., 1997). Although methylprednisolone has been established as the only standard of care
for acute SCI, recent evidence suggests that there is no benefit in both short-term and long-
term results and that the risks of high doses of methylprednisolone outweigh the benefits
(Hurlbert, 2000). Numerous other therapies for acute SCI have appeared promising in
preclinical trials. A recent phase Il randomized controlled trial evaluating GM-1
ganglioside and its neuroprotective properties showed potential at 3 months post-injury, but
ultimately failed to provide significant benefit in outcomes at 6 months follow-up (Baptiste
and Fehlings, 2008). Multiple other pharmacologic compounds have been investigated as
potential adjuncts for reducing injury and improving neurologic recovery, however, such
therapeutics from animal studies are not easily, or ever, translated clinically (Amar and
Levy, 1999; Baptiste and Fehlings, 2008). Continued research on the pathophysiology of
acute SCI is needed to develop pharmacologic agents that reduce secondary injury and
stimulate neurologic regeneration.

Potential benefits of surgical intervention

To date, surgical decompression via laminectomy remains a valid practice option for the
treatment of acute SCI. However, there is no conclusive Class | clinical data that suggest an
enhanced benefit over conservative treatment approaches (Vaccaro et al., 1997; Fehlings and
Arvin, 2009; Fehlings et al., 2012). Class Il evidence suggests that early surgical
intervention is safe and effective, though no standardized guidelines or algorithms exist
regarding the timing and optimal surgical intervention for extra-dural and intra-dural
decompression in acute SCI (Fehlings and Arvin 2009; Fehlings et al., 2012). Few
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prospective randomized trials investigating surgical management of SCI has been published
(Ng et al., 1999; Cengiz et al., 2008; Fehlings et al., 2012; Wilson et al., 2012), and among
these the results are conflicting; timing appears to be one of the most crucial factors in
improving neurological recovery following surgical intervention.

The results of a study by Cengiz et al., study showed no significant neurologic benefit of
cervical spinal cord decompression performed less than 72 h with a mean of 43 h compared
to time points beyond 5 days post-injury (Cengiz et al., 2008). Alternatively, the results of
the highly anticipated randomized multicenter STASCIS (Surgical Treatment of Acute
Spinal Cord Injury Study) trial supports acute decompressive surgery for improving
functional recovery following cervical SCI (Fehlings et al., 2012). This result was supported
by a smaller prospective study also performed under direction by Michael Fehlings (Wilson
etal., 2012). Many class Il and 11 clinical studies have shown surgical approaches to be
promising intervention options for acute SCI; however, the timing of surgical
decompression in addition to determination of the optimal specific surgical intervention
remain among the most controversial topics pertaining to surgical treatment of acute SCI
(Ng et al., 1999; Cengiz et al., 2008; Rabinowitz et al., 2008).

Accurate appraisals of a surgical therapeutic window for neurologic improvement in acute
SCI are fundamental to the establishment of optimal treatment modalities and algorithms.
Unfortunately, this topic remains understudied. Prevention of secondary injury in animal
models is suggested to be dependent on the timing of surgical decompression. Therefore, it
is hypothesized that early surgical interventions will improve neurologic outcome.
Unfortunately, the timing of “early” surgical decompression has been difficult to establish
because it is defined at different times by different authors and there is a lack of evidence
supporting the definition. One systematic review on class Il evidence concluded that early
surgery (< 24 h) results in better neurological outcome, reduced complications, and reduced
length of ICU and overall hospital stay when compared to delayed surgery (> 24 h) (Cengiz
et al., 2008; Fehlings and Arvin 2009; Fehlings et al., 2012).

