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Abstract

One approach to conveying tactile feedback from sensorized neural prostheses is to characterize

the neural signals that would normally be produced in an intact limb and reproduce them through

electrical stimulation of the residual peripheral nerves. Toward this end, we have developed a

model that accurately replicates the neural activity evoked by any dynamic stimulus in the three

types of mechanoreceptive afferents that innervate the glabrous skin of the hand. The model takes

as input the position of the stimulus as a function of time, along with its first (velocity), second

(acceleration), and third (jerk) derivatives. This input is filtered and passed through an integrate-

and-fire mechanism to generate a train of spikes as output. The major conclusion of this study is

that the timing of individual spikes evoked in mechanoreceptive fibers innervating the hand can be

accurately predicted by this model. We discuss how this model can be integrated in a sensorized

prosthesis and show that the activity in a population of simulated afferents conveys information

about the location, timing, and magnitude of contact between the hand and an object.
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I. INTRODUCTION

Neural prostheses, such as cochlear, vestibular, and retinal implants sense the environment

using artificial sensors, convert data from these sensors into neural signals, and apply a

pattern of electrical stimulation to a neural epithelium designed to mimic the signals that

would have been produced by the sensory environment if the native sensory transducers

were still in place.

For the sense of touch, the hand is the principal sensory organ and feedback from the hand is

critical in the dexterous manipulation of objects. The skin of the hand is innervated by a

large number of receptors, each of which conveys different kinds of information. Some

receptors convey information about form and texture, others about temperature, and still

others signal potentially harmful mechanical, thermal, or chemical stimulation. In designing

a sensorized neural prosthesis for upper arm amputees, appropriate signals must be

conveyed to the nerve fibers innervating each of these types of receptors (or to the afferent

targets of these receptors in the brain or spinal cord) if feedback is to be realistically

conveyed to the user. Here, we describe a model that mimics the response of low-threshold

mechanoreceptors (i.e., those that signal non-noxious deformation of the skin) to arbitrary

dynamic stimuli presented to the surface of the skin. Using this model then, signals

transduced by sensors located on a prosthesis can be converted into desired patterns of

neural activity, which can then be effected in the peripheral nerve through electrical

stimulation (Fig. 1). Preliminary versions of this paper have been presented in abbreviated

form else-where [1],[2].

II. MECHANORECEPTIVE AFFERENTS

The three types of mechanoreceptive fibers: 1) slowly adapting type 1 (SA1); 2) rapidly

adapting (RA); and 3) Pacinian (PC) convey information about different aspects of the

deformation produced at the surface of the skin (see [3] for a review): SA1 fibers respond to

pressure and low-frequency vibrations and convey information about form and texture [4].

RA fibers respond to stimuli that brush against the skin and to oscillations at intermediate

frequencies (20–100 Hz) and convey information about motion [5]. Pacinian fibers are

exquisitely sensitive to higher frequency vibrations (their peak sensitivity is around 250–300

Hz) and are thought to convey information about distal events (as when sensing through a

tool)[6] and the material properties of a surface [7].

A hallmark of afferent responses to dynamic stimuli is their repeatability. Repeated

presentations of a dynamic stimulus evoke almost identical responses, suggesting that

models can be developed to replicate this afferent activity.
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In previous attempts to characterize the transduction process, not all aspects of afferent

response properties were captured [8]–[11]. For instance, extant integrate-and-fire models

account for the relationship between stimulus intensity and afferent responses, but cannot

accurately predict the responses to stimuli other than sinusoids [8]–[10]. Other models that

can be applied to spectrally complex stimuli do not exhibit important response properties of

afferents, such as the stereotyped entrainment plateaus observed in the rate-intensity

functions [11].

In developing a model of mechanotransduction, a critical question is what should constitute

the input to the model. Specifically, what stimulus quantity determines the response of the

afferent? We have previously shown that the stimulus quantity that drives the responses of

SA1 and RA afferents when spatial patterns are statically indented into the skin is the strain

experienced by the mechanoreceptor [12]. However, most stimuli are not static, and

dynamic stimuli involve much more complex skin and receptor dynamics than do static

stimuli. In this study, we then adopted a framework within which a variety of possible

stimulus quantities and dynamics could be incorporated into the model.

The existing literature on mechanoreceptors offers hints as to the stimulus quantities that

drive afferent responses and their associated nonlinearities. The three fiber types exhibit

differential sensitivity to the instantaneous position (indentation depth), velocity, and

acceleration of the stimulus [11]. Furthermore, different fibers, even within a given

category, exhibit different stimulus noninearities: some fibers respond when the stimulating

probe is indented beyond the resting level of the skin and do not respond to retractions (half-

wave rectification) whereas others respond to indentations and retractions to the same

degree (full-wave rectification)[1]. The model that will be described can incorporate the

differential sensitivity of afferent fibers to stimulus position, velocity, acceleration, and jerk

as well as the range of possible rectifying nonlinearities.

