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Abstract

Donor organ scarcity remains a significant clinical challenge in transplantation. Older organs,

increasingly utilized to meet the growing demand for donor organs, have been linked to inferior

transplant outcomes. Susceptibility to organ injury, reduced repair capacity, and increased

immunogenicity are interrelated and impacted by physiological and pathological aging processes.

Insights into the underlying mechanisms are needed to develop age-specific interventional

strategies with regards to organ preservation, immunosuppression, and allocation. In this

overview, we summarize current knowledge of injury and repair mechanisms and the effects of

aging relevant to transplantation.
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Introduction

In an effort to meet the increasing demand for supply in transplantation, the utilization of

organs from older donors has become commonplace. Indeed, donor age has steadily

increased over the last decades. Some countries have initiated efforts to optimize allocation

of older donor organs. The Eurotransplant Senior Program (ESP), for example, was

established in 1999 with the aim of increasing the utilization of organs from donors >65

years and allocating them to older recipients. This program has focused on limiting ischemic

times, thereby recognizing age-specific injury and repair processes. Consequently, the

utilization of older organs for transplantation has risen in this program. Although

transplantation of older organs has proven to be effective in expanding the donor pool,

advanced donor age has been linked to inferior transplant outcomes. A thorough

understanding of age-related injury and repair mechanisms is needed to develop effective

interventional strategies with the goals of improving transplant outcomes while increasing

the utilization of older organs.

Effects of donor age on clinical transplant outcomes

In kidney transplantation, donor age is a limiting factor of long-term graft survival for

organs from both deceased and living donors (1, 2). Likewise, donor age has been linked to

delayed graft function (DGF) (1, 2) and higher rates of acute rejection (3, 4). At the same

time, DGF has been associated with higher rates of acute rejection episodes (5). Both DGF

(5) and acute rejection episodes (6), in turn, are independent predictors of graft survival. Of

note, frequencies of acute rejection (4) and graft survival (7) improve when older organs are

transplanted into older recipients. Age does not only impact outcomes in renal

transplantation, and organ-specific aspects are of relevance. In liver transplantation, donor

age is a strong risk factor of graft failure (8). In addition, donor age increases the risk of

HCV recurrence (9) and fibrosis progression (10), and antiviral therapies are less efficient

(11). Donor age has also been shown to predict patient survival in heart transplantation (12).

Moreover, donor age was associated with the highest increase in graft failure for pancreas

transplantation (13). In lung transplantation, donor age >65 year correlated with

compromised patient survival in a large retrospective series (14). Of note, however, other

studies demonstrated comparable outcomes of donors >55 years with those of younger

donors (15, 16).

Physiological aging

Aging is characterized by processes of cellular senescence and low-grade inflammation.

Cellular senescence refers to a cellular state of growth arrest that can be induced by

endogenous or exogenous stressors. These stressors comprise critical telomere shortening,

DNA damage, oncogene mutations and oxidative stress, all activating the p53 and p16INK4a

tumor suppressor pathways and resulting in cell cycle arrest (17). During the aging process,
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senescent cells accumulate (18). Although senescent cells remain viable, they exhibit an

altered phenotype. While remaining metabolically active, senescent cells are characterized

by compromised replication and resistance to apoptosis. The accumulation of senescent cells

induced by telomere shortening impairs an organ’s ability to repair and to regenerate

subsequent to injury (19, 20). Interestingly, elimination of senescent cells has

experimentally been shown to delay onset and progression of age-related diseases (21).

Chronic inflammation is a hallmark of aging and has been termed inflamm-aging (22).

Chronic antigenic stress originating from a compromised clearance of self-antigens and

exogenous antigens, such as microbes is thought to contribute to inflammation (23).

Moreover, age is related to increased levels of reactive oxygen species (ROS) (24). ROS, in

turn, activate MAPK and NF-kB pathways, leading to the expression of inflammatory

cytokines and chemokines (25). Additionally, ROS induce formation of the NLRP3

inflammasome, leading to the expression of IL-1β (26). More recently, a role for senescent

cells in chronic inflammation has been established. Senescent cells maintain a state of low-

grade inflammation by secreting proinflammatory cytokines, chemokines and proteases in

response to DNA damage, which has been labeled as the senescence-associated secretory

phenotype (SASP) (27). DNA injury induces the activation of DNA damage response

(DDR) genes that ultimately activate NF-kB pathways, leading to cell activation and death

(28).

