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Abstract

Biomaterial-associated infection is one of the most common complications related with the

implantation of any biomedical device. Several in vivo imaging platforms have emerged as

powerful diagnostic tools to longitudinally monitor biomaterial-associated infections in small

animal models. In this study, we directly compared two imaging approaches: bacteria engineered

to produce luciferase to generate bioluminescence and reactive oxygen species (ROS) imaging of

the inflammatory response associated with the infected implant. We performed longitudinal

imaging of bioluminescence associated with bacteria strains expressing plasmid-integrated

luciferase driven by different promoters or a strain with the luciferase gene integrated into the

chromosome. These luminescent strains provided adequate signal for acute (0–4 days) monitoring

of the infection, but the bioluminescence signal decreased over time and leveled off by 7 days

post-implantation. This loss in bioluminescence signal was attributed to changes in the metabolic

activity of the bacteria. In contrast, near-infrared fluorescence imaging of ROS associated with

inflammation to the implant provided sensitive and dose-dependent signals of biomaterial-

associated bacteria. ROS imaging exhibited higher sensitivity than the bioluminescence imaging

and was independent of the bacteria strain. Near-infrared fluorescence imaging of inflammatory

responses represents a powerful alternative to bioluminescence imaging for monitoring

biomaterial-associated bacterial infections.
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1. Introduction

Device-related bacterial infections are a growing healthcare problem [1–3], accounting for

more than 50% of the 2,000,000 annual hospital-acquired infections associated with

indwelling devices and implants in the United States [2]. Staphylococcus aureus is one of

the most common pathogens associated with these cases. Bacterial colonization and biofilm

development can lead to both malfunction of the device and systemic infection, since

biofilms are complex cooperative communities, and such biofilm bacteria are nearly

impervious to antimicrobial therapy or host defense mechanisms [4,5]. In most cases, the

affected devices must be removed to eliminate the infection, given the fact that currently

there are no drugs that specifically target bacteria in biofilms [6–8].

A requirement to efficiently treat implant-associated infections are in vivo monitoring

approaches that allow better understanding and control of biofilm formation, together with

novel methods for targeting efficient drug candidates [9]. Optical imaging of bacterial

infections in vivo using engineered bioluminescent bacterial strains is a widely used

approach for spatial and temporal assessment of the infection [10]. This method is based on

bioluminescent bacteria expressing a luciferase-based reporter system that emits light that

can be monitored longitudinally and nondestructively in the same animal.

In view of the fact that biomaterial-associated infections modulate the inflammatory

response to the biomaterial, changes in inflammatory markers may be used to improve

monitoring of an ongoing infection [11]. In particular, reactive oxygen species (ROS) form

part of the oxygen-dependent bactericidal mechanisms that phagocytic cells employ [12].

Near-infrared fluorescence (NIRF) imaging probes, such as hydrocyanines, allow real-time

fluorescence imaging and ROS detection in the vicinity of an implant [13]. Moreover, NIRF

imaging is an excellent noninvasive method for whole-body scanning that can determine the

extent of the infectious disease throughout the body, especially in clinically challenging

cases involving trauma, infection, and compromised tissue beds.

Herein, we directly compared two imaging approaches of implant-associated infection:

bacteria engineered to produce luciferase to generate bioluminescence and ROS imaging of

the inflammatory response associated with the infected implant. These approaches were

correlated to bacterial counts before and after 7 days of implantation (Fig. 1).

2. Materials and methods

2.1. Disk fabrication

Poly(3-hydroxyoctanoate-co-hydroxyhexanoate), PHOHHx, was kindly provided by

Bioplolis S.L. The monomer composition of PHOHHx was determined by gas

chromatography-mass spectrometry (GC-MS) as previously described [14] and consisted in
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8.5% 3-hydroxyhexanoate (OH-C6) and 91.5% 3-hydroxyoctanoate (OH-C8). An optimized

downstream processing was applied to eliminate endotoxins as previously described [15].

