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Summary

Infectious disease models are important tools for understanding epidemiology and supporting

policy decisions for disease control. In the case of tuberculosis (TB), such models have informed

our understanding and control strategies for over 40 years, but the primary assumptions of these

models – and their most urgent data needs – remain obscure to many TB researchers and control

officers. The structure and parameter values of TB models are informed by observational studies

and experiments, but the evidence base in support of these models remains incomplete. Speaking

from the perspective of infectious disease modelers addressing the broader TB research and

control communities, we describe the basic structure common to most TB models and present a

“wish list” that would improve the evidence foundation upon which these models are built. As a

comprehensive TB research agenda is formulated, we argue that the data needs of infectious

disease models – our primary long-term decision-making tools – should figure prominently.
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Introduction

Tuberculosis (TB) is a curable disease, yet kills 1.7 million people every year.1 In response

to this unacceptable disease burden, leaders of the TB research community are formulating a

coordinated research agenda.2, 3 Meanwhile, policymakers and health officials at all levels

must make decisions about how best to develop, implement, and scale up TB control

measures. These individuals often rely on mathematical models that estimate the population-

level impact of interventions on TB transmission.4 The first models to use assumptions

about the natural history and transmission dynamics of TB in order to project the
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population-level impact of control strategies were developed in the 1960s.5–7 Since that

time, TB models have provided support for the implementation of many policies such as

Directly Observed Therapy, Short-Course (DOTS)8 and have informed the research agenda

for new interventions including drugs, diagnostics, and vaccines.9

Global disease control programs face the task of identifying which interventional strategies

offer the highest probability of improving population health. For example, in the coming

five years, many national policymakers will decide whether to scale-up novel TB

diagnostics (e.g., Xpert MTB/RIF) that have demonstrated impressive operational

characteristics (e.g. sensitivity/specificity) but are not known to reduce TB incidence or

mortality on the population level. Studies of such population-level outcomes (e.g. cluster-

randomized trials) are expensive and time-consuming, can only address a limited number of

questions, and are often difficult to generalize. When such experimental evidence is not

feasible or not yet available, infectious disease models provide a quantitative framework to

project population-level effects (e.g., reduced TB incidence) from evidence at the individual

level (e.g., operating characteristics of a diagnostic test).

Published descriptions of infectious disease models typically describe the impact of various

assumptions encoded in the model. These analyses (e.g. sensitivity and uncertainty

analyses10) are often described in technical language and, for space limitations, placed in

supplementary appendices. As such, readers may not be fully aware of which modeling

assumptions most strongly influence model behavior. Many assumptions shared across TB

models are both highly influential to model behavior and based on limited empirical data.

Our goal here is to highlight these assumptions as priority areas where additional research

can directly lead to improved models, and thereby to better decision-making for TB control.

To advance this goal, we first provide an introduction to the basic structure and simplifying

assumptions of many TB models. We then present a simple infectious disease model,

calibrated to global estimates of TB incidence and prevalence, that we use to identify the

most influential modeling assumptions and the corresponding gaps in evidence. Finally, we

use this model to generate a “wish list” of data elements that would bridge these gaps and

increase both the usefulness of TB models and our confidence in their results.

TB Models: Basic Structure

Since infectious disease models are developed to answer specific questions, each model’s

structure will reflect unique aspects of the question posed. For example, a model focusing on

drug-resistant TB must consider processes related to the acquisition and transmission of

drug resistance and may therefore address HIV/TB in simplistic fashion, whereas a model of

HIV/TB co-dynamics may do the opposite. Nevertheless, most TB models share common

structural elements, which form the basis of our discussion here.

