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Abstract

Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal

accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and

compromises its function. IPF is now thought to result from wound-healing processes that,

although initiated to protect the host from injurious environmental stimuli, lead to pathological

fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental

stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure

the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell

death provoke the migration, proliferation, activation and myofibroblast differentiation of

fibroblasts, causing the accumulation of these cells and the extracellular matrix that they

synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and

death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions.

Though other cell types certainly make important contributions, we focus here on the “pas de

deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness

of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We

describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis

of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog,

prostaglandin E2, angiotensin II and reactive oxygen species.
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1. Introduction

Fibrosis characterizes many chronic diseases that result in end-stage organ failure, and

consequently is a major cause of morbidity and mortality. The pathogenesis of fibrosis in

many of these diseases is thought to involve aberrant or over-exuberant wound-healing

processes initiated to protect the host from injurious stimuli [1]. In response to noxious

stimuli of many different types, aberrant repair processes can produce the common result of

excessive deposition of extracellular matrix that disrupts normal tissue homeostasis. Repair

processes involve multiple cell types, including epithelial cells, fibroblasts, endothelial cells,

pericytes and leukocytes, all of which potentially interact with each other. Interactions

between two cell types in particular, alveolar epithelial cells and fibroblasts, appear to be

central to the pathogenesis of idiopathic pulmonary fibrosis (IPF) [1].

IPF is characterized by progressive fibrosis, with excessive matrix deposition leading to

destruction of lung architecture and ultimately fatal impairment of lung function. IPF has a

heterogenous clinical course, but the median survival after diagnosis is only 2.5 – 3.5 years

[2]. Although much of the pathogenesis of IPF remains to be elucidated, fibroblasts and

epithelial cells have emerged as principal players in this disease, in particular myofibroblasts

and type II alveolar epithelial cells. Fibroblasts and myofibroblasts accumulate in IPF lungs

in “fibroblastic foci” that, as the predominant sites of excess matrix production, can be

thought of as the leading edge of active fibrosis [3]. Fibroblast activation and accumulation

in IPF, however, appears to be fundamentally driven by recurrent and/or non-resolving

injury to the alveolar epithelium, and therefore in another sense, the injured alveolar

epithelium can be thought of as the leading edge of active fibrosis. With fibroblasts and

alveolar epithelial cells being in close apposition in the lung, it is not surprising that the

interactions between these two key cellular players contribute to the development of

pulmonary fibrosis. Though other cell types certainly make important contributions, we will

focus on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis,

the “folie à deux” (madness of two) of epithelial cell-fibroblast interactions as critical drivers

of pulmonary fibrosis. Whereas the source of the fibroblasts and myofibroblasts that

accumulate in the lung as fibrosis develops – whether these cells arise from resident

fibroblasts, resident epithelial cells or circulating precursors – has been an area of

controversy, the pro-fibrotic effects of the interactions of fibroblasts and myofibroblasts

with resident lung epithelial cells has become increasingly clear. We describe the role of

several important mediators in orchestrating the pro-fibrotic interactions of epithelial cells

and fibroblasts in their “fibrosis of two”, including transforming growth factor-β, connective

tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen

species (Figure 1).
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2. Epithelial cells: targeted cells in IPF

Accumulating evidence points toward recurrent and/or non-resolving injury to the lung

epithelium as the “prime mover” of pulmonary fibrosis. Although the cause of this injury in

IPF remains enigmatic, the footprints of lung epithelial injury are manifest, both in the form

of (1) increased epithelial cell death, and (2) phenotypic alterations of the surviving

epithelial cells. Increased numbers of apoptotic and necrotic cells have been observed in

both the alveolar and bronchial epithelia of IPF patients [4–6]. Surviving epithelial cells in

IPF lungs demonstrate several altered phenotypes [7]. Cuboidal epithelial cells representing

type II alveolar epithelial cell (AEC) hyperplasia and/or bronchiolar basal cell proliferation

line thickened fibrotic alveolar septa; single layers of flattened epithelial cells suggestive of

squamous metaplasia frequently are present overlying fibroblastic foci; and single-layered

columnar or pseudostratified columnar epithelial cells often line the abnormally enlarged,

restructured air spaces of honeycomb lung. These morphological changes are associated

with modifications of epithelial cell expression of specific cytokeratins, suggesting that in

addition to their morphology, the differentiation states and functions of epithelial cells are

likely profoundly altered in IPF. Of note, although IPF has been traditionally viewed as

affecting the parenchymal lung rather than the airways, a potentially central role for the

bronchial epithelium in addition to the alveolar epithelium in IPF pathogenesis has been

suggested by the recent association of a genetic variant in mucin 5B (MUC5B) with both

familial and sporadic IPF [8].

The potential of epithelial injury in general to cause pulmonary fibrosis has been

demonstrated in several mouse models. Induction of pulmonary epithelial cell death in mice,

either by pulmonary delivery of anti-Fas antibody [9–10] or transgenic overexpression of

transforming growth factor-β (TGF-β) [11], results in the development of fibrosis, as does

genetically targeting diptheria toxin-induced injury to alveolar epithelial cells [12].

Additionally, inhibition of apoptosis attenuates the fibrosis induced by bleomycin challenge,

the most commonly used mouse model of pulmonary fibrosis [13].

Finally, in addition to noxious stimuli in the external environment, alterations in the internal

environment of epithelial cells can also lead to their death and promote pulmonary fibrosis.

For example, the mutations in the gene encoding surfactant protein C (SFTPC) that have

been associated with familial pulmonary fibrosis (familial interstitial pneumonia) cause

SFTPC misfolding, leading to protein accumulation and endoplasmic reticulum (ER) stress

[14–17]. Unresolved or prolonged ER stress activates cellular apoptotic pathways, and the

resulting epithelial cell death may cause the pulmonary fibrosis that affects these SFTPC

mutation kindreds [18]. Thus epithelial cell injury and death, albeit due to a variety of causes

and through a variety of mechanisms, appears to be a common initiating pathway to fibrosis

in the lung.