III. MODEL

We implemented an integrate-and-fire (IF) model with the ability to replicate the putative

properties of all three types of mechanoreceptive afferents. The model was driven by four

input variables—position and its first, second, and third derivatives (corresponding to

velocity, acceleration, and jerk, respectively, see Fig. 2). Since the framework we adopted to

estimate the model parameters only allows for linear transformations of the inputs, we

separated each input into its positive and negative components (e.g., indentations and

retractions in the case of position), allowing separate linear transformations on each

component. This partition allowed us to account for full-wave, half-wave, or partial

rectification of the input signal using appropriate linear transformations on each component.

In the model, inputs are filtered separately then summed and converted into current to form

the input to the IF mechanism. Noise is injected into the IF mechanism along with this input

current. The IF mechanism has several parameters associated with it, namely, the membrane

time constant (τm), reset potential (V0 = 0), resting potential (Vr), and electrical threshold

(VT = 1). When the membrane potential reaches threshold (VT), an action potential is
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produced, the membrane potential is reset (to V0), and a postspike inhibitory current is

injected into the neuron to place it into a refractory state.

The membrane potential V is given by

(1)

where Ips(t) is the (fitted) postspike inhibitory current, accumulated over all past spikes, Wt

is Gaussian noise, and Iin(t), the input current, is given by (in the full model)

(2)

where  are the positive and negative components of the ith derivative of position,

respectively;  are the corresponding linear filters; and * denotes the

convolution operation. The filter associated with each input was allowed to vary

independently in order to accommodate differential sensitivity across inputs.

The model was developed and tested on the responses of 5 SA1, 5 RA, and 5 PC fibers

(recorded from two anesthetized Rhesus macaques) to a variety of vibratory stimuli,

including diharmonic stimuli (superimposed sinusoids) and bandpass noise stimuli varying

in amplitude and frequency content (for details, see [13]). Since the physical quantity that

drives transduction is unknown, we evaluated models using combinations of position,

velocity, acceleration, and jerk as inputs–a total of ten models. Models that included all of

the inputs were at least as good as any model that comprised a subset of inputs. However,

some simpler models were as good as the full model; different afferent types required

different combinations of inputs. For the purposes of implementation in a neuroprosthesis,

using all four inputs results in a generic model that can be parametrically adapted to

different afferent types. The primary source of variability across cells was the type of

rectification they effected on the inputs: Some neurons were full-wave rectifiers, others half-

wave rectifiers, and many exhibited intermediate rectification. Interestingly, the shapes of

the filters were similar across fibers of a given type and differed across fiber types. The

discussion of the afferent sensitivity to different inputs and of the shape of the input filters

falls outside the scope of this paper.

The difficulty in implementing an IF model to predict measured spiketimes lies in estimating

the parameters of the model. In our case, the parameters include those defining the input

filters, the parameter describing the noise, the IF parameters (τm and Vr), and the parameters

defining the shape of the post-spike inhibitory current. Although these parameters can be

estimated by using conventional optimization techniques, such as annealing [14], these

methods do not guarantee convergence to a unique solution. Recently, Paninski and Pillow

[15], [16] have pioneered a novel approach that does ensure convergence. Briefly, by

assuming that the noise in the current driving the IF mechanism is Gaussian, the approach

uses density propagation techniques to compute the probability of a spike at time tj given a

set of parameters
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(3)

where Cj is the set of possible voltage trajectories during inter-spike interval j, bracketed by

spike times tj−1 and tj. Specifically, Cj includes all of the trajectories where V (tj−1) = V0, V

(tj) = VT) (VT is the threshold potential), and V (tj−1 < t < tj) < VT. G(V(t) | y, θ) is the

Gaussian density function of the voltage trajectory over this interval, y is the stimulus, and θ

represents the parameters of the IF model. The mean of G is the noiseless solution of (1) and

its covariance is given by

(4)

The joint likelihood of the set of observed spikes evoked by the stimulus, given parameters

θ, can then be obtained by multiplying the probabilities in (3) for all spikes. This likelihood

function is convex in its parameters [13] and, thus, we can use standard optimization

techniques to find the most likely set of parameters for the model, given the set of observed

spikes.