A common and relatively simple modeling approach is the compartmental model, which

describes a population divided into mutually exclusive health states (compartments) and

uses differential equations to represent the mechanisms of transition between these health

states. A prototypical TB model might include five compartments with respect to TB disease

status: uninfected, latently infected (recent), latently infected (remote), active TB, and
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recovered (Figure 1). Such a model could be used to simulate a TB epidemic under different

sets of assumptions to project the effects of alternative decisions (e.g., TB control

interventions).11 An advantage of infectious disease models for decision-making is that the

current state of the model (e.g., size of the “active TB” compartment) influences rates of

flow between compartments (e.g., size of the “infection” arrow in Figure 1). This allows

infectious disease models to capture the feedback loops and non-linear dynamics (e.g.,

immediate reductions in disease duration leading to future reductions in transmission)

typical of infectious disease epidemics. While other dynamic modeling approaches (e.g.,

individual-based models12) also exist, we focus here on compartmental models as they have

been used most commonly to guide policy decisions.

TB Models: Assumptions

When building infectious disease models, modelers typically must make two different types

of choices.4 First, they must specify the model structure: the number of compartments and

how they relate to each other. Additional complexity can be built around a simple structure

(e.g., the five compartments in Figure 1) to answer policy questions of interest. However,

increased model complexity comes at a substantial cost. For example, dividing the model

population into two sub-populations (e.g., HIV-positive vs. HIV-negative) may double the

number of compartments, and thus the number of parameters required. Unnecessarily

complex models often lack the transparency and interpretability needed to inform

appropriate decision-making by policymakers. As a result, the simplest model that can

adequately represent relevant phenomena is generally preferred.13 Testing the effects of

adding model complexity (i.e., structural assumptions) is difficult, often requiring the

construction of parallel models with different structures14–16 or incorporating more

advanced modeling techniques (e.g., Bayesian networks17). To date, such analyses have

been infrequently performed, and there is no standardized way to include them in traditional

sensitivity analyses; thus, while addressing “structural” uncertainty is an important

consideration for building better TB models, we do not discuss this challenge in further

detail here.

Once the compartmental structure of a model is developed, modelers must specify the

parameters that determine the flows between model compartments. For example, the rate at

which infected individuals develop active TB depends on a rate of progression during

latency; this rate must be introduced as a parameter in the model. Where possible, parameter

values should be well-supported by data obtained through either observation or experimental

study. This is most important for parameters with strong effects on model behavior. In order

to identify the most pressing data needs for building better TB models, therefore, we created

a simple model (basic structure in Figure 1, mathematical description in Box 1) to identify

and quantify parameters that (a) strongly influence model behavior and (b) carry substantial

uncertainty as to their appropriate contemporary value.
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Box 1

Simplified Model of TB Transmission

We used differential equations to develop a simplified model of TB transmission, as

shown in Figure 1. The differential equations used were:

1. Susceptibles, S:

2. Latently infected (recent), L1:

3. Latently infected (remote), L2:

4. Actively infected, A:

5. Recovered, R:

For these equations, each capital letter represents the number of people in the

compartment (per 100,000), and “dX/dt” denotes the change in compartment size X per

unit time.

We used the following quantities:

• birth = sum of all mortality (to maintain a stable population)

• infection = (transmission rate)*A

– The transmission rate is calibrated to give an annual steady-state TB

incidence of 128 per 100,000/year, the global average.1

• mortality = 1/70 (life expectancy of 70 years)

• protection = 0.50 (50% efficacy against reinfection if latently infected or

recovered)40, 42

• progression = 0.03 per year (primary progression after recent infection)42

• stabilization = 0.2 per year (“recent” infection period of 5 years)42

• reactivation = 0.0005 per year (reactivation after remote infection)68
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• relapse = rate of relapse after recovery, calibrated such that 11% of incident TB

is retreatment1 (final value = 0.0034/year)

• treatment = rate of successful diagnosis and treatment, calibrated to give steady-

state TB prevalence of 178 per 100,000, the global average1

• self-cure = 0.167 per year (spontaneous recovery without treatment, 50% case-

fatality103)