3. Epithelial cell-to-fibroblast interactions: how injured epithelial cells

activate fibroblasts

Areas of AEC apoptosis and foci of α-smooth muscle actin (αSMA)-positive myofibroblasts

colocalize in the lungs of IPF patients [6], making it plausible for these two cell types to
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directly influence each other as fibrosis develops. The ability of injured epithelial cells to

affect local fibroblast behavior in a paracrine fashion has been demonstrated by in vitro co-

culture experiments. In these experiments, mechanical injury to epithelial cells induced the

expression of α-SMA and type I and III collagen in cocultured fibroblasts by stimulating the

activation of TGF-β in the extracellular matrix [19]. In addition to TGF-β, a growing list of

mediators has been found to affect the ability of injured epithelial cells activate fibroblasts,

including other cytokines/growth factors, such as connective tissue growth factor (CTGF);

morphogens, such as sonic hedgehog (Shh), and lipid mediators, such as prostaglandin E2

(PGE2) [20–24]. Many of these mediators, such as TGF-β, CTGF and Shh promote

fibroblast activation, whereas others such as PGE2 are suppressive (Figure 1). In the sections

that follow, TGF-β, CTGF, Shh and PGE2 are discussed as important examples of mediators

through which injured epithelial cells regulate fibroblast activation, but are certainly not a

complete list of the molecules involved in epithelial cell-to-fibroblast interactions in fibrosis.

3.1 Transforming growth factor-beta (TGF-β)

TGF-β is a member of the TGF-β super-family, which in addition to TGF-β includes related

cytokines such as bone morphogenic proteins, activins and inhibins [25]. Mammals have

three different forms of TGF-β (TGF-β1, -β2, and -β3), each of which are widely expressed

throughout the body [26]. All three isoforms initiate their cellular effects using the same

high-affinity cell surface receptors (TGF-β type I and type II receptors) [27–28]. But despite

their common receptor usage, the isoforms have differing biological functions, as indicated

by the differing phenotypes of mice deficient for each. TGF-β1 null mice develop severe

multi-focal inflammation and die within 3 weeks of birth [29–30], whereas TGF-β2 null

mice die in the perinatal period due to cyanotic heart disease and pulmonary insufficiency

[31], and TGF-β3 null mice die of craniofacial defects, most notably cleft palate [32]. Taken

together, these phenotypes indicate that TGF-β signaling is important for tissue growth and

morphogenesis during embryonic development, and for tissue homeostasis thereafter. When

tissue homeostasis is perturbed by injury, however, TGF-β acts as a major pro-fibrotic

cytokine, potently increasing fibroblast recruitment, proliferation, differentiation into

myofibroblasts and production of extracellular matrix [33]. Delivery of this cytokine by

itself to the rodent lung through intratracheal transfer of active TGF-β1 in an adenoviral

vector is sufficient to induce pulmonary myofibroblast accumulation and fibrosis [34–35].

Conversely, inhibiting TGF-β with neutralizing antibodies or a type I receptor inhibitor

suppresses experimental pulmonary fibrosis [36–37]. Importantly, increased endogenous

expression of TGF-β is not by itself sufficient to increase TGF-β function, because all three

TGF-β isoforms are generated and are present in tissues as inactive latent precursors. As

discussed below, epithelial cells have been shown to mediate the activation of latent TGF-β

in the lung, and consequently to play a critical role in the presentation of active TGF-β to

fibroblasts in the pathogenesis of pulmonary fibrosis.

3.1.1 Activation of TGF-β by epithelial cell integrins—The three TGF-β isoforms are

produced in the form of small latent complexes (SLCs), in which the bioactive TGF-β

peptides form non-covalent associations with a latency-associated peptide (LAP) [26].

Further, SLCs are usually secreted in association with latent TGF-β binding proteins

(LTBPs) as large latent complexes (LLCs). LLCs are sequestered in the extracellular matrix
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through the covalent binding of LTBPs to extracellular matrix proteins, such as fibrillin and

fibronectin [26]. For TGF-β to exert biological effects, it must be activated from these latent

complexes. The changes in TGF-β’s interactions with its LAP required for TGF-β activity

can be accomplished by either non-proteolytic or proteolytic mechanisms that result in

conformational changes or cleavage of the LAP respectively [26, 38–39]. The non-

proteolytic activation of TGF-β by epithelial cells, and the presentation of the active TGF-β

produced to fibroblasts, appears to be an epithelial cell-to-fibroblast interaction that is

central to the development of pulmonary fibrosis.

Epithelial cells induce activating conformational changes in latent TGF-β complexes

through their integrins. Integrins are cell adhesion molecules and transmembrane receptors

that link the cytoskeleton to the extracellular matrix, and in addition to adhesion, regulate

multiple fundamental cell processes including cell migration, proliferation and

differentiation [40–41]. Integrins are composed of α and β subunits (18 α and 8 β subunits)

that heterodimerize to form 24 αβ combinations [42]. Eight of these, including all five αν-

containing integrins (ανβ1, ανβ3, ανβ5, ανβ6 and ανβ8), are capable of binding ligands

through an arginine-glycine-aspartate (RGD) motif. The LAPs of both TGF-β1 and TGF-β3

have RGD sequences, and these two TGF-β isoforms can be activated in vitro by at least

four of the αν-containing integrins (ανβ3, ανβ5, ανβ6, ανβ8) [42].

Activation of latent TGF-β specifically by the ανβ6 integrin appears to centrally important

in the development of pulmonary fibrosis. Genetic deletion of the β6 subunit, or antibody

blockade of the ανβ6, suppress TGF-β signaling in the lung after injury, and protect mice

from the development of pulmonary fibrosis induced by bleomycin or radiation [43–45].

Lung expression of ανβ6 appears to be restricted to epithelial cells, underscoring the

fundamental involvement of epithelial cell-to-fibroblast interactions in the pro-fibrotic

behaviors induced in fibroblasts by TGF-β during the development of pulmonary fibrosis.

The ability of epithelial cell ανβ6 to mediate latent TGF-β activation is dependent on

epithelial cell cytoskeletal function. The cytoplasmic tail of the β6 subunit binds to the actin

cytoskeleton, and disruption of this binding by mutation of the β6 cytoplasmic domain, or

inhibition of actin polymerization with cytochalasin D, abolish epithelial cell activation of

latent TGF-β [43].

