
Measuring Similarity Between Dynamic Ensembles of 
Biomolecules

Shan Yang1, Loïc Salmon2, and Hashim M. Al-Hashimi3

1Department of Chemistry, University of Michigan, Ann Arbor, MI, USA

2Biophysics, University of Michigan, Ann Arbor, MI, USA

3Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC, 
USA

Abstract

Methods for comparing ensembles of biomolecules assess the population overlap between 

distributions but fail to fully quantify structural similarity. We present a simple and general 

approach for quantifying population overlap and structural similarity between ensembles. This 

approach captures improvements in the quality of ensembles determined using increasing input 

experimental data that go undetected using conventional methods and reveals unexpected 

similarities between RNA ensembles determined using NMR and molecular dynamics 

simulations.

There is growing interest in moving beyond a static description of biomolecules towards a 

dynamic description in terms of conformational ensembles1–3 in which a biomolecule is 

represented as a population-weighted distribution of many conformations. Studies indicate 

that biomolecules employ this broad pool of conformations during folding and when 

carrying out their biological functions4. An ensemble description of biomolecules can also 

help quantify thermodynamically important conformational entropy5 and define a broad 

range of receptors that can be targeted in drug discovery6.

Methods to assess similarity between static structures are well developed and widely used in 

classifying biomolecules, understanding evolutionary relationships between them, and in 

predicting their structures and functions7. New methods are needed to compare dynamic 

ensembles of biomolecules8–10. This is important not only for helping establish dynamics-

function relationships4, but also in assessing the quality of ensembles determined using 
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experimental and computational methods3, 8–10. Among many approaches for comparing 

probability distributions11, the Jensen-Shannon Divergence (Ω2)8, 9 and S-score (S)10 have 

been used to compare dynamic ensembles of biomolecules3. While these approaches provide 

quantitative information regarding ensemble similarity, particularly with regards to the 

population overlap between two distributions, they do not quantify the extent of structural 

similarity for non-overlapping conformations.

For example, based on Ω2 or S-score, two very similar yet non-overlapping conformational 

ensembles (gray and green in Fig. 1a) are measured as having zero similarity. The same 

level of similarity is assigned to two conformational ensembles that differ much more 

substantially (gray and magenta ensembles in Fig. 1a). The underlying problem is that non-

overlapping conformations in two distributions contribute to Ω2 and S in manner 

independent of the extent of structural similarity (see Methods). Other common measures of 

similarity or distance between probability distributions suffer from the same limitation 

including the χ2 and the Bhattacharyya distance11. In addition, in application to ensembles, 

Ω2 and S-score are typically reported for an arbitrarily chosen bin size used to describe a 

given structural variable. However, these measures of similarity are highly dependent on bin 

size or method used to cluster conformations in an ensemble8–10. Other approaches for 

comparing ensembles that involve computing the pairwise RMSD in atomic positions 

between every pair of conformations in two ensembles (eRMSD)12 do not capture the 

population overlap, cannot be generally used to dissect individual structural degrees of 

freedom, and can be obscured by outliers.

We developed an approach for simultaneously quantifying population overlap and structural 

similarity between ensembles. Here, the overlap between two distributions is evaluated 

using methods such as Ω2 and S-score as a function of increasing the bin size used to build 

the histogram describing a given structural variable, such as a torsion angle or distance. 

Increasing the bin size effectively reduces the ‘structural resolution’ with which a given 

structural variable is defined, and thereby increases the probability of binning conformations 

in two ensembles into common bins (Fig. 1a). Ensembles that differ substantially in 

structural terms will require larger bin sizes to overlap. We assess overlap using the square 

root of Ω2 because it provides several desirable properties, including being a proven 

metric9, 11. The value of Ω comparing two ensembles either stays constant (barring statistical 

noise) or decreases with increasing bin size, and always plateaus at Ω=0 at some bin size 

cut-off. The plot of Ω (or any other appropriate measure of ensemble similarity) versus bin 

size then provides a rich 2D description of ensemble similarity that simultaneously captures 

population overlap and structural similarity, with the latter encoded in the steepness with 

which Ω drops with bin size (see also Supplementary Fig. 1). The approach readily 

accommodates outliers, which result in long lasting near zero Ω plateaus, without 

compromising the ability to detect population overlap and structural similarity in other 

regions of the ensemble (Supplementary Fig. 2).