Briefly, 1 g of PHOHHx was dissolved in 100 mL of chloroform at 40 °C under vigorous

stirring, the suspension was pressure filtered and the polymer was precipitated by addition of

non-solvent methanol. Finally, the polymer was dried under vacuum at 40 °C for 48 h. This

procedure was repeated two times to obtain PHOHHx with endotoxin units (EU) <20 EU

g−1, in compliance with the endotoxin requirements for biomedical applications (FDA) [16].

The endotoxin content was measured using a Limulus amebocyte lysate (LAL)-test

(Pyrogent Plus Single Test Kit, Lonza) and the endotoxin content was determined to be <15

EU g−1.

Poly(ethylene terephthalate) (PET) disks (6 mm diameter) were coated with PHOHHx by

solvent-casting. PHOHHx dissolved in chloroform (2% w/v) was applied over sterile,

endotoxin-free PET disks (kindly supplied by ACCIONA, Barcelona, Spain), in a dust-free

atmosphere. The coatings were allowed to dry for 72 h at room temperature and the resulting

PHOHHx-coated disks (referred to hereafter as PHOHHx disks) were sterilized with

ethylene oxide at 40 °C.

2.2. Bacterial strains, media and growth conditions

The bacterial strains used throughout this study were Staphylococcus aureus subsp. aureus

ATCC 12600, its two derivate luminescent strains S. aureus (pAmiBlaz) and S. aureus

(pAmiSPA), and the S. aureus Xen29 strain containing lux operon stably inserted into the

chromosome (Caliper Life Sciences, PerkinElmer Company). All bacterial strains were pre-

cultured in trypticase soy agar (TSA) plates and incubated at 37 °C for 24 h. The appropriate

selection antibiotics, chloramphenicol (10 μg mL−1) or kanamycin (200 μg mL−1), were

added when indicated. Trypticase soy broth (TSB, Difco) was used as the growth medium to

culture all bacterial pathogens.

2.3. Construction of S. aureus luminescent strains

Bioluminescent S. aureus strains were generated by transforming ATCC 12600 strain with a

modified Photorhabdus luminescens luxCDABE (lux) gene cluster using the pAmiBlaz or

pAmiSPA plasmids. To construct the vectors, blaZ (β-lactamase) and spa2 (protein A)

promoters were inserted into promoterless-lux cloning vector pAmilux [17] to yield

pAmiBlaz or pAmiSPA plasmid, respectively. Vectors were introduced into the cells by

electroporation as previously described [18]. Transformants were selected on TSA plates

containing chloramphenicol (10 μg mL−1). Successful transformation was confirmed by

bioluminescent colonies screening using an IVIS Lumina bioimaging system (Xenogen).

Expression of lux operon in pAmiBlaz vector was driven by the BlaZ promoter, whereas in

pAmiSPA the lux operon was controlled by the protein A promoter. These two promoters

were used with the aim to generate different expression patterns. The BlaZ promoter was

used for constitutive expression of luciferase. In contrast, the S. aureus protein A is involved

in the development of biofilm-associated infections [19]; therefore the spa promoter drives

the expression of luciferase during biofilm development. S. aureus Xen29 (Caliper,
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PerkinElmer) is a commonly used, commercially available strain containing luciferase

construct stably integrated into the chromosome.

2.4. Preparation of hydro-indocyanine green

Hydro-indocyanine green (H-ICG) was synthesized from indocyanine green dye (ICG)

(Acros Organics) by reduction with sodium borohydride as described [13]. Briefly, 2 mg of

ICG was dissolved in 4 mL of methanol and reduced with 2–3 mg of sodium borohydride

(Aldrich). Solvent was removed by stirring reaction mix for 5 min under reduced pressure.

The dye was nitrogen capped and stored overnight at −20 °C.