Consistent with the activation of this pathway in pulmonary fibrosis, markedly increased

lung epithelial ανβ6 expression is present in mouse lungs post-bleomycin challenge, and in

human lungs with usual interstitial pneumonia (UIP) pattern pulmonary fibrosis [45–46].

This increased ανβ6 expression may itself be driven by active TGF-β. TGF-β induces the

expression of the β6 subunit gene (itgb6) through the transcription factor Ets1 [47–48], and

this process is inhibited by neutralizing β6 antibody [49]. ανβ6 integrin-mediated activation

of latent TGF-β may therefore be amplified in pulmonary fibrosis by a feed-forward loop of

increased TGF-β activation and increased ανβ6 expression.

3.1.2 Pro-fibrotic effects of TGF-β on fibroblasts—Once freed from its latent

complexes by epithelial cell integrins, active TGF-β interacts with its receptors expressed by

fibroblasts to induce multiple pro-fibrotic behaviors. Active TGF-β first binds to TGF-β

receptor type II (TBRII), which phosphorylates and heterodimerizes with TGF-β receptor
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type I (TBRI) to form an active ligand–receptor complex. This TGF-β–TBRII/I complex

initiates pro-fibrotic responses in fibroblasts through both canonical and non-canonical

signaling pathways. In the canonical TGF-β signaling pathway, activated TBRI

phosphorylates effector Smad proteins (Smad2 and Smad3), which heterodimerize with

Smad4 to form Smad2/4 or Smad3/4 complexes [50]. These complexes translocate to the

nucleus, where they bind to Smad response elements located in the promoter regions of pro-

fibrotic genes such as type I collagen, fibronectin and αSMA [51]. Consistent with canonical

TGF-β signaling having pro-fibrotic effects, Smad3-deficient mice are protected from

bleomycin-induced lung fibrosis [52].

Both the c-Abelson tyrosine kinase (c-Abl) and mitogen-activated protein kinases (MAPKs)

have been implicated in non-canonical TGF-β signaling. c-Abl is directly activated by TGF-

β in fibroblasts, and signals through Egr-1 [53]. The small molecule imatinib mesylate

potently inhibits c-Abl, as well as the platelet-derived growth factor receptor tyrosine kinase.

Imatinib was demonstrated to prevent the development of bleomycin-induced lung fibrosis

in mice [54], but a recently completed randomized placebo-controlled clinical trial of

imatinib in IPF patients showed no benefit [55].

Mitogen-activated protein kinases (MAPKs) have also been shown to be involved in non-

canonical TGF-β signaling. The MAPK family of serine-threonine protein kinases include

extracellular signal–regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38,

which mediate a wide variety of cellular responses, including proliferation, differentiation,

and apoptosis [56–57]. In lung fibroblasts, TGF-β induction of αSMA and collagen

expression has been shown to be dependent on ERK and p38 MAPK [56–57], and p38

MAPK activation by TGF-β has been shown to contributes to fibroblast resistance to

apoptosis through the pro-survival phosphatidyl inositol 3-kinase (PI3K)/AKT pathway

[58].

3.2 Connective tissue growth factor (CTGF/CCN2)

CTGF is as a member of the CCN protein family, containing Cysteine rich protein 61

(cyr61/CCN1), CTGF/CCN2, and Nephroblastoma overexpressed gene (NOV/CCN3), as

well as three Wnt-1-induced proteins (WISPs), WISP-1/CCN4, WISP-2/CCN5 and WISP-3/

CCN6. These proteins are characterized by an extraordinarily high content of cysteine

residues, with the position of 38 of these cysteines being conserved almost entirely across

the six family members [59–60]. CCN family proteins including CTGF contain four

structural modules: an insulinlike growth factor binding protein module (module I), a von

Willebrand factor type C module (module II), a thrombospondin type I homology module

(module III) and a carboxy-terminal cysteine knot motif, heparin-binding module (module

IV). These modules each have specific binding partners, including insulin-like growth factor

for module I, TGF-β for module II, specific integrins (α4β1, α5β1, α6β1 and ανβ3) and

sulfated glycoconjugates for module III, and heparin sulfate-containing proteoglycans

(HSPGs) such as syndecan 4 and perlecan for module IV [59–61].

3.2.1 Synthesis of CTGF by epithelial cells—CTGF is principally regulated at the

level of transcription [62]. Its promoter region contains binding sites for multiple
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transcription factors, including Smads, AP-1, Sp1, Ets-1, hypoxia-inducible factor and

serum response factor [62–66]. Stimuli able induce CTGF transcription, dependent on the

cell type, include TGF-β, thrombin, lysophosphatidic acid, and mechanical stress [60–61].

Signaling pathways involved in the regulation of CTGF expression by these stimuli include

MAPK, protein kinase C, the small GTPase RhoA, and PI3K [61, 66–68]. Interestingly,

most of the stimuli able to induce CTGF induction have also been implicated in the

pathogenesis of pulmonary fibrosis [36, 69–72]. CTGF was originally discovered as a

‘PDGF-related mitogen’ in the medium of cultured human umbilical vein endothelial cells

[73], but has subsequently been shown to be expressed by other cell types, including

alveolar epithelial cells [21, 73]. In lung tissues obtained from IPF patients, CTGF mRNA

and protein are both increased, localizing predominantly to AECs and activated fibroblasts.

In contrast, CTGF-expressing AECs are sparse in the normal lung [21].

3.2.2 Pro-fibrotic effects of CTGF on fibroblasts—CTGF regulates multiple

fibroblast behaviors that contribute to fibrosis, including fibroblast adhesion, migration,

proliferation, differentiation, matrix production and apoptosis [74]. CTGF can induce these

behaviors either by binding to fibroblast cell surface molecules directly, or by acting as an

“adapter” molecule that brings other mediators into contact with their receptors on

fibroblasts [74]. CTGF can directly affect fibroblast behaviors by binding to integrins,

HSPGs and the low density lipoprotein receptor-related protein/p2-macroglobulin receptor

(LRP) [60, 75–77]. For example, CTGF binding to fibroblast HSPGs induces fibroblast

adhesion and proliferation [77–78]. Specific CTGF binding to the insulin-like growth factor-

II (IGF-II)/mannose 6-phosphate (M6P) receptor expressed on lung fibroblasts has also

recently been shown to induce fibroblast proliferation [79]. CTGF has also been shown to

directly stimulate lung fibroblast expression of multiple proteins known to be elevated in

IPF, including type I collagen, the cytoskeletal proteins vinculin, moesin and ezrin, and IQ

motif containing GTPase activating protein 1 (IQGAP1), a scaffold protein that regulates

cell migration and is elevated in lung fibroblasts isolated from scleroderma patients with

pulmonary fibrosis [80].