The results of the STASCIS trial investigating the outcomes of early (< 24 h) vs. late (~48 h)
extradural surgical decompression of SCI, has shed light on the current debate (Fehlings and
Arvin, 2009; Fehlings et al., 2012). In this study involving 313 patients diagnosed with acute
cervical SCI, approximately 20% of those who underwent extradural surgical decompression
within 24 h of injury experienced a 2-grade or greater improvement on the American Spinal
Injury Association (ASIA) scale compared with approximately 9% in those patients with
delayed decompressive surgery. It was also observed that systemic complications,
particularly involving the cardiopulmonary and urinary systems, were reduced in patients
who underwent early extradural surgical decompression at 24.2% compared to those with
delayed decompression at 30.5%. Based on the aforementioned literature, the authors of this
study focused on the appraisal of clinical and experimental studies in which surgical
intervention was performed within 24 h in patients presenting with acute SCI. Nevertheless,
further animal studies are necessary to establish a potential treatment algorithm as well as
determine the optimal therapeutic window and surgical technique.
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Discussion

Surgical decompression may be beneficial for recovery

Therapeutic

Secondary injury is an active process that requires both energy and cellular mediators
making it a feasible target for therapeutic intervention. Investigation of pharmacologic
compounds that facilitate the regenerative processes while inhibiting detrimental aspects of
inflammation has been at the forefront of SCI research; however, to date, these agents have
failed to show significance clinical translation (Hall and Braughler, 1982; Nagata and
Golstein, 1995; Juurlink and Paterson, 1998; Park et al., 2004). Despite these shortcomings,
surgical interventions to prevent edema, restore vascular perfusion, and reduce the
mechanisms that perpetuate secondary injury are important future directions for research.

Currently no standards of care regarding the timing and indications of surgical
decompression in acute SCI exist, although the literature suggests that early extradural
surgical decompression may play a significant role in functional recovery (Fehlings and
Arvin, 2009; Fehlings et al., 2012; Wilson et al., 2012). Surgical decompression has the
potential to reduce intra-dural pressure and thus increasing blood flow to the spinal cord,
reducing ischemia, and preventing secondary injury mechanisms. The optimal combination
of decompression (laminectomy, durotomy, piotomy or myelotomy) along with adjunctive
therapies, such as the use of methylprednisolone, has not yet been established despite studies
investigating the role of a myriad of agents and interventions for mediating neuroprotection
and reducing secondary injury. We believe that the acute SCI treatments should focus on
developing or improving combinational therapeutic regimens, instead of single therapies
alone, to ameliorate the extent of secondary injury and improve neurological outcomes.
Investigating optimal surgical interventions for the treatment of acute non-penetrating SCI in
clinical studies, particularly focusing on therapeutic window and surgical procedures, may
provide potential ideas for future treatment algorithms, modalities, and research.

window and clinical considerations

Based on a review of literature and in accordance with the STASCIS trial, the authors of this
review have defined early surgical decompression as such intervention performed within 24
h of acute SCI, although this definition has varied from 8 h to 4 days in various clinical
studies. Delayed surgical intervention has also been more commonly classified in the
literature as between 24 h to 5 days; however, less consistently.

We identified 7 retrospective and 5 prospective clinical studies investigating the efficacy,
complications, and/or optimal therapeutic window of surgical intervention for acute SCI.
Table 1 shows 7 out of 12 studies concluding that patients who undergo early surgical
intervention have shorter hospitalization or shorter length of stay in intensive care compared
to those undergoing medical management. Additionally, 7 out of those 12 studies also
concluded that better neurologic outcomes were observed in those patients undergoing early
surgical intervention. One main argument for delaying surgery is the concern for a higher
incidence of medical complications. One study showed no difference and even less systemic
complications in those patients who undergo early surgical intervention, consistent with
preliminary data presented in the STASCIS trial. Improved neurologic outcomes were noted
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in patients who were younger, those who presented with incomplete injury such as Brown-
Sequard syndrome, or in Central Cord Syndrome related to acute disc herniation or
fractures. The literature suggests that in the setting of spondylosis or stenosis, there was no
difference between early and later surgical stabilization, though, early surgery was deemed
safe in those patients presenting acutely.