Injury and repair in the aging organ

During transplantation, temporary deprivation of oxygen and nutrients is inevitable, which

in combination with subsequent reperfusion events, results in organ damage. As a

consequence to aging processes, older organs are more prone to deleterious insults (Fig 1.).

Organ-specific age-related injuries

The aging process and related diseases affect organs in distinct ways and have organ-

specific effects relevant to transplantation. All organs experience a decline in functional

mass with age (29–31). For the kidney, these processes have been linked to a reduced ability

to recovery from graft injury and compromised transplant outcomes. A reduced nephron

mass is known to be a predictive factor for renal disease progression and graft outcome (32).

Moreover, reduced numbers of nephrons have been linked to hyperfiltration and subsequent

damage (33). Additionally, donor age correlates with interstitial fibrosis, tubular atrophy and

glomerulosclerosis (34), possibly mediated by mechanisms of cellular senescence (35). In

the liver, aging is associated with nonalcoholic steatohepatitis (NASH) and fibrosis (36).

Consequences of steatosis on microcirculatory flow, energy homeostasis and inflammation

have been implicated as injury mechanisms (37). In heart transplantation, development of

cardiac allograft vasculopathy (CAV) is a significant factor of long-term graft survival (38)

and donor age has been shown to be the strongest predictor for the onset of CAV (39). CAV

is characterized by diffuse intimal thickening and luminal narrowing, caused by both

alloimmune-dependent and -independent factors (40). The prevalence of coronary lesions

varies from 17% in individuals <20 years old to 85% in individuals >50 years old (41), with

pre-existing lesions predicting the development of CAV (42). Taken together, there is strong
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evidence that age imprints an organ-specific propensity of graft injury and a compromise in

the ability to recover, leading to reduced allograft function and survival.

Ischemia reperfusion injury

Ischemia reperfusion injury (IRI) encompasses the combined injury to an organ subsequent

to ischemia and deprivation of nutrients and oxygen, with subsequent reperfusion injury

caused by mitochondrial failure, sterile inflammation, and endothelial cell dysfunction.

During the ischemic phase, cellular maintenance of pH, ion homeostasis, and cell integrity

are compromised by ATP depletion, leading to a process called oncosis that comprises cell

swelling, rupture and cell death (43), Moreover, apoptotic pathways are activated and result

in further cell loss. The capacity to maintain adequate levels of ATP is reduced with aging,

possibly linked to the down-regulation of electron transport enzymes (44) or ROS-induced

damage of mitochondrial DNA, impairing mitochondrial function (45).

The reperfusion phase is characterized by a burst of reactive oxygen species (ROS),

induction of a sterile inflammatory response, congestion of the microcirculation known as

the no-reflow phenomenon, and endothelial dysfunction. Under physiologic conditions,

mitochondria generate ROS by leakage of electrons from the oxidative chain. It is well-

established that aging is associated with an increase in basal levels of ROS linked to

mitochondrial DNA mutations and consequent respiratory chain dysfunction (46). Following

ischemia and reperfusion, older organs generate higher levels of ROS (47), which are

directly cytotoxic and increase the production of inflammatory cytokines (25). Induction of

the mitochondrial permeability transition pore (mPTP) is a critical pathological process

leading to cell death (48). The mPTP constitutes a non-specific pore that opens the inner

mitochondrial membrane and allows entry of molecules <1.5 kDa into the mitochondrion.

Influx of ions disrupts the electrochemical gradient and uncouples oxidative

phosphorylation, resulting in ATP depletion. These mechanisms lead to mitochondrial

swelling, membrane rupture and release of apoptotic proteins, resulting in apoptotic cell

death or necrosis (49). Induction of mPTP has been linked to an accumulation of matrix

calcium (50), and to oxidative stress during ischemia reperfusion injury (51). Of note, aging

increases mPTP activity subsequent to increased ROS production and impaired calcium

homeostasis (52, 53).