In its role as an adapter molecule [74], the cytokines and growth factors that CTGF can

“present” to their specific receptors on fibroblasts include TGF-β [81], epidermal growth

factor, and insulin-like growth factor-II [82]. This adapter function appears to be required

for at least some of the pro-fibrotic effects of TGF-β on fibroblasts. Although CTGF-

deficient fibroblasts show intact TGF-β-induced Smad signaling, the ability of TGF-β to

induce the expression of multiple pro-fibrotic mRNAs and proteins, including αSMA and

type I collagen, is impaired in these cells [83].

Pro-fibrotic effects of CTGF have also been demonstrated in vivo. Whereas BALB/c mice

are resistant to bleomycin-induced pulmonary fibrosis [84], transient overexpression of

CTGF in the lungs of these “fibrosis-resistant” mice by adenoviral gene transfer CTGF

enabled bleomycin to induce pulmonary myofibroblast accumulation and fibrosis similar in

extent to that produced in “fibrosis-prone” C57Bl/6 mice [85]. The pro-fibrotic effects of

CTGF that is specifically expressed by pulmonary epithelial cells were demonstrated in a

transgenic mouse model with doxycycline-inducible overexpression of CTGF in respiratory

epithelial cells directed by the clara cell secretory protein. Overexpression of CTGF from
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postnatal days 1–14 resulted in increased αSMA expression, collagen deposition and

dramatic thickening in the peribronchial/peribronchiolar and perivascular regions of the

lungs [86]. Cooperation between the pro-fibrotic effects of TGF-β and CTGF has also been

noted in vivo. Intraperitoneal co-administration of CTGF and TGF-β2 induced multiorgan

fibrosis in the lungs, liver and kidneys, whereas administration of either cytokine alone

failed to elicit a fibrotic response [87]. Conversely, anti-CTGF antibodies have been shown

to mitigate the increases in αSMA and type I collagen protein expression, as well as total

collagen content, induced in lung in the bleomycin model of pulmonary fibrosis [88–89].

3.3 Sonic hedgehog (Shh)

Some of the pathways that regulate embryological development but are subsequently

quiescent appear to re-emerge during repair responses to tissue injury [90]. Consistent with

re-activation of developmental pathways in response to injury, microarray analyses of IPF

gene expression revealed enriched expression of genes associated with lung development,

including Patched-1, a receptor in the hedgehog pathway [91]. The hedgehog (Hh) family in

mammals consists of sonic hedgehog (Shh), desert hedgehog (Dhh), and indian hedgehog

(Ihh), which play critical roles in embryonic development, tissue patterning, and

organogenesis [92–93]. Of these three mammalian Hh homologues, Shh has been shown to

be responsible for tissue patterning the lung, regulating branching morphogenesis [94–96].

During lung development, Shh is produced in the distal epithelium and stimulates

mesenchymal cell proliferation. Shh overexpression in mice pre-natally results in lethally

excessive accumulation of lung interstitial mesenchyme [96], emphasizing that the Shh

pathway mediates important epithelial cell-to-mesenchymal cell interactions during

embryological lung development.

3.3.1 Epithelial cell synthesis of Shh—In both lung development and pulmonary

fibrosis, epithelial cells appear to be the major source of Shh. During embryological

development, low levels of Shh mRNA are present throughout the epithelium, and high

levels are present at the tips of the terminal buds that ultimately form alveoli [23, 97].

Several studies of lung tissues obtained from IPF patients have demonstrated high Shh

expression in reactive AECs, as well as in the epithelial cells that line honeycomb cysts,

compared with little or no Shh expression in normal adult lung tissues [98–100]. In contrast,

another recent study found that most of the components of the Shh system were expressed in

normal adult alveolar epithelium, but that this pathway was activated specifically in IPF

tissue [101]. Of potential relevance to the re-expression or activation of the Shh pathway in

pulmonary fibrosis, both TGF-β and hydrogen peroxise (H2O2) have been reported to

modulate Shh production by AECs [102– 103]. Although short-term incubation with TGF-β

has been noted to suppress the secretion of Shh protein without significantly changing Shh

mRNA expression [102], chronic TGF-β exposure dramatically increases expression of Shh

both at the mRNA and protein levels [103]. In contrast, H2O2 enhances the release of Shh

protein from epithelial cells without changing Shh mRNA expression, suggesting that H2O2

induces release of pre-formed Shh from intracellular stores [102].

3.3.2 Pro-fibrotic effects of Shh on fibroblasts—Shh signaling is transduced by 2

transmembrane proteins, patched-1 (PTCH-1) and smoothened (SMO). PTCH-1 is an Shh-
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binding receptor, which in the absence of Shh constitutively blocks SMO activity. Shh

binding to PTCH-1 activates SMO, and activated SMO directs the biochemical processing

and subsequent nuclear translocation of the transcription factors glioma-associated

oncogene homolog (GLI)1, GLI2, and GLI3 Target genes regulated by these transcription

factors include PTCH-1 itself, as well as regulators of the cell cycle, enabling the Shh

pathway to regulate cell proliferation [104–106]. One recent immunohistochemical analysis

of Shh pathway components in IPF reported fibroblast expression of PTCH-1, SMO, and

GLI1 in the lungs of IPF patients, whereas no staining was detected in normal lungs [100].