The National Acute Spinal Cord Injury Studies (NASCIS trials Il and I11) have shown that
patients treated with methylprednisolone within 8 h of acute SCI improve neurologic
outcomes at 1 year compared to placebo (Bracken et al., 1990; Bracken et al., 1997). This
suggests a potential therapeutic window during this timeframe for preventing the cascade of
secondary injury. Ng et al. (1999) and Cengiz et al. (2008) represent two prospective studies
in which patients underwent surgical decompression of the cervical, thoracic, and lumbar
segments of the spine within 8 h of acute traumatic SCI. Both of these studies observed
shorter intensive care and hospital stay, with fewer secondary complications and better
neurologic outcomes in those patients who underwent early surgical decompression less than
8 h after acute SCI compared to other patients operated on at a later time. Despite these
optimistic results, one study showed no difference in mortality when comparing early versus
late surgical decompression (8 h). Additionally, it could be argued that further neurological
recovery could potentially show no difference although it is equally possible that an even
greater difference in neurologic improvement could be observed with later follow-up.

Decisions about the timing of surgery could also have been made (especially in retrospective
studies), based on factors that were not measured in the study, for example, worsening
neurological or clinical status indicating the need for emergent surgical intervention.
Patients who do not fit in this category and who participate in standardized prospective
studies may potentially benefit to a greater degree. Major limitations in many of the
aforementioned studies are the lack of a randomized, double-blind, multicenter clinical trial
designed to determine the efficacy and optimal therapeutic window for various surgical
interventions in acute SCI. The outcome of the STASCIS and follow-up trials provide more
reliable insight for clarifying these important clinical considerations.

Clinical evidence from Table 1 suggesting that early surgical decompression with or without
spinal fusion within 24 h, and especially within 8 h of acute SCI is safe, more cost effective,
and results in improved overall neurologic recover in patients with incomplete spinal
trauma. In spite of these findings, the application of surgical decompression is to reduce
secondary injury mechanisms. Early surgical interventions that serve to reduce mechanisms
such as ischemia, free radical formation, lipid peroxidation, and calcium channel mediated
cytotoxicity, should be explored.

While the most traditional form of surgical decompression of the spinal canal is through
performance of a total laminectomy with flavectomy with or without spinal stabilization,
which decompresses extra-dural elements, Perkins and Deane (1988) reported six cases of
patients with acute SCI who underwent surgical decompression of the dura. At the time of
surgery (five of six within 24 h), the dural sac failed to show normal pulsations. Presence of
congested epidural veins was also noted. During the surgery, the dura was exposed and
incised longitudinally. At the time of incision cerebrospinal fluid escaped under
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considerable pressure with a mean of 15 mmHg followed by hemorrhage from surrounding
epidural veins. The dura was subsequently closed following an expansion duraplasty in a
water-tight fashion with a continuous locking suture and spinal stabilization was obtained
through instrument assisted fusion.

Perkins and Deane (1988) followed their patients for an average of 4-5 years after
emergency intra-dural decompression. The authors reported full neurological recovery in
three of the six previously impaired patients and partial recovery in the remaining three.
Perkins and colleagues hypothesized that edema in acute SCI restricts the normal flow of
cerebrospinal fluid exacerbating intra-dural pressure, ultimately causing a compartment-like
syndrome within the neural structures. This phenomenon is hypothesized to restrict normal
arterial perfusion, supporting surgical durotomy as an effective measure of preventing
secondary injury.

Although intra-dural decompression via durotomy has been implicated to reduce secondary
injury and improve neurologic outcomes in acute SCI, such surgery is not without
complications. Spinal pseudomeningoceles and cerebrospinal fluid fistulas are rare
extradural complications that result following a failure to obtain a water-tight closure of the
dura. The incidence of pseudomeningoceles following durotomy has been estimated to be
less than 0.1% (Schumacher et al., 1988); however, clinically significant cases are even
more infrequent. More common complications of intra-dural surgery include low-pressure
headache with meningitis, while transient quadriplegia is a more severe, but rare,
complication (Desai et al., 2011).