• TB mortality = 0.167 per year (mortality rate of untreated TB)103

Reproduction Numbers and the TB Transmission Chain

As a framework for identifying target parameters, we used a key composite measure which

governs the spread of a pathogen in a population: the basic reproduction number (R0). R0 is

defined as “the average number of secondary [cases] produced when one [active case] is

introduced into a host population where everyone is susceptible,”18 and it provides a

threshold effectiveness of disease control needed to achieve elimination (i.e., R0 <1) For an

endemic disease like TB where entirely uninfected populations are not encountered, the

effective reproduction number Re describes the expected number of secondary cases

generated by each infectious source case in an existing population. Both R0 and Re depend

on three quantities: the average number of secondary infections caused per unit of infectious

time, the source case’s duration of infectiousness, and the probability that a secondary

infection will progress to active infectious TB. These quantities can be envisioned as

processes in a TB transmission chain (Figure 2). Parameters that directly influence one of

these three processes will modify the reproduction number and thereby affect TB

transmission. We therefore classify parameters according to their effects on these three

processes. We designed the model to be globally representative but also fit a low-incidence

scenario (incidence 5 per 100,000/year) to evaluate differences based on underlying

incidence. For each parameter, we describe the relevant process, detail existing data (and

limitations) for informing its value, and quantify the degree to which changes in that value

alter the parent model’s estimate of TB incidence (Figure 3).

The TB Modeler’s “Wish List”

A. Parameters Affecting the Rate of Transmission per Infectious Person-Year (Figure 1,
Process 1)

Description: The rate of TB transmission depends on the frequency of infectious contacts

and probability of transmission during each contact event.19

Existing Approaches and Limitations: Classically, based on analysis of data from the

Netherlands and India between 1920–1970, individuals with smear-positive TB were

assumed to generate 8–12 secondary infections per year,20 and most models that fit TB

incidence to transmission rates in high-burden settings have obtained similar results,21, 22

but more recent data suggest that this estimate may be 50% (or more) too high.23, 24

However, TB transmission is quite heterogeneous25: areas with hyperendemic transmission

(e.g., South African townships26, 27) likely have per-case transmission rates over 10 times as

Dowdy et al. Page 5

Int J Tuberc Lung Dis. Author manuscript; available in PMC 2014 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



high as in modern industrialized countries,28 though similar transmission rates were seen

historically.29 Rates of TB transmission may also differ by strain16, 30, 31 and prevalence of

social or other determinants of risk.32 The TB transmission rate is among the most important

determinants of epidemic severity,33 and by extension, effectiveness of control interventions

(e.g., active case finding, improved diagnostics) which aim to reduce the duration of

transmission. Thus, appropriate estimation of TB transmission rates across different

geographic settings and times is as critical as it is difficult.

Another important consideration is the rate of TB transmission at different times in an

individual’s disease course. Largely because the primary existing diagnostic test (sputum

smear microscopy) correlates with infectiousness, most TB models assume that transmission

is constant over a given individual’s disease course. In other words, TB is assumed to be

either infectious/smear-positive pulmonary or non-infectious,8 with some models

incorporating smear-negative pulmonary TB at a lower infectiousness, usually 20–25% that

of smear-positive TB (based on molecular epidemiology tracing of patients with known

smear status34, 35). However, all smear-positive TB develops through a period of smear-

negativity, and smear status is itself dependent on laboratory characteristics.36 If symptoms,

infectiousness, health seeking behavior, and smear positivity (or ability to diagnose TB with

other tests) all occur simultaneously, then passive smear microscopy is expected to have

substantial impact on TB transmission. However, to the extent that TB transmission occurs

before development of symptoms or sputum smear positivity, or cases remain persistently

smear-negative, alternative diagnostic strategies (e.g., active case finding with culture or

molecular methods) would be necessary to curb transmission.

B. Parameters Affecting the Probability of Progression to Active/Infectious TB

Rapid Progression (Figure 1, Process 2)

Description: Although it is undisputed that individuals can develop active TB many years

after their initial infection, the physiology of latent TB infection (LTBI) remains a poorly-

understood process at the cellular level, likely representing a spectrum of persistent immune

responses.37, 38 The risk of progression to active infectious disease declines with time since

infection, but since the pattern of this decline is not precisely known, TB models often

simplify LTBI into a set of compartments based on time since infection. Since 1969, a cutoff

of five years has frequently been used to distinguish “rapidly progressive” tuberculosis from

“endogenous reactivation,”39–41 although other cutoffs may be equally reasonable from a

biological perspective. Since rapid progression and endogenous reactivation are clinically

similar, it is impossible to directly measure the proportion of incident TB that results from

these two respective processes. Furthermore, since time of infection is generally unknown, it

is likewise difficult to assess the time from infection to disease.