PTCH-1 mRNA was also upregulated in primary lung fibroblasts grown from IPF versus

normal lung tissue, and in fibroblasts assessed by laser capture microdissection in IPF lung

tissues versus lung tissues from patients with cryptogenic organizing pneumonia [100]. In

vitro, recombinant SHH has recently been shown to increase fibroblast proliferation and

migration, to increase fibroblast expression of collagen and fibronectin but not αSMA, and

to protect fibroblasts from apoptosis [100]. Additionally, TGF-β1’s ability to drive and

maintain myofibroblast differentiation was recently demonstrated to require SMO/GLI

pathway activity [101].

3.4 Prostaglandin E2 (PGE2)

The paucity of fibroblasts in normal alveolar septae compared with the greater abundance of

fibroblasts in the connective tissue surrounding pulmonary bronchi, arteries, and veins led

some investigators to hypothesize that under homeostatic conditions, alveolar epithelial cells

suppress fibroblast accumulation. Media conditioned by AEC-fibroblast co-culture was in

fact demonstrated to inhibit fibroblast proliferation, and this inhibition in subsequent studies

was determined to be attributable to PGE2 synthesized by AECs [24, 107]. In contrast to the

pro-fibrotic epithelial cell-to-fibroblast interactions mediated by TGF-β, CTGF and Shh,

PGE2 therefore carries anti-fibrotic signals from epithelial cells to fibroblasts.

3.4.1 Epithelial cell synthesis of PGE2—AECs have a large capacity for synthesizing

PGE2, the most abundant arachidonic acid metabolite that these cells produce. Following the

liberation of arachidonic acid from membrane phospholipids, the synthesis of prostanoids,

including prostaglandins, thromboxane and prostacyclin, is initiated by two cyclooxygenase

(COX) enzymes, COX-1 and COX-2. COX-1 is constitutively expressed in most cells and

tissues, whereas COX-2 is expressed when induced by inflammatory or mitogenic stimuli

[108]. The pulmonary epithelium represents an exception to this usual pattern, in that AECs

constitutively express both COX isoforms [109]. Experiments using COX-2-deficient AECs

demonstrated that the PGE2 synthetic capacity of these cells is predominantly COX-2-

dependent [24].

PGE2 synthesis is reduced in IPF, limiting the anti-fibrotic epithelial cell-to-fibroblast

interactions that are mediated by PGE2. PGE2 levels in the epithelial lining fluid of

individuals with IPF were found to be 50% lower than those in normal subjects [110]. AEC

production of PGE2 may be suppressed by increased levels of plasminogen activation

inhibitor-1 (PAI-1) and CC chemokine ligand 2 (CCL2) in IPF lungs. Plasmin has recently

been shown to upregulate AEC PGE2 expression [111]. Plasmin upregulates AEC COX-2

expression, potentially through its ability to proteolytically activate and release hepatocyte
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growth factor (HGF) from these cells and/or the extracellular matrix. In bronchial epithelial

cells, HGF has been shown to increases COX-2 gene expression through an Akt-, MAPK-,

and β-catenin-dependent pathway [112]. PAI-1, which is markedly upregulated in fibrotic

lungs [113], prevents the generation of plasmin by inhibiting urokinase-type plasminogen

activator (uPA). By reducing the generation of plasmin, increased levels of PAI-1 could

therefore reduce AEC PGE2 synthesis in IPF. In support of this hypothesis, PAI-1-deficient

mice demonstrate increased lung production of PGE2, and are protected from bleomycin-

induced pulmonary fibrosis [111]. This protection was abrogated by a selective inhibitor of

the HGF receptor c-Met, which reduced lung COX-2 and PGE2 levels. In contrast to its

upregulation by plasmin, AEC PGE2 synthesis is downregulated by CCL2. CCL2 is present

in increased amounts in the bronchoalveolar lavage fluid of IPF patients [114], and may be

induced in the AECs themselves by thrombin activation of the major thrombin receptor,

proteinase-activated receptor-1 (PAR1) [115]. CCL2 and PAR1 are co-expressed and co-

upregulated on the activated epithelium in fibrotic areas in IPF, and thrombin potently

induces CCL2 expression in lung epithelial cells in vitro in a PAR1-dependent manner.

3.4.2 Anti-fibrotic effects of PGE2 on fibroblasts—PGE2 has been demonstrated to

have multiple activities on fibroblasts that could suppress fibrosis, including inhibition of

fibroblast migration [116], proliferation [117–118], collagen synthesis [119], and

myofibroblast differentiation [120]. Of the 4 E prostanoid (EP) receptors, designated EP1,

EP2, EP3, and EP4 [120], these inhibitory effects of PGE2 on fibroblasts are mediated by

EP2 [120–122]. Lung fibroblast EP2 expression, however, is downregulated in pulmonary

fibrosis. Diminished EP2 levels in fibroblasts isolated from mouse lungs following

bleomycin challenge reduced the ability of PGE2 to inhibit their proliferation and collagen

secretion [121]. Fibroblasts isolated from patients with IPF also exhibit decreased EP2

expression, and are similarly refractory to the anti-fibrotic effects of PGE2 [123]. The

diminished EP2 expression levels in fibroblasts from fibrotic lungs are maintained by

hypermethylation of the PGE receptor 2 gene (PTGER2) promoter [124]. Treatment of these

fibroblasts with DNA methylation inhibitors or DNA methyltransferase-specific siRNA

decreased PTGER2 methylation, increased EP2 mRNA and protein expression, and restored

PGE2 responsiveness [124]. The anti-fibrotic epithelial cell-to-fibroblast interactions

mediated by PGE2 therefore appear to be limited in IPF by decreased fibroblast EP2

expression as well as by decreased AEC PGE2 synthesis. Whereas epithelial-to-fibroblast

interactions mediated by TGF-β, CTGF and Shh are attractive targets for new IPF therapies

to inhibit, restoring PGE2-mediated interactions, by increasing AEC PGE2 production and

fibroblast EP2 expression, represents an attractive therapeutic strategy for pulmonary

fibrosis.

