
Adaptively Constrained Convex Optimization for Accurate Fiber
Orientation Estimation with High Order Spherical Harmonics

Giang Tran1 and Yonggang Shi2,★

1Dept. of Mathematics, UCLA, Los Angeles, CA, USA

2Lab of Neuro Imaging (LONI), UCLA School of Medicine, Los Angeles, CA, USA

Abstract

Diffusion imaging data from the Human Connectome Project (HCP) provides a great opportunity

to map the whole brain white matter connectivity to unprecedented resolution in vivo. In this paper

we develop a novel method for accurately reconstruct fiber orientation distribution from cutting-

edge diffusion data by solving the spherical deconvolution problem as a constrained convex

optimization problem. With a set of adaptively selected constraints, our method allows the use of

high order spherical harmonics to reliably resolve crossing fibers with small separation angles. In

our experiments, we demonstrate on simulated data that our algorithm outperforms a popular

spherical deconvolution method in resolving fiber crossings. We also successfully applied our

method to the multi-shell and diffusion spectrum imaging (DSI) data from HCP to demonstrate its

ability in using state-of-the-art diffusion data to study complicated fiber structures.

1 Introduction

With the advance of diffusion weighted MR imaging techniques from the Human

Connectome Project (HCP) [1, 2], large scale datasets acquired using sophisticated sampling

schemes are becoming publicly available. This provides unprecedented opportunities for

mapping the white matter fiber structure with higher spatial and angular resolutions. The

vast amount of data, however, also poses significant challenges for data analysis algorithms

that have focused mostly on conventional, single-shell acquisition schemes. In this work, we

propose a novel method for analyzing diffusion images with arbitrary acquisition schemes

by accurately reconstructing the fiber orientation distribution (FOD). We demonstrate our

method can achieve superior angular resolution and resolve fiber structures on both

simulated and in vivo data from the HCP.

The diffusion tensor model is practically the most popular method for studying major fiber

bundles with diffusion imaging data [3]. For the mapping of whole brain connectivity,

however, the tensor model is vastly insufficient as complicated fiber crossings occur

frequently throughout the brain. To overcome this difficulty, various techniques for high

angular resolution diffusion imaging (HARDI) were developed [4–9]. By representing the

FOD with spherical harmonics, the spherical deconvolution model has demonstrated great

potential in efficiently resolving complicated fiber crossings [6, 9]. The ill-posedness of the
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deconvolution problem, however, has hindered the use of high order spherical harmonics to

resolve fibers with small separation angles. To improve numerical stability, Laplacian or

Tiknohov regularizations [7, 9] were incorporated, but these models are limited to single-

shell acquisition schemes and only partially overcome the difficulty.

In this work we propose a new method for FOD estimation from data acquired with general

sampling schemes, which enables us to seamlessly process HCP data collected with either

the multi-shell or DSI schemes [10] illustrated in Fig. 1. At the core of our method is a

constrained convex optimization problem for spherical deconvolution with adaptively

chosen constraints. By adaptively selecting a minimal set of uniformly distributed

constraints, our method can easily use high order spherical harmonics to reconstruct crossing

fibers with very small separation angles. In our experiments, we demonstrate on simulated

data that our method outperforms a previous method [9] in reliably resolving fibers with

small crossing angles. We also apply it to data from the HCP to demonstrate its generality in

processing cutting-edge diffusion imaging data.

The rest of the paper is organized as follows. In section 2, we formulate the spherical

deconvolution problem in the general setting of analyzing data from arbitrary acquisition

schemes. The adaptively constrained convex optimization approach is then developed in

section 3. Experimental results are presented in section 4. Finally conclusions are made in

section 5.

2 Spherical Deconvolution Model

In this section, we develop the spherical deconvolution model for FOD reconstruction from

general acquisition schemes. At each voxel, the diffusion signal at the b-value bi and the

direction ui is denoted as s(bi, ui)(i = 1, ···, N). Let S denote the unit sphere, and f : S → ℝ+

the FOD. Given the single fiber response function k(b, u, w) for a fiber in the direction w,

the diffusion signal is expressed as the convolution of the FOD and the kernel:

(1)

where n is noise. Instead of estimating the kernel directly from the data [6], which is

difficult for general acquisition schemes such as DSI, we follow the single tensor model and

represent the kernel parametrically as:

(2)

where the only parameters λ1 ≫ λ2 = λ3 are the eigenvalues of the tensor model. These

parameters can be either chosen from previous literature or computed easily from the data.

