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Abstract

Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) are characterized by widespread

pathological changes in the brain. At the same time, Alzheimer's disease is heritable with complex

genetic underpinnings that may influence the timing of the related pathological changes in the

brain and can affect the progression from MCI to AD. In this paper, we present a multivariate

imaging genetics approach for prediction of conversion to Alzheimer's disease in patients with

mild cognitive impairment. We employ multivariate pattern recognition approaches to obtain

neuroimaging and polygenic discriminators between the healthy individuals and AD patients. We

then design, in a linear manner, a composite imaging-genetic score for prediction of conversion to

Alzheimer's disease in patients with mild cognitive impairment. We apply our approach within the

Alzheimer's Disease Neuroimaging Initiative and show that the integration of polygenic and

neuroimaging information improves prediction of conversion to AD.
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I. Introduction

Alzheimer's disease (AD) and its prodromal stage Mild Cognitive Impairment (MCI) are

characterized by widespread pathological changes in the brain and present a growing health

problem. Early identification and prediction of AD is crucial for our ability to intervene in

the disease process with any success. As a result, much effort has been devoted toward the

development of computational predictive tools that could potentially facilitate the prediction

of AD. Image-based high-dimensional pattern classification has gained significant attention

in recent years, and has been found to be a promising technique for capturing complex

spatial patterns of pathological brain changes associated with AD and MCI [1], [2], [3].

At the same time, AD appears to be highly heritable with the complex genetic factors

affecting the timing of the disease [4]. Unfortunately, the predictive ability of individual

genetic risk factors is low. In particular, the best established genetic factor ε4 allele of

Apoliprotein E (APOE) [5] has been shown to be absent in 35%-50% patients with AD.

Moreover, others common DNA variants associated with AD that have much weaker

individual effects than the APOE-ε4 have been established. However, despite the
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individually weaker than the APOE-ε4 effects, analytic polygenic markers computed from

non-APOE common sequence variants have been shown to be associated with brain

pathology [6].

Several attempts have been made recently in the direction of integrating different types of

imaging and genetic information for pattern classification in the studies of aging and

Alzheimer's disease. Zhang et al. [7] integrated multimodal imaging and non-imaging (i.e.,

APOE) via a weighted combination of multiple kernels, which provided improvements in

the problem of discriminating Alzheimer's disease (AD) (or Mild Cognitive Impairment

(MCI)) and healthy controls. Similarly, a kernel-based approach to integrating imaging and

APOE information in the context of predicting AD has been developed in [8]. However,

despite the growing evidence about the polygenic nature of AD and the strong relationship

between the genetic profile and neuronal changes, little attention has been paid to

developing computational tools that incorporate neuroimaging and multiple candidate

single-nucleotide polymorphisms (SNPs) to predict conversion to AD.

In this paper, we present a multivariate imaging genetics approach for prediction of

Alzheimer's disease in patients with mild cognitive impairment. We employ a multivariate

pattern recognition approach to obtain a neuroimaging discriminator between the healthy

individuals and AD patients. We also create a multivariate polygenic discriminator of AD

and control populations. We then integrate the neuroimaging and polygenic discriminators

within a linear model to build a composite imaging-genetic predictor of conversion from

MCI to AD. We apply our approach within the Alzheimer's Disease Neuroimaging Initiative

(ADNI, www.loni.ucla.edu/ADNI) and show that the integration of polygenic and

neuroimaging information improves the accuracy of identifying MCI patients who will

convert to AD. Our results suggest that the AD-discriminative polygenic pattern is

particularly informative for prediction of AD in relatively older cognitively well-performing

individuals.

II. Method

A. Imaging information

In order to design the imaging-genetic predictor of AD conversion, we used the structural

imaging and the genetic information in of ADNI. We focused on the baseline structural MRI

evaluations obtained for 129 controls, 125 AD patients, 105 MCI converters (MCI-C), and

169 MCI non-converters (MCI-Nc). MR images were preprocessed following mass-

preserving shape transformation framework [9]. Each skull-stripped MR brain image was

first segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF),

by a brain tissue segmentation method proposed in [10]. Afterwards, each tissue-segmented

brain image was spatially normalized into a template space, by using a highdimensional

image warping method [11]. The total tissue mass is preserved in each region during the

image warping, which is achieved by increasing the respective density when a region is

compressed, and vice versa. Tissue density maps were generated in the template space,

reflecting local volumetric measurements corresponding to GM, WM and CSF.
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B. Genetic information