Existing Approaches and Limitations: Currently, we rely primarily on modeling studies

that fit population-level data to the annual risk of TB infection over time in historical

datasets (e.g., the Netherlands40,8 and England and Wales42), results from large population-

based trials of interventions (e.g., BCG vaccine43), and molecular epidemiology studies that

attempt to determine the proportion of incident TB that can be linked to other recent

cases.44–46 These studies suggest that the risk of rapid TB progression is greater in adults
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than in children and declines over a period of 5 years after infection,42 with up to 45% of all

disease occurring in the first year after infection.47 No study to our knowledge has

comprehensively evaluated the risk of rapid progression after infection in modern high-

burden settings, which may differ dramatically from historical cohorts48–50 in intensity of

exposure, degree of natural protection against progressive disease in the host, and propensity

of the pathogen to induce rapid progression.51, 52 Furthermore, these dynamics remain

almost completely unspecified among people living with HIV, limited mostly to small

outbreak investigations before the availability of antiretroviral therapy.19, 53–56 These

studies suggest that 75% or more of TB infections progress rapidly to active disease among

people living with HIV, but this proportion is likely much lower in individuals on

antiretroviral therapy57 or with higher CD4 T-cell counts.56, 58 Other determinants of

susceptibility,59 including diabetes mellitus,60, 61 nutritional status,62 and smoking,63 also

affect progression from infection to active TB, although it remains unknown whether this is

better modeled as a change in the proportion of individuals progressing rapidly after initial

infection or the rate at which that progression occurs. These effects may have important

implications for the effectiveness of TB control interventions such as isoniazid preventive

therapy (IPT)64, 65 and contact investigation66 that depend on detecting TB infection before

progression to active disease.

Endogenous Reactivation (Figure 1, Process 3)

Description: Individuals with latent TB infection remain at risk for reactivation for

prolonged periods of time; TB models must incorporate a rate of progression to active TB

that persists for extended periods from the time of infection.

Existing Approaches and Limitations: Compared to rates of progression from recent

infection, rates of reactivation after remote infection are relatively well-characterized

(through population-based studies where reinfection rates are low) and have less influence

on model projections. Although estimates of the reactivation rate vary by almost an order of

magnitude, from 0.0342 to 0.167 per 100 person-years, the most recent population-based

estimate (0.05 per 100 person-years)68 falls in the middle of this range. However, far more

important than the background rate of reactivation is the influence of other TB

determinants32 on this rate. For example, while the rate of TB reactivation among people

living with HIV – a primary driver of TB epidemics in HIV-endemic settings69 – is

frequently quoted as 10% per year,28, 70, 71 many empiric studies have estimated a lower

rate.72, 73 TB reactivation rates vary with degree of immunosuppression (e.g., CD4

count),58,74 and antiretroviral therapy dramatically reduces reactivation rates.19,74 The

relative influence of other TB risk factors on reactivation and reinfection is even less well-

characterized. Age is of particular importance; if reactivation rates increase with age,75–77

tuberculosis may become harder to eliminate as populations become older. Such

considerations are also relevant when projecting the impact of interventions (e.g., IPT for

HIV/TB-coinfected patients78) that differentially affect reactivation and recent infection.
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Protection Afforded by Latent TB Infection

Description: Latent TB infection likely provides some protection against developing

primary progressive TB after a subsequent infectious contact, whether by prevention of

reinfection or prevention of disease progression after reinfection.