For efficient computation, the FOD is represented with the spherical harmonics up to the

order L as:

(3)
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where  is the m-th real spherical harmonics at the order l = 0, 2, ···, L, and  is the

coefficient for the basis . Note that only even order spherical harmonics are used because

the FOD is symmetric on the sphere. From a signal processing perspective, high order

spherical harmonics are needed if we want to accurately represent or reconstruct crossing

fibers with really small separation angles. Due to numerical difficulties, typically spherical

harmonics up to the order of eight were used in previous work [6, 9], which limits their

capability in reliably resolving fiber crossing of small angles.

Using the Funk-Hecke theorem, we can express the diffusion signal as

(4)

with Gl(b, λ1, λ2) defined as:

(5)

where Pl is the Legendre polynomial of degree l.

Let s denote the vector of diffusion signals s(bi, ui) sampled at a discrete set of points (bi, ui)

(i = 1, ···, N). For simplicity, we denote  and  by Yj and xj, respectively, with

. Given the maximum order L of spherical 2 harmonics used, the total

number of basis functions is J = (L + 1)(L + 2)/2. Let x = [x1, ···, xj, ···, xJ] be the vector of

coefficients for the FOD, we can write (4) in matrix form as:

(6)

where n denotes the vector of noise, and A = B · G is the entry-wise product of two matrices

B and G defined as follows:

For each order l, the element Gl(bi) = Gl(bi, λ1, λ2) is repeated 2l + 1 times on the i-th row.

3 Adaptively Constrained Convex Optimization

In this section, we develop a novel approach for FOD estimation by solving the spherical

deconvolution problem as a constrained convex optimization problem. The key idea is the

adaptive selection of the set of constraints for every voxel to avoid overly constrain the

solution and affect reconstruction accuracy. The constraint we impose on FOD

reconstruction is motivated by its non-negativity condition. With the spherical harmonics
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representation up to a fixed order, however, it is impossible to completely eliminate negative

values in the FOD. It is thus critical to limit the negative components to the minimal extent

and ensure major fiber directions are captured. To achieve this goal, our strategy is to

constraint the FOD to be non-negative on a minimal set of uniformly distributed points on

the sphere.

With a remeshing algorithm [11], we build a collection of constraint sets  = {V1, V2, ···, }

with varying number of points on the sphere, where each member  is a

set of Q uniformly distributed points on the hemisphere of the unit sphere. With the

spherical harmonics representation, the requirement that f should be non-negative on VQ can

be expressed as:

(7)

where CQ is a matrix of size Q × J defined as

Given a specific constraint set VQ(Q = 1, 2, ···), the spherical deconvolution problem for

FOD reconstruction can be formulated as a constrained convex optimization problem:

(8)

Because this problem is convex, global minimum can always be found numerically with

software packages such as cvx [12]. With the FOD being non-negative on a set of uniformly

distributed points, we ensure that large negative components will not occur and most of the

energy of the FOD are contributed by physically meaningful, i.e., positive, components.

Because the complexities of fiber crossings are spatially varying across the brain, the

number of active constraints in (8) could be different as a result. Thus it is also unreasonable

to fix the number of constraints. To overcome this difficulty, we adaptively search through

the constraint collection  at every voxel to find the smallest Q such that the solution

satisfies:

(9)

This condition measures how successful the reconstructed FOD is able to focus its energy on

positive components. For example, if we pick δ = 25, we ensure more than 95% of the L1

energy of the FOD are from positive components. As a demonstration, we show in Fig. 2 the

FOD reconstruction results of two fibers using simulated diffusion data from 60 directions

Tran and Shi Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



with b=1000 s/mm2. The maximum order of spherical harmonics used here is L = 8. The

result in Fig. 2(a) is obtained from adaptively determined constraints, where Q = 73, and the

result in Fig. 2(b) is obtained by fixing Q = 100. We can see the overly constrained solution

is less sharp and one of its peaks is obviously misaligned with the true fiber direction.

For practical implementation, there is no need to start the search from Q = 1. Given a

maximum order L, we can pick a constraint set from experience and start the search there.

For L = 8, we typically start the search at Q = 60 and the reconstruction of the FOD in Fig.

2(a) took less than one second.

4 Experimental Results

In this section, we present experimental results to demonstrate our method on both simulated

and in vivo data from the HCP. In our experience, the FOD reconstruction results from our

method are very robust to the selection of the parameters in the kernel. For all experiments,

we thus fix the parameters for the kernel as λ1 = 0.0017 and λ2 = 0.0003 following the

literature [9], and the threshold in (9) as δ = 25.