4. Fibroblast-to-epithelial cell interactions: how activated fibroblasts injure

epithelial cells

As noted above, recurrent and/or non-resolving injury to the lung epithelium now appears to

be the “prime mover” of pulmonary fibrosis. Increased numbers of apoptotic cells have been

observed in the alveolar and bronchial epithelia of IPF patients [4–5], and the specific

induction of epithelial injury and/or apoptosis has been shown to be sufficient to cause
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pulmonary fibrosis in several mouse models [9–12]. Although the initiating causes of

epithelial injury in IPF remain enigmatic, activated fibroblasts appear to be able to amplify

the epithelial apoptosis that results. As also noted above, the co-localization of αSMA-

positive myofibroblast foci with areas of AEC apoptosis in IPF lungs [6] makes the

paracrine interaction of these two cell types plausible in the development of fibrosis in vivo.

The ability of activated fibroblasts to affect epithelial cells in a paracrine fashion has been

demonstrated in vitro. In these experiments, media conditioned by fibroblasts isolated from

the lungs of IPF patients markedly induced apoptosis of AECs in culture, whereas media

conditioned by fibroblasts from control subjects did not [125]. Several mediators have been

found to be responsible for this ability of activated fibroblasts to induce epithelial cell

apoptosis, including angiotensin II and hydrogen peroxide (H2O2) (Figure 1).

4.1 Angiotensin II

The renin-angiotensin system consists of renin, angiotensinogen (AGT), angiotensin I (ANG

I), angiotensin converting enzyme (ACE) and angiotensin II (ANG II). The octapeptide

ANG II is the primary effector molecule of this pathway, and is formed by enzymatic

cleavage of AGT to ANG I by the aspartyl protease renin, followed by the conversion of

ANG I to ANG II by ACE. Although best know for its role in blood pressure regulation due

to its ability to mediate vasoconstriction, ANG II has been implicated in the pathogenesis of

fibrotic diseases affecting multiple organs, including the lung [126].

4.1.1 Fibroblast synthesis of ANG II—ANG II was determined to be the soluble factor

responsible for inducing AEC apoptosis in media conditioned by IPF lung fibroblasts [127].

Lung tissue from IPF patients and bleomycin-challenged mice demonstrate upregulation of

AGT and ANG peptides specifically in myofibroblasts [128–129]. In vitro, human lung

fibroblasts have been demonstrated to upregulate AGT expression in response to TGF-β,

through a mechanism involving activation of AGT transcription by hypoxia-inducible

factor-1α and Jun D [130]. Myofibroblasts, especially under hypoxic conditions, are

consequently thought to be an important source of ANG II production in the fibrosing lung.

4.1.2 Pro-fibrotic effects of angiotensin II on alveolar epithelial cells—The

biological effects of ANG II are mediated through its two specific G protein-coupled seven

transmembrane domain receptors, ANG II type 1 receptor (AT1R) and ANG II type 2

receptor (AT2R) [126]. Although AECs express both AT1R and AT2R, experiments with

AT1R- and AT2R-selective antagonists indicate that AT1R mediates ANG II-induced AEC

apoptosis [131–132]. An AT1R-selective antagonist was able to prevent mouse AEC

apoptosis and lung fibrosis in the bleomycin model, as was an antisense oligonucleotide

targeting AGT mRNA and an ACE inhibitor [128, 133–134]. AT1R-deficient mice similarly

demonstrated reduced AEC apoptosis and collagen accumulation in the bleomycin model

[134]. Further implicating the renin-angiotensin system in IPF, a single-nucleotide

polymorphism (SNP) in the promoter region of the AGT gene that increases AGT

transcription has been associated with more rapid disease progression [135].
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4.2 Reactive Oxygen Species (ROS)

Experiments co-culturing small airway epithelial cells with TGF-β-stimulated fibroblasts

isolated from IPF patients identified hydrogen peroxide (H2O2) as another diffusible

paracrine signal produced by activated myofibroblasts that is able to induce epithelial cell

death [136]. Production of ROS, such as H2O2, superoxide anions (· O2-) and hydroxyl

radicals (·OH), in excess of the capacity of cells and tissues to detoxify or scavenge them is

referred to as “oxidative stress”, and has been implicated in fibrotic diseases of multiple

organs, including the lung [137]. Multiple lines of evidence indicate the presence of

oxidative stress in IPF lungs. H2O2 concentrations are significantly higher in the exhaled

breath condensates of IPF patients than control subjects, and correlate with disease severity

[138]. Proteins in the bronchoalveolar lavage fluid of IPF patients demonstrate elevated

levels of oxidative changes, such as oxidation of methionine residues to methionine

sulfoxide, and introduction of carbonyl groups into other amino acid side-chains [139–140].

Additionally, epithelial cells in the lungs of IPF patients demonstrate the presence of ROS-

induced DNA modifications [141].

4.2.1 Fibroblast synthesis of ROS—ROS are formed by the univalent reduction of

oxygen, generally mediated by several ROS-producing enzymes, such as mitochondrial

respiratory oxidases, xanthine oxidase, myeloperoxidase and NADPH oxidases [137, 142].

NADPH oxidases comprise a seven member family, including NOX1, 2, 3, 4 and 5, Duox1

and 2. Both NOX1 and NOX2 generate superoxide anions, whereas NOX4 produces H2O2

[143]. Recent evidence has implicated NOX4 expressed by fibroblasts in the development of

lung fibrosis. TGF-β induces expression of this NOX isoform in IPF lung fibroblasts in

vitro. Further, the expression αSMA and extracellular matrix proteins induced in lung

fibroblast by TGF-β, as well as the proliferation of these cells induced by serum, require

NOX4-dependent generation of H2O2 [144]. In IPF lung sections, H2O2 localizes

specifically to αSMA-expressing myofibroblasts [136], and NOX4 similarly localizes to

myofibroblastic foci [144]. A critically important role for fibroblast NOX4, and the H2O2 it

produces, in the pathogenesis of pulmonary fibrosis was demonstrated in experiments in

which siRNA-mediated knockdown of NOX4 expression suppressed fibrosis in vivo in both

bleomycin- and FITC-induced mouse models of pulmonary fibrosis [144].