Existing Approaches and Limitations: The relative contributions of (“endogenous”)

reactivation of remote latent infection versus (“exogenous”) reinfection in propagating TB

epidemics have been discussed for decades79–81 and are have been investigated using

numerous TB models.40, 42, 82 Reinfection with a second strain after remote infection with a

first has been clearly demonstrated,83, 84 and multiple strains have even been found in the

same sputum.85 The relative proportion of active TB among remotely-infected individuals

caused by reinfection versus reactivation depends on the community risk of TB infection

(which is often geographically heterogeneous.86) Thus, in areas with higher annual risk of

TB infection, the contribution of reinfection is expected to be greater.87–89 However, this

balance between reinfection and reactivation is also influenced by the degree of protection

against progressive disease progression afforded by prior TB infection – a parameter value

that is poorly understood.81 Estimates of this “protective efficacy” are based on modeling

studies that fit historical European data to alternative assumptions about the effect of latent

infection; estimated values range from 16%42 to 81%.40 A recent review using data from

pre-isoniazid studies estimates this value at 79% (95% confidence interval, CI: 70–86%).90

Both the impact of HIV infection on this parameter value, and the mechanism of protection

(i.e., prevention of reinfection versus prevention of rapid progression after reinfection42) are

not completely understood. Protection afforded by infection with one TB strain against

either reinfection or progressive disease with another affects the projected impact of IPT

(which may be more effective if protection is high and long-lasting64) and vaccines (which

seek to evoke similar immunologic phenomena16), as well as the rate of TB decline over

time.91

C. Parameters Affecting Duration of Infectiousness (Figure 1, Process 4)

Care-Seeking, Diagnosis, and Successful Treatment

Description: Tuberculosis programs are often assessed in terms of the proportion of TB

cases detected and successfully treated, with goals of 70% and 85%, respectively.92 These

proportions depend on the overall rate of seeking care, appropriate diagnosis, and successful

treatment.

Existing Approaches and Limitations: Since the number of incident TB cases (including

undiagnosed cases) is not directly measurable, case detection is difficult to specify

accurately.93, 94 More importantly, impact on TB transmission depends on the speed at

which cases are detected and treated – detecting the same number of cases, but earlier in

their infectious course, can dramatically reduce TB incidence,95, 96 However, the rate of

detection and treatment depends on delays in diagnosis and treatment, which are difficult to

measure and vary widely according to such factors as access to care and comorbid

conditions.97 Unknown relationships between onset of symptoms and infectivity are also

important considerations. For example, the impact of improved clinic-based diagnosis in
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areas where a substantial fraction of the population lacks any access to care98 will be smaller

than in areas where most people with active TB do access care but whose diagnosis is

missed or simply too late (as is suggested by autopsy studies in South Africa99–101).

Furthermore, diagnostic sensitivity of existing algorithms may be the most important

determinant of the incremental impact or cost-effectiveness of new diagnostics.102

Spontaneous Recovery

Description: A poorly-characterized, but often critical, parameter in TB models is the rate

of spontaneous recovery or “self cure.” This parameter corresponds to a transition from

active, infectious TB to a non-infectious, asymptomatic state in the absence of treatment.

Existing Approaches and Limitations: Studies from the pre-antibiotic era demonstrate that

the 10-year case-fatality rate of untreated, smear-positive TB is about 70%, and of culture-

positive smear-negative TB may have been as low as 20%.103 Thus, a substantial proportion

of patients with active TB will not die, even in the absence of treatment. These individuals’

average duration of infectiousness has been estimated at 3 years103 but may be very

heterogeneous, and the generalizability of this estimate to modern TB epidemics is

unknown. Furthermore, most models assume that mortality, spontaneous recovery, and

treatment operate as competing (and constant) rates. If diagnosis and treatment occur

preferentially among those who would have otherwise recovered spontaneously, or toward

the end of the infectious period in those who would have otherwise died, the impact of these

interventions on TB mortality or transmission, respectively, may be blunted. Mortality

continues between 5 and 10 years in these studies,103 suggesting the existence of

“superspreaders”104 who remain persistently (or intermittently) infectious without

experiencing spontaneous recovery. The relative importance of such “chronic” cases in

modern TB epidemics requires further study.

TB Mortality

Description: Individuals with active TB who are not detected either die or recover

spontaneously. Mortality rates of people with untreated active TB in modern epidemics

remain uncertain.

Existing Approaches and Limitations: TB mortality rates are exceedingly high (i.e., in

excess of 5% per month) early in the course of TB treatment105 and (among HIV/TB-

coinfected patients) initiation of antiretroviral therapy,106 suggesting that mortality rates are

not constant over time, but rather peak around the time of diagnosis and treatment initiation.