4.1 Simulated Data

In the first experiment, we compare with the spherical deconvolution method in [9] on

simulated data. For two fibers with a crossing angle of 30°, we follow the multi-tensor

model to simulate the diffusion data from a single-shell acquisition scheme of 81 directions

with b = 3000 s/mm2. Rician noise was added to obtain a signal to noise ratio of 20. For

every parameter selection from both methods, the experiments were run 100 times to obtain

the mean and standard deviation of the FOD. For the spherical deconvolution method in [9],

the results with the maximum order L = 8 and L = 16 are plotted in Fig. 3(a) and (b). At the

order of L = 8, we chose the same regularization parameter 0.006 as in [9]. We can see that

the reconstructed FOD at this order cannot resolve the fiber crossing. When the order was

increased to L = 16, its result became highly oscillatory even though we increased the

regularization parameter to 0.02. With our adaptively constrained optimization method, such

oscillations were successfully suppressed and accurate results were obtained as shown in

Fig. 3(c). This demonstrates the superior ability of our method in resolving fiber crossings at

small angles with data from single-shell acquisition schemes.

4.2 Multi-shell Data from HCP

In the second experiment, we applied our method to the diffusion data of a subject from the

HCP that was acquired with a multi-shell sampling scheme as illustrated in Fig. 1(a). The

reconstructed FODs of an ROI on an axial slice, which is shown in Fig. 4(b), in the right

thalamus with L = 8 and L = 16 are plotted in Fig. 4(a) and (c). All FODs are color-coded

with the directions. The reconstructed FODs are consistent with known anatomical

knowledge that various fibers cross the thalamus to reach different cortical regions. The top-

right corner of the ROI touches the cortical spinal tract that goes from inferior to the

superior part of the brain. At this location, the FOD reconstructed with our method in both

Fig. 4(a) and (c) has only one major fiber direction, which is consistent with the orientation

of the cortical-spinal tract. By comparing the results in Fig. 4(a) and (c), especially regions
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highlighted by the dashed lines, we can clearly see that our method successfully uses high

order spherical harmonics to achieve better angular resolution of crossing fibers than results

reconstructed with low order spherical harmonics.

4.3 DSI Data from HCP

In the third experiment, we applied our method for FOD reconstruction using DSI data of a

subject from the HCP. As illustrated in Fig. 1(b), the diffusion data was acquired at 514

points in the q-space with b-values ranging from 400 to 10000 s/mm2. For an ROI on a

coronal slice shown in Fig. 5(b) that has crossing fibers possibly from the corpus callosum,

cortical spinal tract, and superior longitudinal fasciculus, we applied our method with L = 8

and L = 16 to compute the FODs. The reconstructed FODs are plotted in Fig. 5(a) and (c).

As a demonstration, we highlighted two FODs with dashed lines in Fig. 5(a) and (c). It

clearly shows the power of our method in using high order spherical harmonics to resolve

crossing fibers with small separation angles.

5 Conclusions

In this paper we developed a novel approach for the accurate reconstruction of FODs from

arbitrarily sampled diffusion imaging data. By solving the spherical deconvolution as an

adaptively constrained convex optimization problem, our method can robustly use high

order spherical harmonics to resolve complicated fiber crossings. We demonstrated the

power of our method on HCP data from both the multi-shell and DSI acquisition schemes.

For future work, we will integrate our method with tractography algorithms and investigate

its application in studying whole brain connectivity.
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Fig. 1.
An illustration of the two acquisition schemes from the HCP. (a) The multi-shell sampling

scheme with 270 directions distributed over three shells with b=1000,2000,3000 s/mm2. (b)

The DSI sampling scheme has 514 directions with b-values increasing from 400 to 10,000

s/mm2.
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Fig. 2.
FOD reconstruction from simulated diffusion data. The true fiber directions are plotted as

red lines.
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Fig. 3.
A comparison of 100 runs of FOD reconstruction results from simulated diffusion data. The

cyan surface is the mean FOD and the shaded surface is mean plus two standard deviation of

the FOD from 100 runs. Red lines indicate true fiber directions. (a) Method in [9]: L = 8. (b)

Method in [9]: L = 16. (c) Our method: L = 16.
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Fig. 4.
FOD reconstruction results from multi-shell diffusion data of the HCP.
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Fig. 5.
FOD reconstruction results from DSI data of the HCP.
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