A list of candidate single nucleotide polymorphisms (SNPs) associated with AD was

acquired from the catalog of published genome-wide association studies (GWAS) (http://

www.genome.gov/gwastudies), an online, regularly updated database of SNP-trait

associations. The respective GWAS publications included only those attempting to assay at

least 100,000 single nucleotide polymorphisms in the initial stage and the SNP-trait

associations were limited to those with p-values < 1.0 × 10−5. In cases a SNP was not found

in the ADNI database, whenever possible, we selected a SNP from ADNI that was in high

linkage disequilibrium with the given SNP. As the result of the candidate variate selection

we obtained 42 SNPs. Additionally, we included APOE-ε4, resulting in a total of 43 genetic

variants. Each SNP was represented by one of the following binary triplets, with (1,0,0) and

(0,0,1) indicating the homozygosity of one of the two alleles, and (0,1,0) indicating the

heterozygous case. Notice, that our representation differs from the commonly used

representation where a SNP is represented by a single value (e.g., 0, 1 or 2), and, therefore,

does not assume invremental effects due to the allelic zygosity. In the case of APOE-ε4, the

absence, the heterozygous presence, and the homozygous presence of the allele were coded

as (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. As the result, after concatenating the binary

triplet representations for the 43 variants, the genetic information for a given subject was

represented with a 129-dimensional binary vector.

C. Classification

The overview of our approach is presented in Figure 1 and includes the following main

components: 1) Estimation of a multivariate image-based discriminator between controls

and AD patients; 2) Estimation of a multivariate polygenic discriminator between controls

and AD patients; 3) Integration of the imaging and polygenic discriminators to derive an

imaging-genetic marker of conversion to AD in MCI patients.

1) Multivariate imaging marker of AD—Given the MRIs of the patients with AD and

of the healthy subjects, our goal is to create an imaging marker that quantifies the presence

of the AD-related phenotypic pattern in the brain. For this purpose we employed the

nonlinear multivariate pattern recognition approach “COMPARE” [12], and detected

volumetric patterns that are good discriminators between AD and healthy control

populations. The detected patterns of volumetric regions were used to train a nonlinear

Support Vector Machines (SVM) [13] classifier with a gaussian kernel, and to obtain an

individualized classification-based score. For a given subject x, the score, i.e., the value of

the classification function (x), quantifies the presence of AD-like pathology in the brain

with positive values of the score indicating the presence of the AD-related pattern of brain

structure.

2) Multivariate polygenic marker of AD—We used linear SVM to build a polygenic

classifier between the controls and AD patients. The parameter of the linear SVM was

estimated within a cross-validation. For a given subject x, the non-binarized value of the

classification function (x) reflects the amount of the polygenic AD-related pattern in the

subject's genotype, with larger positive values indicating a more pronounced pattern.
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3) Integrated imaging-genetic marker of MCI conversion—Given a set of MCI

subjects X = {x1, …,xm}, we obtain the respective values of the imaging and genetic

prediction functions as  and . The distributions of the imaging

predictive values and genetic predictive values are normalized to be each of zero mean and

unit variance. Given the k-th subject's imaging and polygenic predictive scores  and ,

we represent the subject's composite imaging-genetic marker of AD as

(1)

where the weights βI and βG reflect our confidence in the imaging and genetic markers,

respectively. Given the classification accuracy αI of the image-based classifier , and the

classification accuracy αG of the genetic classifier  estimated on the training set in the task

of classifying AD and controls, the weights of the markers in the composite predictor are set

as βI = 1 − αG and βG = 1 − αI. Notice, that instead of setting the coefficients βI and βG to be

proportional to the accuracies of the respective classifiers in the AD/controls classification

task, we weight the imaging score with respect to the misclassification error estimated for

the genetic score, and vice versa. This choice is motivated by the fact that the accuracies of

classifying AD and control populations can be relatively high (i.e., as much as 90% for

image-based methods [2]), and it is preferable to compare different classifiers in terms of the

misclassification error, rather than in terms of the classification accuracy.

III. Results

A. Prediction of conversion from MCI to AD

We estimated the accuracy of our approach in the task of identifying MCI converters in the

MCI population. The area under the ROC curve (AUC) of the composite imaging-genetic

score applied to the task of classifying MCI-C and MCI-Nc subjects was 0.708. In

comparison, the accuracy of the imaging-based predictor was AUC = 0.687, and the

accuracy of the polygenic predictor was AUC = 0.587.