Zhu et al. (2008) reported a total of 30 patients with “complete” acute SCI who underwent
internal fixation of the vertebral column, bilateral laminectomy for epidural decompression,
separation of arachnoid adhesions, and intramedullary decompression through debridement
of the necrotic lesion epicenter at 4-14 days after injury. Although all 30 patients presented
initially with an American Spinal Injury Association (ASIA)-A score, after three months of
rehabilitation, all patients recovered some ability to walk. Within this group, 40% of the
patients were able to walk with wheeled weight support and 43% with crutches or without
support.

The authors hypothesized that the volume of necrosis in the spinal cord from secondary
injury is much greater than the extent of primary injury and early debridement may serve as
a method to stop further expansion of secondary injury by removing activators of the
secondary injury cascade (Tator, 1991; Lu et al., 2000; Profyris et al., 2004). The authors
propose intramedullary decompression may serve as a potential intervention to increase
cerebral perfusion pressure in spared tissue thus reducing further ischemia and secondary
injury mechanisms. Intramedullary decompression is another potential novel therapeutic
neurosurgical intervention that should be investigated for clinical translation. Given the low
incidence of adverse effects following intra-dural surgery pooled with a high potential for
neurological benefit following acute SCI, durotomy is a viable treatment option.
Intramedullary decompression has also shown considerable promise; however, due to the
high risk of adverse events, further investigation using animal models is required.
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Surgical decompression in animal models

There is convincing evidence from laboratory studies in rat and dog animal models that
show persistent compression of the spinal cord to be a reversible form of secondary injury.
Table 2 summarizes those studies using animal models published within the past 20 years.
The investigators have concluded with consistent evidence, that not only is neurological
recovery inversely related to the extent and duration of spinal cord compression after
primary acute SCI, but early decompression of the spinal cord, especially within the first
hour, improved neurological recovery. Acute SCI without surgical decompression within the
first three hours of injury has also shown to produce irreversible neurologic damage.
Additionally, Rabinowitz et al. (2008) investigated new treatment modalities such as
combining surgical decompression and methylprednisolone to reduce the extent of
secondary injury. They concluded that surgical decompression, with or without
methylprednisolone, were superior in recovery compared to methylprednisolone alone.
Although this experiment highlights the potential role of surgical decompression in acute
SClI, it also emphasizes the importance considering adjunctive therapies in preventing
progression of secondary injury.

Investigating decompression in animal models could shed light on potential benefits of such
an approach for acute SCI. Dimar et al. (1999) previously showed that both histological
damage and neurological dysfunction increased with incrementally prolonged intraspinal
cord compression in a rat model. Smith et al. (2010) devised an experiment focusing on
intra-dural decompression as a result of the study conducted by Perkins and Deane (1988).
Smith et al. (2010) hypothesized that performance of a durotomy following acute SCI may
abate potential deleterious secondary injury that results from intact dural compression
secondary to primary contusive trauma.

The authors concluded that durotomy alone showed increased scar and cavity formation
while durotomy with dural allograft showed improved recovery compared to sham and
durotomy alone at 4 h after injury (lannotti et al., 2006). Despite the evidence, there are
limitations to their study design. First, the stated SCI protocol does not specify whether the
same investigator performed the durotomy on each of the animals. Variations in surgical
skill play a large role in observed inconsistency within the results. In addition, the details of
the transplanted dural allograft and its potential neuroprotective and anti-inflammatory
effects on the spinal cord are unclear and require further investigation. Furthermore,
experiments are required to determine if the improved neurological outcomes extend beyond
their study period of four weeks. It seems intuitive that the effect of surgical decompression
of the dura alone would also produce a beneficial outcome. Although the results of the study
by Smith et al. (2010) showed that durotomy alone may not play a role in acute SCI, further
studies must be conducted in order to establish a standardized treatment algorithm and to
better understand the progression of disease. Without such knowledge, the potential
realization of clinical application of durotomy as a clinically applicable treatment modality
is greatly diminished.