4.2.2 Pro-fibrotic effects of ROS on alveolar epithelial cells—In cultures of

confluent primary distal lung epithelial cells, exogenous H2O2 inhibits monolayer closure

after scratch wounding by inducing epithelial cell apoptosis [145]. As noted above, co-

culture experiments demonstrated that endogenous generation of H2O2 by TGF-β-stimulated

IPF lung fibroblasts induces apoptosis of small airway epithelial cells in a paracrine manner

[136]. In the bleomycin mouse model of pulmonary fibrosis, alveolar epithelial apoptosis

induced in vivo by bleomycin injury was demonstrated to be NOX4-dependent. The

dramatic increase in apoptotic alveolar epithelial cells observed in wild type mice at early

time points post-bleomycin challenge was abrogated in NOX4-deficient mice, and the

development of fibrosis in these mice was markedly reduced at later time points [146]. A

pathogenic role for ROS in pulmonary fibrosis in vivo studies has been further underscored

by the amelioration of bleomycin-induced fibrosis in mice administered the antioxidant
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superoxide dismutase, and the exacerbation of bleomycin-induced pulmonary fibrosis in

mice genetically deficient for this enzyme [147–148].

5. Bidirectional epithelial cell-fibroblast interactions in pulmonary fibrosis

Many important mediators of pulmonary fibrosis may be produced by both epithelial cells

and fibroblasts, and may exert important effects on both cell types as well. Several of the

signaling molecules discussed above carry signals both from epithelial cells to fibroblasts

and from fibroblasts to epithelial cells, thus mediating bidirectional epithelial cell-fibroblast

interactions in pulmonary fibrosis.

5.1 TGF-β

As described above, TGF-β is activated during the development of pulmonary fibrosis by

epithelial cell integrins, and induces multiple pro-fibrotic activities in fibroblasts, including

their recruitment, proliferation, myofibroblast differentiation and extracellular matrix

production [33]. In addition to mediating these pro-fibrotic effects on fibroblasts, TGF-β

delivers pro-fibrotic signals to the alveolar epithelium. In contrast to its induction of

resistance to apoptosis in lung fibroblasts, TGF-β promotes apoptosis of lung epithelial cells

in vitro [149–150]. A pathogenic role for TGF-β-induced epithelial cell apoptosis is

suggested by observations of mice with lung-specific overexpression of active TGF-β. In

these mice, a transient wave of epithelial apoptosis precedes the development of lung

fibrosis, and blocking the TGF-β-induced epithelial apoptosis by administration of a general

or a 3/7- selective caspase inhibitor markedly ameliorated the subsequent fibrosis. A

pathogenic role for TGF-β-induced epithelial cell apoptosis is further suggested by the

protection from bleomycin-induced fibrosis observed in mice with epithelial cell-specific

deletion of TGF-β type II receptor [151]. Lung fibroblasts produce TGF-β latent complexes,

and have been shown to be able to activate these complexes themselves by the ανβ5

integrins that they express [152]. TGF-β therefore could very plausibly mediate pro-fibrotic

fibroblast-to-epithelial cells interactions, in which TGF-β produced and activated by lung

fibroblasts mediates epithelial cell apoptosis. TGF-β thus could be an important mediator of

bidirectional interactions between epithelial cells and fibroblasts in pulmonary fibrosis.

5.2 ANG II

As noted above, ANG II produced by myofibroblasts induces apoptosis in alveolar epithelial

cells in a paracrine fashion. In addition to mediating this pro-fibrotic effect of fibroblasts on

epithelial cells, ANG II may also carry pro-fibrotic signals from epithelial cells to

fibroblasts. Apoptotic AECs have been shown to produce AGT and convert it to ANG II

both in vitro and in the lung [129, 153]. Lung fibroblasts express AT1R and AT2R, and

ANG II-AT1R signaling induces multiple pro-fibrotic activities in cells, including their

proliferation, migration, and extracellular matrix synthesis [129]. ANG II therefore could

also mediate pro-fibrotic effects of epithelial cells on fibroblasts, in which case it would also

be an important mediator of bidirectional interactions between these two cell types in

pulmonary fibrosis.
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6. Other mediators of epithelial cell-fibroblast interactions in pulmonary

fibrosis

The signaling molecules discussed in this review are meant to serve as important examples,

rather than as a complete list, of mediators that direct epithelial cell-fibroblast interactions in

lung fibrosis. Multiple other pathways that can contribute to the pro-fibrotic interactions of

these two cell types have been described. Additional examples of important such signaling

molecules include members of the WNT pathway and of the found in inflammatory zone

(FIZZ) / resistin-like molecule (RELM) family. The WNT pathway was recently

demonstrated to deliver pro-fibrotic signals from epithelial cells to fibroblasts in the

development of lung fibrosis [154]. Expression of canonical (β-catenin-dependent) WNT

signaling components and the WNT pathway target molecule, WNT-1-inducible signaling

protein-1 (WISP1, another member of the CCN family of matricellular proteins), are

strongly upregulated in type II AECs in both mice challenged with bleomycin and humans

with IPF [154]. Alveolar epithelial cell WISP1 can exert pro-fibrotic effects on lung

fibroblasts: WISP1 stimulates fibroblast extracellular matrix synthesis and myofibroblast

differentiation in vitro, and its neutralization suppresses bleomycin-induced lung fibrosis in

mice in vivo [154]. FIZZ/RELM family members, including FIZZ1/RELM-α and FIZZ2/

RELM-β, similarly have been shown to be expressed by pulmonary epithelial cells during

the development of fibrosis, and to exert pro-fibrotic effects on fibroblasts. FIZZ1 is

strongly induced in mouse AECs following bleomycin challenge [155], and induces

fibroblast extracellular matrix production, myofibroblast differentiation, and resistance to

apoptosis [155–157]. FIZZ2 can also be induced in lung epithelial cells, is highly expressed

in the lungs of bleomycin-challenged mice and IPF patients, and stimulates fibroblast type I

collagen synthesis and myofibroblast differentiation; genetic deletion of FIZZ2 significantly

attenuates pulmonary fibrosis in the bleomycin mouse model [158]. We expect that the

number of pathways found to contribute to the pro-fibrotic interactions between epithelial

cells and fibroblasts will continue to grow as investigators continue to unravel the complex

pathogenesis of pulmonary fibrosis.

7. Epithelial cell-fibroblast interaction as a common theme in the

development of organ fibrosis

Epithelial cell-fibroblast (and mesothelial cell-fibroblast) interactions may importantly

contribute to the pathogenesis of fibrotic diseases in multiple organs. These interactions may

be particularly relevant in organs in which fibroblasts and epithelial cells (or mesothelial

cells) normally reside in close proximity, such as the lung, kidney, liver and peritoneum.