Thus, reducing time to diagnosis by one or two months may have disproportionate impact on

TB mortality. Mortality rates of untreated HIV/TB-coinfected patients are particularly

poorly-characterized, as no data from the pre-antibiotic era exist to inform these estimates.

Most empirical observations suggest a case-fatality ratio near 1.0,107, 108 but the duration of

disease has not been measured. Prior analyses28 have used nosocomial outbreaks of MDR-

TB109 to assume a disease duration of 0.5 years, whereas a combined incidence/prevalence

survey of South African gold miners estimated this duration at 0.8 years (95% CI: 0.42–

1.35),110 an estimate that is replicated in models fit to population-level mortality data.19, 22
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TB Control Interventions—As described above, most TB models evaluate specific

aspects of natural history or disease control; a single model is unlikely to be appropriate for

answering all questions. Since a wide array of TB control interventions (e.g., improved

diagnosis, shorter treatment courses, active case-finding, isoniazid preventive therapy, novel

vaccines) are available or under development, and most TB models will not include all

available interventions, we have not included specific TB control interventions on our “wish

list” of parameters for TB models in general. However, it is important to recognize that, for

any specific model of TB control, the parameters governing the modeled intervention(s) will

be critical to the duration of infectiousness (or probability of progression, in the case of

preventive therapy), and will thus have strong effects on R0 and projected incidence.

Discussion and Synthesis

We have used a simple model to enumerate and describe the influential assumptions

universal to many TB models that incorporate similar structure. This process of designing a

simplified model and using it to identify and compare the most influential parameters

(shown in Figure 3) may serve as a paradigm for priority-setting in other infectious diseases

as well. Combining this knowledge with an understanding of the gaps in the existing

literature, we have created a “wish list” of 11 priority data elements that could inform the

development of better infectious disease models for data-driven decision-making. We do not

intend this as an exhaustive list. Specifically, we have not addressed structural model

uncertainty or assumptions relevant to several other key issues (e.g., drug-resistant TB or

HIV/TB), both of which need to be investigated more closely if TB models are to be

optimized. Rather, we intend this “wish list” as a tool to inform a rational research agenda.

In deciding how to prioritize this agenda, consensus must be built around:

• Defining which data elements to collect;

• The relative importance to the model of specifying each element correctly (i.e.,

some parameters may have minimal influence on model output);

• The generalizability of elements across diverse epidemiological conditions (e.g.,

specifying the natural history of TB – which may remain relatively consistent from

one context to another – may be more important for global estimates than context-

specific elements such as treatment success); and

• The logistical difficulty, time, and resources required for adequate specification of

each element.

This “wish list” (numbered below according to the designations provided in Box 2) speaks

to the first two points. Upon developing this list and seeking to organize it further, three

broad recommendations emerged:

Box 2

A TB Modeler’s “Wish List”: Data Needs for TB Transmission Models

A. Rate of TB Transmission Per Infectious Person-Year (Process 1, Figure 1)
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1 TB transmission rate in geographically diverse settings

• Comprehensive population-based surveillance, description of

geographic heterogeneity

2 TB transmission rate according to TB risk factors/social determinants

• Understanding of key risk factors’ individual and joint effects on

transmission of TB and acquisition of TB infection

3 TB transmission rate at different times during the TB disease course

• Description of when, during an infectious individual’s disease

course, transmission events occur – including development of an

assay for recent TB transmission

B. Probability of Developing Active TB Following Infection

Rapid Progression (Process 2, Figure 1)

4 Rate of rapid progression in modern, high-burden settings

• Extension of existing knowledge about progression rates in

historical and low-burden settings to the epidemiology and

microbiology typical of high-burden settings

5 Rate of rapid progression among people with TB risk factors/social

determinants

• Evaluation of progression rates according to HIV and other

determinants of susceptibility (age, smoking, nutritional status,

diabetes, alcohol, etc.)