2.5. Sample preparation, implantation and bioimaging

To test the biofilm formation of the S. aureus parental strain and its bioluminescent

derivatives in vivo, bacterial strains were first cultivated overnight in TSB with aeration at

37 °C. The cultures were diluted with fresh TSB to reach absorbance A595 = 0.1 and

incubated for 3–4 h to A595 = 0.7. Afterwards, bacterial test inocula were prepared in 2 mL

of phosphate-buffered saline, pH 7.2 (PBS), to serve as a cell suspension. Bacterial

suspensions (3.5 × 102 to 3.5 × 108 CFU/mm2) were placed on sterile endotoxin-free

PHOHHx disks. Prior to implantation, disks pre-colonized with bacteria were placed in

sterile containers and incubated 30 min under static conditions at 37 °C.

National Institutes of Health (NIH) guidelines for the care and use of laboratory animals

were followed [20]. All surgical procedures were approved by the Institutional Animal Care

and Use Committee at the Georgia Institute of Technology. Sterile, endotoxin-free disks as

well as bacteria pre-colonized disks were implanted subcutaneously in the back of 6–8

weeks old male BALB/c mice (Jackson Laboratories) anesthetized by isofluorane. A single

1 cm incision was made on the dorsum proximal to the spine, and a subcutaneous pocket

laterally spanning the dorsum was created. Sterile disks (two per mouse, one on either side

of the spine) were implanted, and the incision was closed using sterile wound clips. For

analysis of each experimental group, 3 or more mice were imaged.

For bioimaging of luminescent bacteria, mice were anesthetized with isofluorane and

imaged with a CCD camera (IVIS Lumina® bioimaging system, Xenogen) directly

following implantation and 1, 4, 7 days post implantation. Bioluminiscence was integrated

using Living Image® software Version 3.1 (Xenogen). Total counts from S. aureus were

collected during a 2 min exposure using the IVIS Imaging System and Living Image

software (Xenogen Corporation). Bioluminescence images were displayed using a pseudo-

color scale (blue representing the least-intense light and red representing the most-intense

light) that was overlaid on a gray-scale image to generate a two-dimensional image of the

distribution of bioluminescent bacteria in the animal. To account for the background

luminescence, one uninfected mouse was imaged along with the infected animals. The total

counts from a region were quantified using the Living Image software package (Xenogen

Corporation), and the data are presented as total counts contained within each region.

For bioimaging of ROS, 30 μL of H-ICG at a concentration of 1 mg mL−1 in sterile water

was injected near the vicinity of the implant as described [13]. The same animals used to
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image bioluminescence were used to evaluate NIRF signals. Thirty minutes after dye

injection, the whole body of the animal was scanned in an IVIS Lumina® bioimaging system

(Xenogen). Biofluorescence was integrated using Living Image® software Version 3.1

(Xenogen). ROS bioimaging was performed 7 days post-implantation.

2.6. Explant analysis

After euthanasia, disks were carefully explanted with the intact surrounding tissue to avoid

disrupting the cell-material interface. For immunostaining, explants were embedded in

optimal cutting temperature compound (Tissue-Tek) and cryosectioned at 10 μm. Sections

were fixed in 4% paraformaldehyde and stained with monoclonal antibodies (Abcam)

against macrophage (CD68) or neutrophil (NIMP-R14) markers. Alternatively, samples

were incubated with monoclonal antibodies against S. aureus (Abcam). AlexaFluor 488-

conjugated goat antibody (Invitrogen) was used as a secondary antibody. The sections were

mounted with antifade mounting media containing 4′,6-diamidino-2-phenylindole (DAPI,

Vector Labs) and imaged under a Nikon C1 confocal microscope system. Five-six fields per

sample were acquired and ImageJ software was used to count the fluorescently labeled cells.

For CFU bacteria counting, each explant was placed in a glass tube containing 1 mL of PBS

and sonicated for 10 min in an ultrasonic bath to remove adhered bacteria. Afterwards, two

more sonicating cycles were applied (5 min and 30 s) interspersed with 30 s of vortexing.