The sum of population overlap over all bin sizes (K) normalized relative to values expected 

for zero overlap (Ω = 1 for all bin sizes) provides a convenient single-value measure of 

population overlap and structural similarity which we refer to as ΣΩ (wT, wP) that ranges 

between 0 and 1 for perfect and zero similarity, respectively,
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(1)

where { } and { } represent the population weights for the ith bin in ensemble 

T and P, respectively for a given bin size, m. Note that ΣΩ(wT, wP) is also a metric, and 

therefore symmetric ΣΩ(wT, wP) = ΣΩ(wP, wT) and equal to zero if and only if two 

distributions are identical at all bin sizes or {wT} = {wP}.

Applying this approach to our previous examples (Fig. 1a), the structurally similar but non-

overlapping ensembles (gray and green) start with Ω = 1 for small bin sizes implying zero 

similarity, but Ω rapidly drops to zero with increasing bin size indicating strong structural 

similarity (Fig. 1b). The drop in Ω with bin size is far less steep for the structurally more 

dissimilar ensembles (gray and magenta) (Fig. 1b). ΣΩ is clearly different in the two cases 

(0.05 and 0.46, Fig. 1b) and captures the structural differences between the two ensembles.

Having the ability to measure ensemble similarity is fundamentally important for testing 

approaches currently under development for constructing ensembles of biomolecules using 

experimental data1, 2, 13, 14. A common ensemble construction approach uses ‘Sample and 

Select’15 (see Methods) or similar scheme3 to guide selection of conformations from a 

computationally generated pool and construct ensembles that satisfy experimental data. 

Methods such as cross-validation1–3 have been used to show that the quality of constructed 

ensembles generally improves with increasing input experimental data; however no study 

has directly quantified the extent or nature of the improvement.

We used our approach to measure the similarity between a known target ensemble (N=5) 

constructed by randomly selecting five conformations from a pool of ~40,000 conformations 

and ensembles reconstructed using SAS and up to five independent sets of synthetic residual 

dipolar couplings (RDCs)16, 17 (see Methods). For simplicity, we focused on determining 

ensembles describing the relative orientation of two chiral domains (in this case A-form 

RNA helices) as defined using three Euler angles (Fig. 1c). Here, the conformational pool 

represents the topologically allowed orientations of two A-form helices linked by a 

trinucleotide bulge18. As described previously18, the Cartesian distance between two sets of 

Euler angles does not provide a faithful measurement of structure similarity and we 

therefore measure similarity in terms of the amplitude of single axis rotations (see 

Methods).

The conventional Ω value computed between the target and SAS reconstructed ensemble at 

the default pool bin size of 5° (see Methods) ranges between 0.87 and 0.99 (Fig. 1d). This 

implies a very poor level of similarity that is comparable to that observed when comparing 

the target ensemble with an ensemble (N=5) constructed by randomly selecting 

conformations from the same pool without guidance from RDC data (Ω=0.99) (Fig. 1d). 

Moreover, Ω changes insignificantly when increasing the number of RDC data sets used to 

reconstruct the ensemble (Fig. 1d). Similar results are obtained using other common 

measures of similarity such as the S-score, χ2 (Supplementary Fig. 3) and Bhattacharyya 

distance (data not shown). These results are at odds with cross-validation analysis (see 
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Methods), which shows substantial improvements in the quality of ensembles determined 

with increasing RDC data sets as judged based on their ability to predict a common fifth 

RDC data set that is left out from the ensemble construction. The root-mean-square-

deviation (RMSD) between measured and predicted RDCs approaches the assigned RDC 

uncertainty when using four RDC data sets, implying strong similarity between the target 

and reconstructed ensembles (Fig. 1e). This improvement in ensemble construction with 

increasing RDC data sets is perfectly captured when computing Ω as a function of increasing 

bin size. Ω decreases with increasing bin size and this reduction occurs more rapidly when a 

larger number of RDC data sets is used in the ensemble construction (Fig. 1d). This decrease 

is much less steep for the randomly selected ensemble (Fig. 1d) resulting in ΣΩ values that 

decrease with increasing input RDC data sets, in excellent agreement with the cross-

validation results (Fig. 1e). Similarly, our approach captures improvements in the 

constructed ensembles upon decreasing RDC uncertainty that go undetected based on direct 

application of Ω (Supplementary Fig. 4).