As the MCI is a heterogeneous condition, we analyzed the performance of the imaging-

genetic marker in different groups formed with respect to the cognitive performance as

assessed via the Mini-Mental State Examination (MMSE) [14]. For a specific MMSE

performance we selected individuals whose MMSE score fell within the ±1 interval, and

estimated the accuracies for the imaging-genetic and imaging-only markers in the selected

subpopulations. The plot in Figure 2 shows the differences in the AUC between the two

markers, with the positive values indicating higher AUC for the imaging-genetic marker.

The plot suggest that for the cognitively better performing individuals, the performance of

the imaging-genetic marker is superior to the performance of the marker that relies solely on

the neuroimaging.

Similarly, we estimated the accuracy of the marker in different age subgroups of the MCI

population. The plot in Figure 3 shows the differences in the AUCs between the two

markers estimated for the subpopulations that fell within a ±3 years intervals of the specific

ages. Contrary to what could be initially expected, the plot suggests that the genetic marker
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as estimated on the AD and control populations does not always provide improvement upon

neuroimaging for relatively younger subjects if considered within our linear model. In

contrast, noticeable improvement associated with the added value of genetic information

was achieved for relatively older individuals. It has to be mentioned that there was no

correlation between age and MMSE in the MCI population (r = −0.02).

Finally, we identified relatively older individuals with relatively high cognitive

performance. We analyzed the prediction accuracy for MCI subjects 80 years and older who

achieved at least 20 out of 30 points in the MMSE. The accuracy of the imaging-only

marker for the older cognitively moderate-to-well performing subpopulation was AUC =

0.746. At the same time, the accuracy of the imaging-genetic marker was noticeably higher

(AUC = 0.779).

B. Imaging and genetic patterns of AD

In order to further understand the behavior of the predictor, we analyzed the individual

imaging and genetic patterns estimated by the pattern classification approaches. The training

stage of the image-based classification approach [12] performs ranking of the volumetric

regions and selects the the subset of regions that yields highest classification accuracy. By

calculating the number of times a given voxel was included into the top-ranked volumetric

regions during leave-one-out evaluation in the training stage, it is possible to visualize

regions that were consistently used to build patterns discriminative of AD (see [12] for

details).

On the other hand, the linear SVM classifier used by us to derive the polygenic marker has

the form (x) = w·x+b, where b is the offset of the separating hyperplane from the origin in

input space, and the weights w determine the hyperplane's orientation. Importantly, the

relative importance of the features is indicated by the absolute values of w. Recall that in our

representation a SNP is represented by three features, and each genetic feature corresponds

to the absence, the heterozygous presence, or the homozygous presence of an allele.

Figure 4 shows the imaging end genetic patterns that most affect the individual imaging and

genetic markers. The spatial pattern of AD-related pathology in the brain included

hippocampal and temporal regions. At the same time, to represent the genetic pattern

affecting the discrimination between AD and controls, we identified ten genetic features that

were most important for the genetic AD/controls classifier. The top ten genetic features

represented aspects of allelic zygosity and dominance of five different SNPs. In particular,

all three features corresponding to the APOE-ε4 were present among the top ten genetic

features. Figure 4 lists the genes that contain (or are close to) the SNPs whose features have

large effect on the genetic classifier. In particular, the features representing a SNP in

TOMM40, a gene that is closely adjacent to APOE, were also among the features affecting

the genetic classifier.

IV. Conclusion

In this paper, we presented a multivariate imaging genetics approach for prediction of

Alzheimer's disease in patients with mild cognitive impairment. By combining the outputs
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of the polygenic and neuroimaging classifiers within a linear model, we showed that the

genetic information provides additive value in the task of predicting the conversion to AD.

Our analysis suggests that the polygenic pattern discriminating between AD patients and

controls can improve prediction, particularly in the cognitively moderately-to-well

performing individuals above 80 years. Additional longitudinal analysis would allow to

further assess the relationship between the imaging and genetic predictors of AD. Derivation

of imaging-genetic markers directly from the MCI population is also an interesting avenue

for future research.
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Figure 1.
Diagram of our approach.
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Figure 2.
Difference in AUCs obtained for the imaging-genetic and imaging-only markers for subjects

within the specific MMSE range. The values on the horizontal axis denote the centers of the

±1 MMSE intervals. Positive values in the plot indicate superior performance of the

imaging-genetic marker.
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Figure 3.
Difference in AUCs obtained for the imaging-genetic and imaging-only markers for subjects

within the specific age range. The values on the horizontal axis denote the centers of the ±3

years interval. Positive values in the plot indicate superior performance of the imaging-

genetic marker.
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Figure 4.
Imaging and genetic patterns estimated individually by the imaging and genetic classifiers.

Genetic features are represented by the genes that contain (or are close to) the SNPs that

have the largest effect on the genetic classifier.
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