Jones et al. described two separate studies in 2012 utilizing a porcine model of weight drop
and compression SCI followed by decompression surgery 4 h after primary injury (Jones et
al., 2012a, 2012b). In one study, the authors investigated the morphological alterations to the
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dura and spinal cord following persistent compression and surgical decompression in
Yucatan pigs. Their results show that decompression following such SCI results in varying
degrees of cord swelling, occlusion of subarachnoid space, and blockage of CSF flow (Jones
et al., 2012a). Jones and colleagues posit that intradural swelling may induce secondary
pathology due to interruption of normal flow of CSF and constraints of swelling by the
surrounding meninges, leading to the inconclusive results of decompression and patient
neurological outcome following SCI. In the other study, the CSF blockade was documented
to induce elevated intracranial pressure, which could induce separate but additional
neurological deficits (Jones et al., 2012b). Figure 1A &B illustrates the hemorrhage, edema
and swelling of the rat cervical spinal cord following hemi-contusion SCI three days post-
insult. As suggested in human SCI, removal of pressure from bone fragmentation or
dislocation following trauma may benefit from additional decompression by dural or pial
opening to alleviate intramedullary pressure on the cord. The timing of such interventions
and restoration of normal CSF circulation will require further research in animal models as
well as in human SCI to obtain an optimal surgical approach to decompressing the
traumatized spinal cord. Figure 2 illustrates an axial view of the normal spinal cord, canal
and vertebral column, and the pathology that follows traumatic injury to the spine. A series
of illustrations highlight combination decompression approaches targeting laminectomy for
reducing external pressure from the cord, and meningeal opening to minimize subsequent
intraspinal pressure caused by cord swelling and constraints of the pia and dura matter and
blockade of CSF flow.

Future experimental direction

The authors of this paper hypothesize that breaching the relatively non-compliant dura early
in the clinical course will reduce compression of the injured spinal cord, promoting adequate
vascular perfusion, and reducing the spread of secondary events. Other surgical

interventions such as intramedullary decompression, which has the potential to ameliorate
damaged vasculature and prevent further cell death, should be on the forefront of future
investigation. Future studies utilizing animal models should determine the role of surgery for
the treatment of acute spinal cord injury, establish a therapeutic window, and evaluate the
effects of durotomy and intramedullary decompression on inflammation, scar formation,
functional, histological, and neurological outcomes.
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Figure 1.
Spinal cord swelling following traumatic C5 hemicontusion injury in rats. (A)

Photomicrograph depicting hemorrhage and swelling due to trauma on the side ipsilateral to
injury (right), and no swelling or morphological change on the contralateral uninjured side
(left) of the cord. (B) Camera lucida drawing of the photomicrograph in (A) highlighting the
morphological differences between the ipsilateral and contralateral sides of injury in the rat
cervical spinal cord. The lesion is indicated by the region colored in light-red. Scale bar = 1
mm.
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Figure 2.
Illustrations of the normal spine, injured vertebra and spinal cord, and surgical

decompression methods to alleviate pressure from cord swelling. (A) Transverse illustration
of a normal vertebra, dura mater (dark blue), subarachnoid space containing the
cerebrospinal fluid (CSF, light blue), pia mater (green), and the spinal cord. (B) Traumatic
spine fracture inflicts compressive spinal cord damage, leading to vascular rupture,
hemorrhage and swelling of the cord resulting in the occlusion of the subarachnoid space
and blockade of the CSF flow. (C) Durotomy, i.e., longitudinal incision of the dura mater,
may release the cord pressure caused by tissue swelling and, therefore, reduce secondary
tissue damage. (D) Piotomy, i.e., longitudinal incision of the pia mater, may afford further
cord expansion to reduce further tissue damage of the injured spinal cord.
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