As a second application, we used our approach to assess the quality of an ensemble 

determined for the transactivation response element (TAR) RNA (Fig. 2a) from the human 

immunodeficiency virus type 1 (HIV-1) using molecular dynamics simulations. We 

previously reported19 poor agreement (RMSD = 8.6 Hz; experimental uncertainty ~ 2 Hz) 

between four independent sets of RDCs measured in TAR (Supplementary Fig. 5) and 

RDCs predicted for a TAR ensemble obtained from an 8.2 μs MD simulation computed on 

Anton supercomputer using the CHARMM36 force field20. The specific degrees of 

structural freedom that underlie this disagreement remain unclear and are difficult to resolve 

given that RDCs report on both local and global aspects of structure16, 17.

We previously showed19 that using the SAS approach, a TAR ensemble that much better 

satisfies the four sets of RDCs could be constructed from the MD-generated pool 

(Supplementary Fig. 5). To assess the source of discrepancy between the MD simulation and 

measured RDCs, we used our approach to directly compare the MD trajectory and the SAS-

based RDC-selected ensemble. We observed substantial differences (ΣΩ= 0.51) in the inter-

helical angle distributions between the two ensembles (Fig. 2b). This discrepancy alone is 

expected to affect all RDCs measured in TAR because changes in inter-helical orientation 

lead to changes in the global structure and overall alignment of the molecule. The observed 

differences in inter-helical angle distributions are not surprising given that longer 

simulations are likely needed to properly sample conformational space, and that the TAR 

inter-helical orientation strongly depends on ionic strength18.

In contrast, we observed much better agreement for local angle parameters, including base-

pair parameters (Fig. 2c, Supplementary Table 1), sugar (Fig. 2d, Supplementary Table 2) 

and phosphodiester backbone torsion angles (Fig. 2e, Supplementary Table 3) where on 

average ΣΩ < 0.2. Cases with ΣΩ > 0.3 are rare and tend to be concentrated in the junction 

A22-U40 base-pair and bulge residues which have previously been shown to be flexible by 

NMR spin relaxation13, and the phosphodiester backbone torsion angles α and ζ which show 

broad distributions in the MD-ensemble (Supplementary Fig. 6). The deviations in α and ζ at 

the bulge linker, and in base-pair parameters for residues surrounding the bulge are likely 

linked to the deviations observed in the inter-helical angle distributions (Fig. 2b). The ability 
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of RDCs to define all the above angles during the SAS selection was confirmed by 

simulation tests (Supplementary Fig. 7). It is interesting to note that by defining inter-helical 

orientation and helical parameters, RDCs indirectly help define phosphodiester backbone 

torsion angles in and around the bulge19. These results suggest that even though the MD 

trajectory yields poor agreements with RDCs measured throughout TAR, the main source of 

disagreement is the inter-helical angle distribution.

In conclusion, we have developed a simple and robust method to measure the similarity 

between dynamic ensembles that overcomes limitations in conventional methods that 

primarily capture population overlap at a single bin size and thereby fail to measure 

structural similarity. The approach can be used in conjunction with many other appropriate 

metrics for measuring ensemble similarity to compare any structural variable of interest. We 

anticipate many useful applications of this approach in dynamics-function studies.

Methods

Jensen-Shannon Divergence (Ω2) and S-score

Mathematical expressions for the Jensen-Shannon Divergence (Ω2) and S-score are given by 

Equations 2 and 3, respectively:

(2)

(3)

in which { } and { } represent the population weights for the ith bin in 

ensemble T and P, respectively for a given bin size, m. S(wi)=−Σwi(m)log2wi(m)) in 

Equation 2 is the information entropy. Ω2 and S vary between 0 and 1 for maximum and 

minimum similarity, and are equal to zero if and only if . Equations 2 

and 3 show that for non-overlapping regions in two distributions, defined as cases in which 

 or , the contribution to Ω2 and S is 

independent of the extent of structural similarity.

Sample and Select (SAS) approach

In the SAS approach13, 15, 19, experimental RDCs are used to guide construction of an 

ensemble by selecting N conformations from a conformational pool that minimize the 

following χ2 function,

(4)

in which L is the total number of RDCs used in SAS,  and  are calculated and 

experimentally measured RDCs, respectively. In our implementation of SAS, first an initial 

ensemble of N conformations is randomly selected from the pool. Then at each step (k) of 
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the selection procedure one conformation in the ensemble is randomly chosen and replaced 

by a conformation randomly selected from the rest of the pool. The change from step k to k

+1 is accepted if χ2(k+1) < χ2(k); if χ2(k+1) ≥ χ2(k) with a probability P=exp((χ2(k)−χ2(k

+1))/T), where T is an effective temperature that is linearly decreased using a simulated-

annealing scheme13. The initial effective temperature is set to sufficiently high so that >99% 

of the conformations can be replaced and slowly decreased until the acceptance probability 

is smaller than 10−5. At each effective temperature, 200,000 steps were implemented 

followed by a decrease of effective temperature using Ti+1=0.9Ti. A MATLAB script 

(available from authors upon request) was used to implement this SAS-based ensemble 

construction.