Following reperfusion, a sterile inflammatory response is initiated by endogenous molecules

that are released by necrotic and injured cells. These molecules have been characterized as

danger associated molecular patterns (DAMPs) that activate pattern recognition receptors

such as the Toll-like receptors (TLR), C-type lectin receptors (CLR) and NOD-like receptors

(NLR). These events, in turn, stimulate an augmented expression of inflammatory cytokines

(54) and upregulate MHC and costimulatory molecules (55), thus promoting the induction of

alloimmune responses. In kidneys that expressed TLR4 mutations, graft function

immediately post-transplantation was improved (56) and acute rejection rates were reduced

(57). Aging may enhance the inflammatory response through multiple mechanisms.

Phagocytic capacities of dendritic cells (DC)(58) and other phagocytic cells (59, 60) decline

with aging, resulting in diminished clearance of apoptotic cells (61). While the clearance of

apoptotic cells is associated with the induction of tolerance (62), apoptotic cells undergoing
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secondary necrosis induce the release of DAMPS that activate DCs through C-type lectin

receptors (63), leading to dendritic cell maturation and proinflammatory cytokine secretion.

Furthermore, it is conceivable that increased ischemia-induced injury and necrotic cell death

in aged organs lead to an augmentation of DAMP signaling, which further enhances the

inflammatory response.

Organ age augments immunogenicity

Clinically, organ age has been linked to higher acute rejection rates (4), providing another

means by which older organs may suffer injury following transplantation. Age-associated

epigenetic changes that result in hypermethylation of the CpG regions or hypomethylation

of the non-CpG regions (64, 65) may increase the immunogenicity of the DNA. In

particular, hypomethylation of aged DNA has been reported to elicit a stronger activation of

dendritic cells (DCs) compared to DNA from young donors (66). Furthermore, old DCs

have been shown to secrete larger amounts of inflammatory cytokines upon stimulation,

possibly as a result of a decreased activation of PI3K-signaling pathways and a reduced

suppression of p38-MAPK activation (58). Although immunosenescence leads to an overall

decline of immune function, enhanced antigen-presenting capacities have been reported (67,

68). Experimental data from our laboratory confirm that older intragraft DCs stimulate the

alloimmune response more potently compared to DCs from younger grafts (unpublished

data). Graft endothelial cells may be another contributor to an enhanced immunogenicity as

older endothelial cells express higher levels of VCAM-1 and MCP-1, thereby facilitating

leukocyte adhesion and infiltration (69). Taken together, these observations support the

hypothesis that the magnitude of the alloreactive T cell responses directed against older

grafts will be enhanced relative to younger, better-preserved allografts. Furthermore, the

magnitude of the alloantibody response, as well as the breadth of the specificity of this

response may be enlarged to include cryptic self-antigens exposed during necrotic cell death

following the transplantation of older compared to younger allografts.

Cellular stress responses

Heat shock response—Heat, oxidative stress, osmotic stress, and infection all induce

heat shock responses (HSR), through the expression of heat shock proteins (HSP) that are

regulated by heat shock factors (HSF). HSPs are involved in protein homeostasis and serve

as molecular chaperones that aid the folding and repair of damaged proteins, thereby

preventing protein aggregation and cell apoptosis (70). HSF1 also promotes ubiquitination

and proteolysis (71). Following an acute injury, such as IRI, HSPs assist in restoring normal

organ function (72). Aging is associated with elevated basal levels of HSPs, possibly due to

continuous stress signals (73). However, induction of HSPs during stress diminishes with

aging (74) and is associated with increased injury (75). The protective capacity of HSP-32,

or hemeoxygenase 1 (HO-1), has been comprehensively reviewed elsewhere (76). Briefly,

while not having a chaperoning function, HO-1 exhibits anti-inflammatory, anti-oxidant, and

anti-apoptotic properties (77). During acute injury and transplantation of older kidneys,

HO-1 induction is diminished while the pharmacological induction of HO-1 ameliorates

injury (78, 79). Although HSPs have been regarded as immunostimulatory due to their

property to activate TLRs, this paradigm has recently been disputed (80), and their

immunosuppresive functions have been described and confirmed (81). In experimental
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transplantation models, HSP treatment resulted in improved graft outcomes (82). Thus,

impaired induction of HSP may contribute to inferior outcomes when transplanting older

organs.