Reactivation (Process 3, Figure 1)

6 Rate of reactivation among people with TB risk factors, particularly HIV and

age

• More complete characterization of the risk of progression to active

TB, according to time since infection

7 Population-level correlation between prevalence of latent TB infection and

TB risk factors

• Description of the degree to which populations with high prevalence

of TB risk factors also carry high prevalence of latent TB infection

Protection Afforded by Latent TB Infection

8 Degree of protection afforded by remote TB infection

• Understanding of the mechanism of protection (i.e., prevention of

reinfection, rapid progression, or reactivation)

C. Duration of Infectiousness (Process 4, Figure 1)
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9 Care-seeking: relationship to infectiousness and heterogeneity across risk

groups

• Characterization of when, in the natural disease course, diagnosis is

sought and treatment administered; understanding of how care-

seeking patterns vary across populations

10 Diagnostic sensitivity and treatment success in geographically diverse

settings

• Description of actual and achievable speed and effectiveness in

diagnosing infectious individuals and placing them on treatment

11 Rate (or probability) of spontaneous recovery in modern high-burden settings

• Understanding the natural history of untreated TB in the post-

chemotherapy era

1. Understanding Heterogeneity (“Wish List” Items 1, 4, 9, 10, 11)

We need to better understand heterogeneity: the diverse patterns of TB infection,

progression, and diagnosis/treatment across both space and time. Many of our existing

model assumptions derive from studies undertaken in the pre-chemotherapy era. While the

underlying organism is the same, the settings in which M. tuberculosis causes human disease

are dramatically different. Population-based prevalence surveys110–114 coupled with detailed

care-seeking questionnaires and long-term individual follow-up of clinical outcomes in a

variety of locations could provide data of tremendous value to future models. As existing TB

prevalence surveys are carried out, additional data (e.g., household structure, geocoding,

duration of symptoms) or samples (e.g., for molecular epidemiology) could be

simultaneously collected that could greatly inform our understanding of TB dynamics, even

in the absence of long-term follow-up.

2. Specifying Modulators of TB Disease (“Wish List” Items 2, 5, 6, 7, 9)

We also need to learn more about key modulators – including biological risk factors (e.g.,

HIV), social determinants (e.g., crowding), and latent infection (i.e., protective efficacy).

This understanding should include both the strength of each association and the point(s) in

the TB disease cycle (i.e., infection, progression, and/or transmission) at which each

modulator acts. Furthermore, we should not limit our thinking about disease modulation to

host factors; heterogeneity across different strains of M. tuberculosis (including drug-

resistant strains) is also a key consideration.30, 115 In vitro and animal models can provide

some insight into strain fitness and within-host dynamics. Population-based studies (e.g.,

prevalence surveys) that include prospective follow-up of close contacts to identified TB

cases (e.g.,116, 117) may facilitate better understanding about the disease stage and strength

at which each modulator exerts its primary effect.
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3. Describing Time Courses of TB Progression and Transmission (“Wish List” Items 3, 8,
9, 11)

Third, we need to know when in patients’ disease course the burden of TB transmission

occurs. The relationships between duration of disease, symptom burden, contact networks,

diagnosis/treatment, and patients’ infectiousness remain obscure. Numerous studies have

demonstrated that positive TB cultures can be obtained from asymptomatic individuals,

particularly those with immune suppression,118, 119 and while most studies of diagnostic

delay suggest that patients seek treatment within weeks to months of developing

symptoms,97, 120 global estimates (based on the prevalence/incidence ratio) suggest an

infectious period of more than one year.1 Since the TB transmission rate from a given

individual depends not only on intrinsic infectiousness (e.g., bacillary burden) but also on

the frequency of contacts and structure of transmission networks,82, 121 understanding how

these vary over the infectious period is key. As individuals with active TB are identified in

community-based prevalence surveys, assessing those individuals’ symptom duration and

severity, patterns of seeking care, and infectiousness (either through contact investigation

with molecular epidemiology or using experimental designs [e.g., guinea pig

infection122, 123]) could be very informative. Ultimately, we are limited in our ability to

characterize TB time courses by the fact that current diagnostics can only identify TB

disease, not transmission events. Successful development of a diagnostic assay that could

identify recent infection (or superinfection) would truly revolutionize our understanding of

these complex interactions.