Progressive and potentially lethal renal fibrosis occurs in diverse kidney diseases. Renal

fibrosis most often involves the accumulation of fibroblasts and extracellular matrix in the

tubular interstitium, and atrophy of the tubular epithelium. The degree of renal fibrosis

correlates well with the prognosis of the renal diseases it is found in, independent of their

etiologies [159]. Accumulating evidence indicates that injured renal tubular epithelial cells

activate and/or upregulate mediators such as TGF-β and CTGF that deliver pro-fibrotic

signals to neighboring fibroblasts [160]. Apoptosis of renal tubular epithelial cells
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contributes to the progression of renal fibrosis [161], and both ANG II and ROS have been

shown to induce apoptosis in these epithelial cells [162–164], as they do in alveolar

epithelial cells in pulmonary fibrosis.

Epithelial cell-fibroblast interactions analogous to those occurring in IPF also appear to be

important in the pathogenesis of hepatic and biliary fibrosis [165–167]. Hepatocyte injury

and death leading to hepatic stellate cell activation in viral or toxin-induced hepatic fibrosis

is analogous in many ways to AEC injury activating myofibroblasts in pulmonary fibrosis.

In the case of biliary fibrosis, it is injury to cholangiocytes that leads to the activation and/or

upregulation of mediators such TGF-β and CTGF that promote the activation and

recruitment of hepatic stellate cells and portal fibroblasts [165].Moreover, ανβ6 integrin

expression is upregulated by cholangiocytes in mouse models of biliary fibrosis, and

contributes to the ability of these cells to activate latent TGF-β [168]. Biliary fibrosis

produced in mice in vivo by bile duct ligation was significantly reduced in β6 integrin-

deficient mice, and by administration of a blocking antibody to ανβ6 [169].

Peritoneal fibrosis is an important problem following acute peritoneal injury, as in the

development of adhesions post-abdominal surgery, and following chronic peritoneal injury,

as in the development of peritoneal fibrosis post-chronic peritoneal dialysis [170–171]. In

the normal peritoneum, fibroblasts reside in a thin interstitial layer adjacent to the

mesothelial cell monolayer. In the case of peritoneal dialysis-induced fibrosis, dialysis

solutions that are hyperosmotic, hyperglycemic and/or acidic chronically injure the

mesothelial cell layer, causing these cells to elaborate pro-fibrotic mediators including

CTGF that drives peritoneal fibroblast proliferation and matrix deposition, resulting in

progressive fibrotic expansion of the peritoneal interstitium [170, 172–173].

Concluding remarks

IPF remains a devastating disease that as yet is without effective pharmacological therapy,

despite intensive scientific and clinical investigation. Although the stimuli that initiate

epithelial injury in IPF have yet to be identified, substantial evidence supports the

hypothesis that progression of IPF is driven by a series of pro-fibrotic epithelial cell-

fibroblast interactions. In a “pas de deux”, or “folie à deux”, of epithelial cells and

fibroblasts, interactions between these two cell types create a vicious cycle in which

repetitive cycles of AEC injury provoke the activation of fibroblasts, and these activated

fibroblasts in turn induce further AEC injury. The mediators of these interactions represent

attractive therapeutic targets for treatment of pulmonary fibrosis, as well as other organs

such as the kidney and liver where epithelial cell-fibroblast interactions appear to be central

to the pathogenesis of fibrosis. Several of the mediators of these interactions discussed in

this review are already being targeted by drugs in various stages of evaluation for IPF and/or

other fibrotic diseases: TGF-β signaling is the target of the anti-ανβ6 integrin antibody

STX-100 (Stromedix/Biogen Idec), the anti-TGF-β antibodies GC-1008 (Genzyme) and

LY2382770 (Lilly), and one of the targets of pirfenidone (InterMune); CTGF is the target of

the anti-CTGF antibody FG-3019 (FibroGen); ROS are the target of N-acetylcysteine given

to augment lung anti-oxidant defense; and Ang II signaling is the target of the angiotensin II

receptor antagonist losartan [174–175]. An even greater understanding of epithelial cell-
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fibroblast interactions in fibrosis will facilitate the development of additional strategies to

therapeutically target the signaling molecules that mediate these interactions. Given the

complexities of these interactions, with multiple mediators involved and at least some of

which carrying bi-directional signals to and from each cell type, a better mapping of the

steps that epithelial cells and fibroblasts take in their “fibrosis of two” will increase the

likelihood of success of the mounting efforts to develop effective new anti-fibrotic therapies.
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Highlights

1. Interactions between alveolar epithelial cells and fibroblasts are central to IPF.

2. Injured epithelial cells regulate fibroblasts through TGF-β, CTGF, Shh and

PGE2.

3. Activated fibroblasts injure epithelial cells by producing angiotensin II and

ROS.

4. Epithelial cell-fibroblast interaction may be a common theme in organ fibrosis.
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Figure 1. Epithelial-fibroblast interactions drive the progression of idiopathic pulmonary
fibrosis
Environmental stimuli initially injure alveolar epithelial cells (AECs), inducing their

apoptosis and their production and/or activation of pro-fibrotic mediators, including TGF-β,

CTGF and Shh. These AEC-derived mediators direct fibroblast migration, proliferation,

activation and myofibroblast differentiation, resulting in the accumulation myofibroblasts

and extracellular matrix in the lung. Myofibroblasts in turn secrete mediators that amplify

AEC injury and apoptosis, creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast

interactions that drives the progression of IPF. PGE2 normally mediates anti-fibrotic

interactions between epithelial cells and fibroblasts, but its production by AECs is reduced

in IPF, as is fibroblast PGE2-responsiveness. Green arrows indicate pro-fibrotic epithelial

cell-fibroblast interactions; red arrows indicate anti-fibrotic interactions. TGF-β,

transforming growth factor-β; CTGF, connective tissue growth factor; Shh, sonic hedgehog;

ANG II, angiotensin II; H2O2, hydrogen peroxide; PGE2, prostaglandin E2.
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