Unfolded protein response—The endoplasmic reticulum (ER) is the cell organelle

responsible for protein synthesis and folding. As a quality control mechanism, only correctly

folded proteins are released from the ER, whereas incorrectly folded proteins are retained

for refolding or targeted for degradation. When ER function is disturbed by stressors such as

IRI, unfolded proteins accumulate, inducing an adaptive response termed the unfolded

protein response (UPR) (83). This response comprises the upregulation of the ER folding

machinery, shutdown of protein synthesis, and upregulation of ER associated degradation

(ERAD) via the proteasome (84). Mitochondria also synthesize a limited amount of proteins

and induce a similar mitochondrion-specific UPR upon stress (85). Apoptosis is the ultimate

response if repair is inadequate (86). Stressors from ischemia and reperfusion, such as

hypoxia, glucose depletion, and ROS cause ER stress and activate the UPR (83). ER stress is

involved in renal (87), hepatic (88), and cardiac (89) IRI. With age, the molecular

chaperones and enzymes involved in the UPR exhibit reduced expression, leading to

increased cell loss through apoptosis (90). One might speculate that a dysfunctional UPR

caused by aging impairs organ repair in transplantation; however, evidence for this

phenomenon remains lacking.

Ubiquitin-proteasome function—The ubiquitin-proteasome system (UPS) is a

proteolytic mechanism for proteins marked for degradation. This system is involved in

normal protein turnover and in the removal of damaged proteins during repair processes.

The target protein is ubiquitinated and subsequently degraded by the proteasome.

Proteasome activity declines with aging, while the ubiquitination system appears not to be

affected (73, 91). Compromised protein clearance, in turn, leads to accumulation of

damaged proteins during cardiac ischemia (92), conceivably augmenting organ injury.

Indeed, proteasome inhibition has been shown to aggravate injury in cardiac (93) and renal

(94) IRI. However, reduction of proteasomal activity also suppresses NF-kB activity. Other

studies have reported on the protection by pharmacological proteasomal inhibition against

IRI, possibly through NF-kB inhibition (95). Cell specificity of UPS function appears to be

an important factor in mediating protection from or aggravation of IRI (96). The only age-

specific study on UPS function and acute injury concluded that an age-dependent reduction

of UPS activity resulted into both NF-kB reduction and augmented tissue injury, possibly

through increased apoptosis. In transplantation, proteasome inhibition has successfully been

used to counter antibody-mediated rejection, possibly by inducing apoptosis of plasma cells

(97). These contradicting data make it difficult at this time to assess the net effect of an age-

mediated reduction in proteasomal activity.

Autophagy—Autophagy is a process by which dysfunctional organelles and cytoplasmic

proteins are degraded. During this process, part of the cytoplasm is isolated in a double

membrane vesicle, denoted by the term autophagosome. The autophagosome fuses with a

lysosome, which is followed by enzymatic degradation of the enclosed material. Autophagy

is essential for normal cell homeostasis and also plays an important role during periods of

Slegtenhorst et al. Page 6

Transplantation. Author manuscript; available in PMC 2015 June 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cellular stress, e.g., ischemia, oxidative stress and nutrient deprivation (98). By degrading

non-essential cell constituents, metabolic demand is reduced, and substrates for ATP

generation are provided. At the same time oxidative damage may be reduced by maintaining

TCA cycle function. The relevance of autophagy in transplantation is demonstrated by IRI

experiments providing evidence of the protective role of autophagy (99–101). Of note,

autophagy function declines with age (102) and may contribute to an increased IRI

sensitivity of older organs (100, 103).