Serial dilutions were plated on TSA plates supplemented with kanamycin (50 μg mL−1) to

determine the number of viable S. aureus Xen29 or chloramphenicol (10 μg mL−1) to

determine the number of S. aureus carrying pAmiBlaZ or pAmiSPA. CFU were determined

after 24 h of incubation at 37 °C.

2.7. Statistical analysis

Statistical analysis was performed by two-way ANOVA using Tukey post-hoc test with P ≤

0.05 considered significant. Pair-wise comparisons were performed using Bonferroni post-

hoc test with P ≤ 0.05 considered significant.

3. Results

3.1. Bioluminescent S. aureus permits short-term monitoring of Biomaterial-Associated
Infections

To monitor infection profile in an in vivo murine model, PHOHHx polymer disks were

loaded with bioluminescent S. aureus strains carrying different genetic configurations of the

lux operon. S. aureus (pAmiBlaz) and S. aureus (pAmiSPA) contained the luciferase

construct in an antibiotic-selective plasmid, whereas S. aureus Xen29 contained the

luciferase gene integrated into the bacterial chromosome.

PHOHHx disks pre-colonized with different inocula of S. aureus luminescent strains were

implanted subcutaneously in BALB/c mice and bioluminescent signal intensity was

monitored over a 7-day period. For infected implants, the bioluminescence signal was

significantly higher than readings for sterile PHOHHx implants (Fig. 2a,b). Bioluminescent

signal for S. aureus (pAmiBlaz) and S. aureus (pAmiSPA) strains was detected only in a
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local site with high bacterial densities (3.5 × 106 – 3.5 × 108 CFU/mm2), while lower

bacterial densities did not emit detectable signal at any time point (Fig. 2a). The higher

inocula, 3.5 × 107 and 3.5 × 108 CFU/mm2, of both strains had concentration-dependent

increases in bioluminescent signals and showed maximal value 1 h post-implantation (Fig.

2b). Differences in bioluminescence levels due to differences in promoter activity were

evident. Over the next 4 days post-implantation, bioluminescent signal progressively

decreased for both S. aureus (pAmiBlaZ) and S. aureus (pAmiSPA) strains, and only the

highly expressed spa promoter provided detectable signal. At day 7 post-implantation, the

bioluminescence signal for all strains was equivalent, although the signal was higher than

sterile controls (Fig. 2b).

Because bacterial luciferase is an energy-requiring oxygenase and as such a reporter of cell

metabolic activity, it is likely that during the stationary phase of bacterial growth the

intensity of luminescent signal is related to the cell metabolic activity rather than to the

promoter activity. Additionally, the drop-off in signal could possibly be due to loss of the

plasmid and/or reductions in bacteria numbers. The correlation between signal intensity and

the number of bacteria containing plasmid was investigated by growing S. aureus

(pAmiBlaz) and S. aureus (pAmiSPA) cells on the plates containing selective marker. CFU

of bacteria carrying pAmiBlaz or pAmiSPA prior to implantation was compared with CFU

of bacteria harboring plasmid up on disk retrieval on day 7. A decreased number of bacteria

carrying plasmid was clearly observed (Fig. 3a) when grown on selective plates (see

Materials and methods section for details), indicating a possible cause for the loss of

bioluminescence signal.

To examine whether the stable integration of the lux operon into the bacterial chromosome

overcomes this limitation of the S. aureus (pAmiBlaz) and S. aureus (pAmiSPA) strains

carrying the luciferase construct in a plasmid, we tested the S. aureus Xen29 strain. Using S.

aureus Xen29, we were able to monitor the infection in the experimental model applying

lower bacterial inoculums (3.5 × 103 and 3.5 × 104 CFU/mm2) (Fig. 2a,b). Following

implantation of pre-colonized disks, the bioluminescence measurements increased

exponentially over 24 h and peaked on day 1 post-implantation (approximately 5.5 log

(luminescence-total counts/disk) for bacterial inoculum 3.5 × 104 CFU/mm2 and 4.8 log