Evaluating quality of inter-helical ensembles determined with increasing input RDCs

The capability of RDCs to reconstruct inter-helical ensembles using the SAS approach was 

investigated using synthetic RDC data, using up to five RDC data sets corresponding to five 

perfectly orthogonal alignment tensors. In these simulations, a given conformation is 

represented using three inter-helical Euler angles (αh, βh, γh) describing the relative 

orientation of the two idealized A-form helices representing the TAR helices connected by a 

trinucleotide bulge (Fig. 1c). The conformational pool necessary for the SAS selection was 

generated by using the corresponding topologically allowed space. This space corresponds 

to all possible inter-helical orientations that satisfy basic steric and connectivity restraints 

imposed by the bulge18. The pool was generated using a 5° resolution grid (i.e. each 

conformation differs from its closest neighbor by a 5° change in one of the three Euler 

angles). For a trinucleotide bulge, the pool represents ~10% of the total possible inter-helical 

orientations. A target ensemble containing five distinct conformations (N=5) was then 

randomly selected from this topologically allowed pool. Five orthogonal alignment tensors 

arbitrarily fixed on the reference helix were then generated using the Gram-Schmidt 

procedure21. For each of the five alignment tensors, all possible one bond CH RDC were 

computed for the target ensemble. For each alignment tensor, the RDCs for the five 

conformations were averaged and error-corrupted assuming 2Hz RDC uncertainty.

The SAS approach was then implemented to select an ensemble of N=5 distinct 

conformations using one, two, three, four and five sets of input RDCs to guide selection. 

The target and the predicted ensemble were then compared using similarity measurements 

including Ω, S-score, χ2 and Bhattacharyya distance at various bin sizes as described below. 

The same process was repeated 50 times and the similarity between target and predicted 

ensembles were averaged over these 50 comparisons at each bin size. Standard deviation is 

calculated to estimate the variation in repeated simulations using different numbers of input 

alignments. The standard deviation is similar across the groups, and small compared to the 

observed differences between them (Fig. 1d). For the RDC cross validation analysis, 

ensembles determined using one, two, three and four RDC data sets in the SAS selection 

were used to predict a fifth RDC data set that was not used in the selection. The resultant 

RMSD between the RDCs for this fifth data set and values back-calculated from the 

predicted ensemble was then computed19.
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Binning inter-helical orientations

The Cartesian distance in the Euler space, ((αhA−αhB)2 + (βhA−βhB)2 + (γhA−γhB)2)1/2 

between two sets of Euler angles A and B defining two distinct inter-helical orientations 

does not provide a measure of structural similarity between the two conformations18. First, 

there are inherent degeneracies (αh′=αh+180, βh′=−βh, γh′=γh+180; αh′=αh−180, βh′=−βh, 

γh′=γh−180; αh′=αh+180, βh′=−βh, γh′=γh−180; αh′=αh−180, βh′=−βh, γh′=γh+180) that map 

several sets of distinct inter-helical Euler angles to the same conformation18. This problem 

was overcome by using a restricted grid of Euler angles devoid of any degeneracy18. 

Second, even after taking into account the above degeneracy, the Cartesian distance between 

two sets of Euler angles does not provide a faithful measurement of structural similarity. For 

example, the Cartesian distances between (0, 0, 0) and (5, 5, 5) is ~9° in the Euler space 

whereas the two conformations differ by single axis rotation with amplitude ~11°. Likewise, 

the conformations (5, 5, 0) and (170, −10, 170) differ by a Cartesian distance of ~237° but 

the two conformations differ by a single axis rotation with amplitude ~25°. More generally, 

the Cartesian distance between Euler angles can be smaller than, equal to or larger than the 

actual difference between two conformations. Therefore we used the amplitude of single 

axis rotation to bin inter-helical orientations together and measure similarity between 

ensembles18 (see below).

