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Abstract

Argonaute proteins are central players in small RNA-mediated silencing mechanisms such as

RNA interference (RNAi), microRNA repression and piRNA-mediated transposon silencing. In

eukaryotes, Argonautes bind small RNAs that guide them to RNA targets in order to regulate gene

expression and repress invasive genomic elements. Although Argonaute proteins are conserved in

all life forms from bacteria to eukaryotes, until now studies have focused on the biological

functions of eukaryotic Argonautes. Here we highlight two recent studies that discover the

functions of prokaryotic Argonautes in defence against exogenous DNA.

Argonaute family proteins (Ago) are found in all domains of life. However, their functions

have mainly been studied in eukaryotic models, where Ago proteins constitute the core of

several silencing mechanisms. In these pathways Argonautes use tightly bound small RNA

guides to identify target sequences via sequence complementarity [1]. Upon recognition of a

target such as viral RNA, the Ago protein induces target cleavage by its endonuclease Piwi

domain (the so-called ‘slicing’ activity). However, the endonuclease activity of Ago is not

required for all small RNA-dependent mechanisms. For example, in the micro RNA

(miRNA) pathway partial base-complementarity of the miRNA and the target is typically

sufficient to induce molecular events that lead to silencing without the need for

endonucleolytic target cleavage [2].

Although many Argonautes repress their targets on a post-transcriptional level, certain

members in fungi, plants and Metazoa use small RNA guides to repress transcription at

target genomic loci [3]. In the pathways studied so far, Ago proteins seem to recognize

nascent RNA transcripts of target loci and recruit factors required for chromatin silencing

[4]. In addition, even more exotic pathways were described in the macronucleus of ciliates

where Ago proteins utilize small RNAs to mark certain genomic regions for DNA

elimination [3]. Even in this case, however, no direct association of Ago protein with DNA
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has been observed and it was proposed that Ago recognizes nascent RNA targets prior to

affecting chromatin modifications.

Argonaute proteins are also present in many bacterial and archaeal species: bioinformatic

analysis of the phylogenetic distribution of Argonautes among bacteria and archaea reveals

that about 20% of sequenced strains contain at least one Ago gene [5]. Several structural

studies of bacterial and archaeal Ago helped to elucidate the mechanism of small RNA

silencing in eukaryotes [6, 7]. Indeed, the insight that Argonaute provides enzymatic

endonuclease activity to RNA induced silencing complexes (RISC) was inferred by

structures of Agos from the archaeon Pyrococcus furiosus and the bacterium Aquifex

aeolicus [6, 7]. Interestingly, these studies revealed that several prokaryotic Agos, unlike

their eukaryotic homologs, have the remarkable ability to bind single-stranded DNA guides

in vitro and are capable of utilizing them for cleavage of RNA targets. In addition, the

presence of an Ago gene correlated with other known genome protection systems,

suggesting that prokaryotic Agos, like some of their eukaryotic homologs, might protect

cells from invasive nucleic acids [5]. However, until recently neither the in vivo function nor

the nucleic acid partners of bacterial or archaeal Ago proteins were known.

Recently, two studies addressed the biological functions of Argonautes in the gram-negative

bacteria Rhodobacter sphaeroides (RsAgo) [8] and Thermus thermophilus (TtAgo) [9]. Both

studies revealed that Agos protect the genome against foreign and possibly invasive

genomic elements, such as plasmids. In striking contrast to eukaryotic Agos, the Agos from

both bacterial species directly target DNA molecules. Indeed, it was shown that in the host

species, TtAgo decreases transformation efficiency and plasmid yield, indicative of its

function in suppressing foreign DNA. However, there are important differences between

their repressive roles in R. sphaeroides and T. thermophilus: whereas RsAgo uses ~18 nt

small RNAs that are likely derived from cellular transcripts as guide molecules, TtAgo

associates with ~15 nt small DNAs. In both species, guide molecules show a strong

nucleotide bias at the 5’ position: uridine for RsAgo-associated small RNA and

deoxycytidine for TtAgo-associated small DNA. This finding suggests that the Ago 5’

binding pocket discriminates its guide by the nature of the first nucleotide.

The Argonautes from the two species are also different in their abilities to cleave DNA

targets. TtAgo has endonuclease activity that it uses to cleave DNA targets in the middle of

the region targeted by the guide DNA [9]. By contrast, the residues that are critical for

endonuclease activity are not conserved in RsAgo [8], similar to the majority of other

prokaryotic Ago proteins [5]. Accordingly, it was found that target recognition by RsAgo

results in cleavage immediately outside of the region targeted by the guide sequence, which

implies that cleavage activity is likely mediated by other nucleases and not Ago itself.

Despite this difference in endonucleoytic activities, the Agos in both species are (directly or

indirectly) able to degrade target plasmid DNA. Furthermore, it was proposed that the

binding of small RNA-loaded RsAgo to DNA targets might induce transcriptional inhibition

without DNA cleavage. Indeed, in its host species RsAgo represses gene expression from

exogenous plasmids without apparent degradation of the DNA target.
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Although the pathways that involve prokaryotic Argonautes seem to be simpler than

eukaryotic analogues, the principles that allow them to recognize foreign DNAs are still not

clear. In both studies discussed here, Ago proteins recognize properties inherent to invading

DNAs and silence them without using small RNA or DNA guides encoded in separate

genomic loci. This property is strikingly different from CRISPR-Cas, which is another

prokaryotic genomic ‘immune system’ where effector proteins associate with host-encoded

RNA guides to determine DNA cleavage loci [10]. Eukaryotic Argonautes have surprised

researchers for many years and, through the elucidation of their biological functions and

nucleic acid partners, prokaryotic Agos might surprise researchers in the years to come.
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Figure 1. Models of RsAgo and TtAgo functions
(A) RsAgo associates with ~18 nt small RNAs with a strong bias towards uridine at the first

position, and ~24 nt small DNAs that are complementary to the small RNAs but contain ~3

nt overhangs on both sides. Small RNAs are derived from mRNAs (1-3) or their degraded

products, however structured RNAs (4) are inefficient in small RNA production. RsAgo

associated with cognate small RNA recognizes foreign DNA targets such as plasmids and

induces excision of ~24 nt small DNA. Binding of RsAgo to DNA plasmids might also

repress transcription by RNA polymerase. Following excision, small DNAs form duplexes

with small RNAs associated with RsAgo. (B) TtAgo associates with ~15 nt small DNA with

a strong bias towards deoxycytidine at the first position. TtAgo associated with small DNA

induces cleavage of plasmid DNA. Flanking AT-rich regions and negative supercoiling of

plasmid DNA facilitate TtAgo cutting of the first DNA strand. This results in a nicked

plasmid that exposes the other DNA strand to another TtAgo-DNA complex that cuts and
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linearizes the plasmid. Nicking also removes the supercoiled topology of the plasmid,

resulting in repression of transcription by RNA polymerase.
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