(luminescence-total counts/disk) for bacterial inoculum 3.5 × 103 CFU/mm2). The high

signal for Xen29 compared to the other strains is attributed to differences in the promoter

and construct configuration. However, similar to our observations for the strains carrying the

luciferase plasmid, the bioluminescence signal decreased at day 4 post-implantation and

reached equivalent levels as the other bioluminescent strains by day 7 (Fig. 2b). Bacteria

counts indicated significant loss in the number of viable bacteria at explant (Fig. 3b); this

loss in viable bacteria is mostly likely due to an inflammatory response and accounts for the

loss in bioluminescence signal. Taken together, these results demonstrate that bacteria

strains expressing luciferase can be used to image infection short-term but none of the

strains tested was suitable for monitoring chronic infections above a bacteria threshold (3.5

log CFU/mm2) in this model of biomaterial-associated infection.
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3.2. NIRF imaging of infection-associated inflammation

We next applied NIRF imaging as a tool to examine biomaterial-associated infections using

hydrocyanine dyes as an alternative to bioluminescent bacteria. Because inflammation

patterns are a key correlate of the presence of an infection [21,22], the NIRF ROS sensor H-

ICG was used to measure the levels of local inflammation associated with the infected

biomaterial. Based on previous studies where biomaterial associated inflammation was

longitudinally monitored using H-ICG [13,23], we observed the clearest evidence of NIRF

signal at 7 days. Therefore, at 7 days post-implantation, H-ICG was injected in the vicinity

of infected PHOHHx disks with a low bacteria inoculum (3.5 × 103 or 3.5 × 104 CFU/mm2)

and animals were imaged in order to directly compare the two imaging modalities, NIRF

and bioluminescence (Fig. 4). Increases in bacteria dose were clearly detected by imaging

ROS via H-ICG signal, and these levels were significantly higher than the ROS signal for

inflammation associated with sterile implants (Fig. 4b). Importantly, the H-ICG signal was

independent of the bacteria strain used. In contrast, these lower bacteria densities were

undetectable by imaging of bioluminescence (Fig. 5). NIRF imaging of infection-related

inflammation using H-ICG provided readings that correlated with bacterial concentration

independently of the S. aureus strain used (Fig. 4b; Fig. 5).

3.4. ROS signal correlate with inflammatory cell recruitment of infected biomaterials

We analyzed macrophage (CD68) and neutrophil (NIMP-R14) recruitment to the implant at

day 7 post-implantation by immunostaining (Fig. 6a–f). Both macrophages and neutrophils

were recruited to the implant. Quantification of the number of cells staining for these

markers revealed an increasing trend in neutrophil and macrophage recruitment with

increased bacteria dose (Fig. 6g).

Sections were also stained for S. aureus using a commercial antibody. Grape-like clusters,

characteristic for Staphylococcus species, stained positive for S. aureus were widely present

in all samples that were pre-colonized by bacteria prior to implantation (Fig. 7). Bacterial

cells were observed only in the vicinity on contaminated implants and not surrounding

tissues (SFig. 1), demonstrating the pattern of localized infection. Additionally, initial signs

of tissue damage around infected implants became evident with increasing number of

bacteria used to pre-colonize disks. Tissue necrosis was present for inoculums of 3.5 × 108

CFU/mm2 or higher. DAPI-stained nuclei lost sharp borders and were completely destroyed

(Fig. 7d,h). This phenomenon was observed only in the near vicinity of contaminated

implant, whereas the cells of tissue located farther from the implant did not show signs of

cell death (SFig. 1).

4. Discussion

Implantation of biomedical devices facilitates infection, since the biomaterial provides a

surface for bacterial colonization and biofilm formation. Upon implantation, proteins and

other biomacromolecules immediately coat the device and promote bacteria adhesion

[24,25]. S. aureus harbors numerous cell wall-bound surface proteins that contain binding

domains for mammalian proteins [26]. Early detection of these infections prior to formation

of a recalcitrant biofilm is of great clinical importance. Hence, there is compelling need for
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the development of new sensitive diagnostic techniques for biomaterial-associated

infections.