As with any priority-setting exercise, our approach has limitations. As mentioned above, in

trying to capture data needs relevant to virtually all TB models in a simple framework, we

ignore complexity that, while appropriately ignored by some transmission models, is

nonetheless critical to TB control as a whole. Prime examples include HIV/TB coinfection

and drug-resistant TB. We do not intend to suggest that these topic areas should be de-

prioritized; rather, we argue that it is important to understand each of the above concepts

(heterogeneity, modulators, and transmission timing) across different strata of immune

suppression and TB drug resistance. In this analysis, we have focused on population-level

(epidemiological) models of TB; similar models of within-host dynamics (e.g., 124) also play

an important role in our understanding of TB and may provide additional insights. We

acknowledge that our broad-based approach using a simple model may not appropriately

capture priorities for unique epidemiological situations (e.g., Eastern European prisons125).

Finally, our “wish list” is admittedly long and does not seek to rank-order items within the

list; we intend this exercise as a method for bringing modeling concerns into a broader

discussion of research priorities, rather than for suggesting that specific parameters should

be prioritized based only on their potential influence over model outputs.

Conclusion

Infectious disease models simplify complex dynamics to inform decision-making when data

on population-level effects are otherwise unavailable. If we are to create models that are

appropriate and accurate enough to answer the specific questions that will be most pressing

to TB decision-makers, future studies that increase our knowledge of (1) heterogeneity in
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TB dynamics across space and time, (2) modulators of TB natural history, and (3) the timing

of secondary infections from source cases will be particularly important. Success in the fight

against TB depends on the quality of our decisions about which interventions to implement,

and how to implement them – and models are essential tools in that decision-making

process. By targeting research to better inform those models’ assumptions, we can ensure

that future decisions result in better health not just for individual patients, but for

populations as a whole.
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Figure 1. Simplified TB Model
The basic structure that is common to many compartmental transmission models of TB.

Health states are represented by boxes and transitions are indicated by arrows. We highlight

assumptions necessary to estimate rates associated with four basic processes (in circles):

infection, rapid progression, reactivation, and treatment/recovery. Mortality (not shown) also

occurs from each box.
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Figure 2. The Effective Reproduction Number (Re) and the Transmission Chain of TB
Each box represents a person in the TB transmission chain. Parameters that have the greatest

influence on Re, and thus on projected TB incidence and mortality, in mathematical models

typically affect either the rate of TB transmission per infectious person-year (A), probability

of developing infectious TB (B), or duration of infectiousness (C).
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Figure 3. Sensitivity and Uncertainty of Model Outcomes with Parameter Variation
Bars represent the change in steady-state TB incidence in a simplified model of TB

transmission (Figure 1) that would occur with specified increases (black bars) and decreases

(white bars) in model parameters. The model is calibrated to globally representative TB

incidence and prevalence rates (Box 1). Panel A shows sensitivity of the model to a one-way

25% change in each parameter value given in Box 1. Panel B shows corresponding changes

in steady-state incidence when parameters are varied across a reasonable uncertainty range,

as specified (100% reduction corresponds to Re<1 or eventual elimination, and rightward-

pointing arrows denote changes greater than 150%). In both analyses, the 7 most influential

parameters describe either the probability of progression to active TB, the rate of TB

transmission per infectious person-year, or the duration of TB infectiousness. In a low-

incidence scenario (incidence 5 per 100,000/year), the rate of endogenous reactivation was

proportionally more important (ranked fourth in panel B), and the degree of protection

afforded by latent infection was less important (ranked last), but other findings were similar.

Within existing levels of uncertainty or heterogeneity, the TB transmission rate, probability

of rapid progression, and diagnosis/treatment rate could each generate steady-state TB

incidence rates across all reasonable values, demonstrating the importance of appropriately

specifying these parameters in setting-specific models. The 2 least influential parameters

describe non-TB mortality and relapse, and were not included in the “wish list” (Box 2).

ARTI, annual risk of TB infection; CDR, case detection rate (defined as the proportion of all

patients with TB who are detected)
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