IV. MODEL PERFORMANCE

Fig. 3 shows the measured (red) and predicted (blue) spike trains evoked by three

diharmonic stimuli for an SA1 [Fig. 3(a)] and an RA [Fig. 3(b)] fiber. The predicted spike

trains are almost identical to their measured counterparts. Not only can the model predict

almost flawlessly the individual spike times in the training set, but it can also yield good

predictions of novel data (Fig. 4). To evaluate objectively the fits of the IF model, we

calculated a measure of dissimilarity between the predicted and observed patterns of spikes

evoked by the training set. This measure, called spike distance (Dspike), and proposed by

Victor and Purpura [17], is an index of the cost required to change one spike train into

another. Dspike increases as two spike trains become increasingly dissimilar; the more

dissimilar the two trains are, the greater the cost (the cost associated with adding or

subtracting one spike is 1, and the cost for shifting a spike by 1 ms is 0.25). To establish a

baseline for Dspike, we computed Dspike for pairs of responses to the same stimuli in a given

afferent. This baseline distribution of Dspike (pooled across stimuli for each afferent

individually) establishes an upper bound for model performance because model predictions

cannot be more similar to afferent responses than afferent responses are to themselves. As

shown in Fig. 5 for the SA1 fiber from Fig. 3(a) and Fig. 4(a), the distribution of Dspike for

repeats and for predictions overlapped considerably: the difference in mean between the two

distributions is about 0.15. In other words, the predicted and actual spike trains differ by an

average of 1 spike per 7, or the timing discrepancy between the two trains is less than 0.6 ms

per spike.

V. IMPLEMENTATION

Given the biofidelic model proposed herein, the implementation of this approach to provide

tactile feedback for an upper extremity neuroprosthesis is envisaged to require the following

steps. First, arrays of stimulating microelectrodes would be implanted into the residual
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median and ulnar nerves of the amputated arm. Second, fibers stimulated by the electrodes

would be classified according to fiber type and the projected field. To accomplish this, trains

of electrical pulses would be delivered through each electrode in succession, and the

amputee would report the elicited sensations. Classification of afferents based on subjective

reports can be assumed to be accurate because the stimulation of SA1 afferents has been

shown to elicit sensations of pressure and stimulation of RA afferents evokes sensations of

flutter and stimulation of PC afferents sensations of vibration [18]. Stimulation of other

types of fibers will produce other sensations (painful, thermal, etc.). Once fibers have been

categorized by type, their projected field of sensation must be identified. This is achieved by

having the amputee report where the sensations elicited by the electrical stimulation

originate on the hand. The prosthetic sensors responsive to the afferent’s projected field will

then be associated with that particular afferent. For instance, the responses of afferents

whose receptive fields are located on the native index finger will be driven by the output of

sensors on the index finger of the prosthesis.

The final step in implementing this strategy is to determine the parameters of a single

electrical pulse that results in a single action potential in the stimulated fiber. Indeed, for the

stimulation to be perceived as natural, trains of action potentials must be evoked with the

temporal pattern specified by the biofidelic model. As human subjects can perceive a single

action potential evoked in a single afferent fiber [18], we can assume that a liminal electrical

pulse will produce a single action potential in the stimulated afferent. To evoke a train of

action potential with a given temporal sequence in the fiber, a stimulator will deliver a train

of liminal electrical pulses with the desired temporal structure (assuming that temporally

adjacent pulses behave independently).

VI. RESULTS

The functionality of the model as a tool for tactile feedback was tested by simulating the

responses evoked in populations of afferents when objects are manipulated with a hand

fitted with a sensorized glove (FingerTPS, PPS, Inc., Los Angeles, CA). At the top of Fig. 6,

images are shown from a video sequence in which a water bottle is grasped, picked up, and

then put down. The outputs of the glove’s force sensors on the fingertips and palm are

converted to position signals, which are, in turn, used as inputs to five clones of four SA1

and four RA afferents at each location (for a total of 240 instantiations of the transduction

model, 120 of each type). The bottom of Fig. 6 displays the sequences of action potentials

generated by the biofidelic models along with the peristimulus spike histograms. In a real

prosthesis, the output from each simulated afferent would be used to stimulate an afferent

whose projected field is located in the vicinity of the sensor.

As can be seen, the simulated afferent activity conveys rich dynamic information about the

order in which digits contact the object, the time at which contact begins and ends, and the

force exerted by each digit on the object. For example, the palm and pinky barely touch the

object throughout the recording period, as is reflected in the weak neural activity originating

from these regions. In addition, it can be seen that contact with the ring finger occurs later

than contact with the thumb, as reflected in the later onsets of the SA1 and RA responses.

Interestingly, SA1 and RA afferents produce robust responses not only when the object is
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first contacted but also when it is raised, signaling that the object is no longer supported by

the table. RA afferents tend to respond at the onset of contact, during the initial elevation of

the object, and at the offset of contact whereas SA1 afferents generally respond during the

entire period when the hand is in contact with the object. Information about the timing of

events may thus be more robustly conveyed by RA afferents. Finally, most of the force

required to lift the object is shared between the thumb and middle finger, as reflected by the

strong responses in these regions. SA1 afferents convey the most robust information about

the magnitude of the force as their responses are more strongly modulated by this

stimulation parameter than are their RA counterparts. Presumably, this simulated

spatiotemporal pattern of activity would be intuitive and familiar if generated in the residual

nerves of an amputee because the model faithfully replicates the dynamic pattern of

activation that would normally be evoked in the nerves in the intact hand.