Conventional methodologies for monitoring pathogens in vivo are cumbersome and include

biological assessment such as biopsies, biochemical and genetic testing. Therefore, we

focused on developing a minimally-invasive imaging strategy for in vivo monitoring of

bacterial infection on polymeric implants. In this study, we directly compared two imaging

approaches: bacteria engineered to produce luciferase to generate bioluminescence and ROS

imaging of the inflammatory response associated with the infected implant. Bioluminescent

bacteria strains are widely used in the field to study the progression of a bacterial infection.

We performed longitudinal imaging of bioluminescence associated with bacteria strains

expressing luciferase plasmids driven by different promoters or a commercially available

strain with the luciferase gene integrated into the chromosome. These luminescent strains

provided excellent signal for acute (0–4 days) monitoring of the infection, but the

bioluminescence signal decreased over time and leveled off by 7 days post-implantation

(Fig. 2). We attribute this loss in bioluminescence signal primarily to changes in the

metabolic activity of the bacteria. Because biofilm-associated bacteria mostly exist in a

stationary phase-like state where transcription and translation are markedly reduced [4], we

expect for luciferase expression to decrease as bacteria form biofilms. Notably, in one of the

strains evaluated, luciferase was driven by the promoter of the spa2 gene responsible for

expression of a S. aureus surface protein synthesized during biofim formation [20].

However, this construct did not increase the intensity of bioluminescence signal.

Additionally, the decrease of number of bacteria carrying plasmid contributed to the loss of

bioluminescence signal. The loss in bioluminescence signal was even observed when using a

S. aureus strain carrying the lux operon stably integrated in the chromosome. In addition to

the signal loss attributed to changes in metabolic activity in the bacteria, the intrinsic blue-

green spectral output of lux (λmax = 425 nm) limited tissue penetration and the detection

limit of this approach. Importantly, the magnitude and kinetics of luciferase expression were

dependent on the specifics of the promoter and gene construct. Bioluminescence monitoring

has been used as a tool to validate the efficiency of antibacterial treatment that implies short

term screening [27,28]. Importantly, it has been reported that bioluminescence imaging

could monitor chronic infection, but is strongly related to the infection model and bacterial

strain used [29,30].

As an alternative to bioluminescence imaging of luciferase-expressing bacteria, we

evaluated NIRF imaging of ROS generated by the inflammation associated with bacterial

infection. NIRF imaging offers excellent characteristics for optical imaging enabling deeper

tissue penetration and sensitivity [31]. Indeed, several NIRF probes for in vivo imaging of

bacterial infections have been reported [32–38]. The sensing mechanism for these probes is

based on metabolic conversion of probe inside bacteria or molecules with high affinity for

bacterial membrane proteins. As discussed previously, the metabolic activity in many

bacterial species vary among planktonic and biofilm states, therefore limiting the wide

applicability of these probes. In addition, many of these probes have not been validated for

imaging biofilm associated with a biomaterial. In contrast, we show that the ROS sensor H-

ICG could provide sensitive and dose-dependent signals of biomaterial-associated bacteria.
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In addition, ROS imaging exhibited higher sensitivity than the bioluminescence imaging.

Importantly, the ROS signal was independent of the bacteria strain (Fig. 4); this is a major

advantage over bioluminescence imaging because it does not require the use of a luciferase-

expressing bacteria strain. Additional characterization with other bacterial species and

biomaterials is necessary to fully establish NIRF imaging of inflammatory responses as an

effective strategy to monitor biomaterial-associated infections. Although the ROS signal for

bacteria-colonized implants was significantly higher than the signal for sterile implants, the

ROS probe would require calibration to discriminate between biofilm-containing and sterile

implants, and this calibration may vary significantly due to variability among patient,

device, implant location, and biofilm characteristics. Nevertheless, NIRF imaging of

inflammatory responses represents a powerful alternative to bioluminescence imaging for

monitoring biomaterial-associated bacterial infections in animal models.
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Figure 1.
Experimental timeline for comparison of bioimaging approaches of biomaterial-associated

infection. PHOHHx disks were pre-colonized with engineered bioluminescent bacteria.