Organ age-dependent regulation of repair and regeneration

Epithelial proliferation is regulated by the interaction of epithelial and supporting cells, such

as monocytes/macrophages, endothelial cells, stellate cells, and mesenchymal stem cells

(104–106). These cells exert autocrine and paracrine functions by producing growth factors

subsequent to injury. Genes that encode insulin-like growth factor 1 (IGF-1), hepatocyte

growth factor (HGF), epidermal growth factor (EGF), heparin-binding EGF-like growth

factor (HB-EGF), and fibroblast growth factor (FGF), are upregulated and stimulate

epithelial proliferation in response to kidney injury (107). Similarly, HGF, EGF, HB-EGF,

TGF-α and amphiregulin stimulate hepatocyte growth (108). The injured endothelium is

also in need of repair after ischemic injury (109) and damaged tissue requires

neovascularization for recovery. Angiogenesis is mediated by hypoxia-inducible factor-1

(HIF-1) and the subsequent transcription of angiogenic growth factors. Endothelial cells and

pericytes are stimulated by their cognate receptors to form new capillaries (110).

Proliferation of endothelial cells to restore the sinusoid network in liver regeneration is

stimulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF),

stem cell factor (SCF), angiopoietins and TGF-α (108). VEGF (111) and angiopoietin (112)

are known to be involved in restoring vasculature in renal IRI. Aging is associated with a

downregulation of growth factors, receptors and receptor signal transduction (113–115).

Moreover, a compromised induction of mitogenic signals may impair the initiation of repair

and regeneration.

Bone marrow-derived circulating cells also assist in repair. Endothelial progenitor cells

(EPCs) are now recognized to encompass two distinct populations: early and late outgrowth

EPCs (116). Circulating EPCs assist in vascular recovery either directly by incorporation

(late outgrowth EPCs), or indirectly through the secretion of paracrine factors (early

outgrowth EPCs) (117). These cells are recruited to the site of injury through chemotaxis,

mediated by stromal derived factor (SDF), a ligand for chemokine receptor CXCR4 (118)

and CXCR7 (119) or by angiopoietin (120), a ligand for Tie-2. Mobilization of these cells

occurs after ischemic injury (116, 118). With aging, there is a reduced expression of

chemokines and angiogenic growth factors, caused by an impaired induction of hypoxia

inducible factor 1 (HIF-1) that regulates SDF, angiopoietin, and VEGF (121), which may

result in inhibited recruitment of EPCs by older organs. In an experimental model, homing

of mesenchymal stem cells (MSCs) was impaired in older animals through SDF-1/CXCR4-

dependent mechanisms (122).

Immune cells do not only cause tissue injury, but play also a critical role in the resolution of

inflammation and promotion of repair. Depending on micro-environmental cues,
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macrophages can be activated to a proinflammatory or an anti-inflammatory state, a

phenomenon called macrophage polarization. Based on in vitro studies, macrophages are

classified in subsets where M1 macrophages represent a proinflammatory type and M2

macrophages an anti-inflammatory, tissue repair type. M1 macrophages can be induced by

IFN-γ, LPS, and TLR ligation, whereas IL-4 and IL-13 promote M2 skewing (123).

Clearance of apoptotic neutrophils and epithelial cells also induces M2 polarization with

relevance in resolving inflammation (124). M2 macrophages produce IL-10, IL-1Ra, and

TGF-β that suppress inflammation. M2 macrophages have also been shown to promote

tubular proliferation subsequent to IRI (125). Macrophages may act through the production

of growth factors (126) and secretion of Wnt protein (127), which is involved in promoting

epithelial cell-cycle progression. Aging impairs macrophage polarization, subsequent to age-

related changes of the microenvironment, including increased expression of inflammatory

cytokines (128). Macrophages from the recipient are therefore likely to have an impaired

ability to polarize to a M2 phenotype, which may inhibit resolution of inflammation and

initiation of repair subsequent to the transplantation of old organs.

Reparative and regenerative capacity

Organs have distinct reparative and regenerative capabilities. The liver, for instance,

regenerates excellently (129), demonstrated by a remarkable compensatory growth after

surgical resection, although hepatic regenerative capacity diminishes with aging (130).