VII. CONCLUSION

The central conclusion of this study is that a simple IF model can capture the fine temporal

structure of the firing patterns evoked in mechanoreceptive afferent fibers in a dynamic

environment. In developing models of neural encoding for a neural prosthesis, the next step

may be to incorporate into the model the spatial filtering caused by the skin [12]. We have

previously developed a model that describes how a stimulus, impinging upon the surface of

the skin, exerts forces at the surface of the skin which are then distributed within the skin as

tissue strain. The effects of skin mechanics may be implemented by using a simple mapping

between force and strain (based on the mechanical properties of the skin) and using the time-

varying strain, along with its first, second, and third time derivatives, as inputs to the present

model. Whether this nonlinear transformation reflecting skin mechanics should be effected

in a prosthesis remains to be determined. This transformation will make the simulated

activity more similar to that evoked in the native limb and, thus, more intuitively

interpretable by the amputee. However, the spatial filtering of the skin reduces spatial acuity

by redistributing forces exerted at the surface, so a prosthetic limb lacking this

transformation will offer greater spatial resolution. Whether this mechanical filtering

enhances the interpretability of afferent signals can be tested empirically.
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Fig. 1.
Diagram of a sensorized prosthetic limb. Force signals from sensors on the fingertips of the

prosthesis are converted by using the model described here (and visually represented as a

microchip) into the spike trains that would be evoked in the native limb by the stimulus. The

spike trains are then effected into the residual nerve fibers through electrical stimulation.
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Fig. 2.
Diagram of the full leaky and noisy integrate-and-fire model used to predict afferent

activity. The model comprises eight inputs, corresponding to the positive and negative

components of position, velocity, acceleration, and jerk, each of which is passed through a

linear prefilter. The summed output of the prefilters constitutes the input to the IF

mechanism. When the membrane potential of the IF mechanism reaches threshold, a spike is

produced and an inhibitory current is released to mimic refractoriness.
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Fig. 3.
Measured (red) and predicted (blue) spike trains evoked by three stimuli (black traces) for

(A) and SA1 and (B) an RA afferent. Each row in the red raster plot shows the response

evoked on each of the five presentations of the stimulus. The blue raster plot shows the spike

trains predicted by the model with parameters estimated by using the same stimuli.
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Fig. 4.
Measured and predicted spike trains evoked by two stimuli for (A) an SA1 and (B) an RA

afferent (conventions as in Fig. 3). Parameters obtained from the training set were used to

derive predictions to novel stimuli. Each row in the red raster plot shows the response

evoked on each of five presentations of the stimulus. The blue raster plot shows the spike

trains predicted by the model with parameters estimated by using the same stimuli.
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Fig. 5.
Distribution of Dspike for pairs of measured responses to the same stimuli (red) and for

predicted responses paired up with their measured counterparts (blue), pooled across stimuli

for all of the SA1 and RA fibers. Dspike is an index of the cost required to change one spike

train into another; the greater the difference between the two trains, the greater the cost. The

cost associated with adding or subtracting one spike is 1, and the cost for shifting a spike by

1 ms is 0.25. Other values of the cost parameter yielded similar results.
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Fig. 6.
Illustration of the biofidelic approach to tactile feedback. A hand equipped with a sensorized

glove grasps, picks up, and puts down a water bottle. Each colored trace shows the force

exerted on a fingertip or on the palm as a function of time. The outputs of the force sensors

on the digits and palm are used as inputs to five clones each of four SA1 and four RA

afferents on each digit and on the palm, for a total of 240 simulated afferents. For the

purposes of this simulation, we assumed that the force exerted on each digit was equally

distributed across all of the stimulated receptors. The model is designed for more localized

force sensors whose receptive fields are approximately the same size as that of

mechanoreceptive afferents. Each group of colored rasters corresponds to the activity

evoked in a population of afferents whose receptive fields are located on a single digit or on

the palm (colors match those of the displacement traces). The peristimulus spike histograms

are shown under the corresponding rasters showing the mean response across the population

of SA1 and RA fibers. As can be seen from the figure, simulated SA1 and RA afferents

produce qualitatively different responses during the manipulation of the bottle. SA1

Kim et al. Page 16

IEEE Trans Biomed Circuits Syst. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



afferents tend to respond throughout the contact period whereas RA afferents respond at the

onset and offset of contact. Information about the location of contact on the hand, timing of

contact, and force of contact are contained in the activity of the population of afferents.
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