Following counting bacteria and bioluminescence imaging, disks were implanted

subcutaneously. Bioluminescence was measured at 0, 1, 4, 7 days. After ROS imaging at

day 7, disks were retrieved and analyzed for bacterial counts and immunostaining.
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Figure 2.
Temporal progression of PHOHHx implant associated infection using different S. aureus

luminescent strains. (a) Bioimaging data of animals scanned in an IVIS® imaging system for

monitoring the intensity of S. aureus (pAmiBlaz), S. aureus (pAmiSPA) and S. aureus

Xen29 luminescent signal. (b) Quantification of luminescence data from animals receiving

subcutaneous PHOHHx implant pre-colonized with different S. aureus (pAmiBlaz), S.

aureus (pAmiSPA) and S. aureus Xen29 CFU (n ≥ 3 mice/time point).
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Figure 3.
Quantification of plasmid-containing bacteria (a) and number of viable cells (b). (a) S.

aureus cells containing pAmiBLAZ or pAmiSPA previous to implantation and 7 days-post

implantation was screened on TSA plates supplemented with chloramphenicol (10 μg

mL−1). (b) The number of viable S. aureus Xen29 cells previous to implantation and 7 days-

post implantation determined on TSA kanamycin (50 μg mL−1) plates.
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Figure 4.
NIRF imaging approach to detect PHOHHx implant-associated infection with different S.

aureus strains at 7 days post-implantation. (a) Bioimaging data of animals scanned in an

IVIS® imaging system for in vivo ROS imaging of inflammation associated with implant

infection using H-ICG sensor. (b) Quantification of ROS fluorescence data from mice with

PHOHHx implants incubated with 3.5 × 103 CFU/mm2 (open bars), 3.5 × 104 CFU/mm2

(closed bars) and sterile PHOHHx implant (open black bar) (n ≥ 3 mice/time point).
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Figure 5.
Comparative representation of near IR fluorescence total efficiency (left axis) and

bioluminescence total count (right axis) of S. aureus pre-colonized disks. NIRF imaging

(bars) and bioluminescence imaging (line) of same S. aureus pre-colonized disks was

compared in the same animals at 7 days post-implantation.
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Figure 6.
Immunohistochemical staining for macrophages (CD68+) and neutrophils (NIMP-R14) in

infected implant-associated inflammation. (a–c) Representative co-localization images of

CD68+ and DAPI stained nuclei in (a) sterile PHOHHx implant, (b) PHOHHx implant pre-

colonized with 3.5 × 103 CFU/mm2, and (c) PHOHHx implant pre-colonized with 3.5 × 105

CFU/mm2. (d–f) Representative co-localization images of NIMP-R14+ and DAPI stained

nuclei in (d) sterile PHOHHx implant, (e) PHOHHx implant pre-colonized with 3.5 × 103

CFU/mm2, and (f) PHOHHx implant pre-colonized with 3.5 × 105 CFU/mm2. (g)

Quantification of CD68+, NIMP-R14+ and total number of cells stained positive for CD68+

and NIMP-R14+ (n = 4 disks/bacterial concentration, *P < 0.05). Scale bar 10 μm.
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Figure 7.
Immunochemical staining for (a–d) S. aureus (pAmiBLAZ) and (f–g) S. aureus (pAmiSPA)

in PHOHHx implant associated infection. (a,e) Sterile PHOHHx implant, (b,f) 3.5 × 106

CFU/mm2, (c,g) 3.5 × 107 CFU/mm2, and (d,h) 3.5 × 108 CFU/mm2. S. aureus marked with

AlexaFluor 488-conjugated antibody shown in green, nucleus of cells surrounding implant

DAPI stained and represented in blue. White arrows indicate zones of tissue necrosis. Scale

bar 10 μm.
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