The binning grid points are constructed by picking a binning origin, defined by minimum 

value of each of the three Euler angle in the two ensembles upon comparison, and then 

incrementing each Euler angles by an amount defined by the bin size to cover the entire non-

degenerate 3D Euler space. Changing in the binning origin has minimal effects on the 

resulting analysis (data not shown). Next, the amplitude of a single axis rotation (ω) 

connecting a given conformation in the ensemble defined by Euler angles (αh1, βh1, γh1) and 

a point on the grid (αh2, βh2, γh2) is computed,

(5)

in which O(x, y, z, ω) represents a single axis rotation about a unit vector (x, y, z) with 

amplitude (ω). O(x, y, z, ω) can also be expressed by a 3 by 3 matrix in terms of x, y, z and ω

(6)

And the rotation amplitude ω is given by,

(7)

in which O11, O22 and O33 are the three diagonal elements of O(x, y, z, ω).

In this manner, the amplitude of the single axis rotation connecting a given conformation in 

an ensemble to every grid point is computed, and the conformation is binned to the grid 
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point that leads to the minimum single axis rotation amplitude ω. The population of each 

grid point is then calculated to be the number of conformations binned divided by the total 

number of conformations in the ensemble. In our case, binning of the target and the 

predicted ensemble led to two population distributions on the same binning grid for a given 

bin size, and the value of Ω between the two ensembles at the given bin size is then 

calculated using equation 2. This procedure was repeated as a function of increasing bin 

size. This analysis was preformed using a MATLAB script that is available from the authors 

upon request.

Analysis of MD-trajectory-based ensembles

An in-house perl script was used to compute inter-helical angles (αh, βh, γh) describing the 

relative orientation of two A-form helices18. All intra- and inter-base-pair parameters were 

computed using Curves+ 22 and all the local torsion angles defining the sugar and backbone 

geometry were computed using an in-house C script. The resulting inter-helical orientations 

defined by three Euler angles were binned and analyzed as described above. Distributions of 

base-pair parameters, sugar and backbone torsion angles were directly binned to a binning 

grid ranging between 5° and 360° with variable increments defined by the bin size. The 

value of Ω was calculated at each given bin size for each parameter/angle distribution using 

Equation 2 and the values of ΣΩ are calculated using Equation 1 for distributions of inter-

helical orientation, base-pair parameter, sugar, and backbone torsion angles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Measuring population overlap and structural similarity between ensembles
(a) Three discrete ensembles (gray, green, and magenta) described in terms of an arbitrary 

structural variable are shown as a function of increasing bin size used to build the histogram 

distribution. Dashed magenta and solid green boxes around the gray ensemble indicate the 

portion of magenta and green ensemble respectively that are binned together with the gray 

ensemble. (b) Plots of Ω as a function of increasing bin size comparing the gray vs. green 

(green line) and gray vs. magenta (magenta line) ensembles. (c) The relative orientation of 

two helices (or domains) is defined using three Euler angles (αh, βh, γh). Shown are two 

RNA helices linked by a trinucleotide bulge. (d) Ω versus bin size comparing the inter-

helical angle distributions about a trinucleotide bulge linker between a target ensemble 

(N=5) and ensembles (N=5) that are selected from the pool randomly (black) or using 

increasing number of input RDC data sets in SAS selections (color-coded, see inset). The 

standard deviations of Ω at each bin size over the 50 repetitions of each prediction are shown 

as error bars (see Methods). (e) The value of Ω at bin size=5° (magenta squares) and ΣΩ 

(black squares) as a function of number of RDC data sets used in ensemble reconstruction. 

Also shown is the root-mean-square-deviation (RMSD) in leave-out cross validation in 

which a constructed ensemble is used to predict a common left out set of RDCs (green 

circles). The dashed circle represents the optimum RMSD when the left-out data set itself is 

included in the selection and the flat dashed line denotes the assigned 2 Hz RDC 

uncertainty.
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Figure 2. Comparing MD-generated and NMR-RDC selected ensembles of HIV-1 TAR
(a) Secondary structure of HIV-1 TAR RNA. The highly flexible junction A22-U40 base 

pair is indicated using a dashed line. (b) Ω versus bin size plots comparing the inter-helical 

angle distribution in the MD and RDC-selected (N=20) ensembles. The binning is preformed 

in terms of single-axis rotation amplitudes (see Methods). (c–e) ΣΩ value comparing the 

distributions of (c) base-pair parameters, (d) sugar and (e) backbone torsion angles between 

the MD and the RDC selected ensemble. The intra-base-pair parameters for the flexible 

junction A22-U40 base-pair are shown using open symbols and dashed lines and inter-base-

pair parameters are not shown for the junction G26-C39 base-pair because they are ill-

defined due to presence of the bulge between G26-C39 and A22-U40.
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