Cardiac injury tends to result in fibrotic scarring (131). New heart cells can be generated,

predominantly by cardiomyocytes during normal cell homeostasis as well as post injury

(132), but may also be generated by resident progenitor cells (133) or bone marrow cells

(134). Both cardiomyocyte renewal in normal cell homeostasis (135) and the number of

stem/progenitor cells decline with aging (136), suggesting an impaired regenerative capacity

after injury. During the recovering phase of acute kidney injury, resident epithelial cells

repopulate the zones of injury. This process involves epithelial de-differentiation of the renal

tubular cells, spreading of the cells over the uncovered basement membrane, and

proliferation and differentiation to complete repair (137). Of note, epithelial proliferation is

impaired by aging (138) thus impacting the kidney’s ability to recover from injury. Cellular

senescence has been implicated with regards to this impairment in IRI (35, 139). Although

most of the newly generated cells appear to derive from surviving epithelial cells (140),

resident progenitor/stem cells also have been identified as participants in the regenerative

process (141). These are thought to contribute to renal repair by epithelial differentiation and

proliferation. Moreover, there is an age-associated decline of progenitor cells (142), with

cellular senescence assumed to be the main driver (143). Cellular senescence also affects

endothelial cells and impairs their ability to proliferate, reducing angiogenic potential (144).

Organ preservation

As older organs are more prone to injury, optimal preservation appears of critical clinical

significance. Cold static preservation has long been the standard method of preservation, but

hypothermic machine perfusion is gaining ground. Machine perfusion has been implemented

for kidney transplantation, and experimental and clinical pilot studies in machine perfusion

for extra-renal organs appear promising (145–147). For cardiac transplantation, warm
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machine perfusion with oxygenated blood is currently being studied in a randomized trial

(NCT00855712). A large trial has demonstrated that machine perfusion results in better

outcomes of all deceased-donor kidneys (148, 149) with reduced rates and intensities for

delayed graft function (DGF) and improved graft survival. Much attention has been given in

the past years to machine perfusion of marginal organs, namely, for organs from expanded

criteria kidney donors (ECD) or organs from donation after circulatory death (DCD). Three-

year graft survival improved in renal transplantation, particularly when transplanting ECD

kidneys (149–151). Donor age is a key component for the assessment of organ quality and a

constituent of the ECD criteria. One-year graft survival rates for older grafts (>65 years) that

incurred DGF demonstrated improvements with pulsatile perfusion, although an overall

survival benefit of older grafts could not be established in this small cohort study (152). A

phase 2 trial exploring the potential of machine perfusion of livers from extended criteria

donors, defined by age >65 years, macrosteatosis, impaired liver function, and Hepatitis C

with macrosteatosis, is currently in progress (NCT01274520). Preliminary data showed a

low incidence of allograft dysfunction (153). A lung machine perfusion study was designed

to include only high-risk donor lungs, defined by the following criteria: PaO2-FIO2 ratio

<300, pulmonary edema, poor lung deflation/inflation, blood transfusions exceeding 10

units, and DCD (145). In this small, non-randomized study, outcomes of those marginal

lungs were comparable to standard criteria lungs. These data suggest that marginal organs,

frequently those from older donors, may benefit most from machine perfusion.

Our understanding of the mechanistic aspects of pulsatile perfusion is currently limited. The

rationale behind machine perfusion has typically been linked to the supply with nutrients

and substrates, thereby preserving ATP levels and ameliorating subsequent injury (154).

More recently, the importance of flow for maintaining endothelial cell function has been

described (155). Shear stress-dependent expression of Kruppel-like factor 2 (KLF2) decays

rapidly after flow cessation. KLF2 is necessary for the inhibition of proinflammatory

cytokines, adhesion molecules, and prothrombotic genes expressed by endothelial cells.

Sustaining endothelial homeostasis and the suppression of inflammation may therefore be

another mechanism by which machine perfusion mediates superior graft outcomes (156).

Statins have been shown to induce KLF2 expression and reversed the detrimental effects of

flow cessation when added to the preservation solution (155).

Organ allocation

Optimal allocation of organs appears imperative during times of limited supply, thus the

current discard of approximately 50% of ECD kidneys in the US is alarming (157). The

recently approved revised kidney allocation system attempts to address the high discard rate

by improving allocation efficiency. Under this newly implemented allocation system, 20%

of the highest quality kidneys, determined by the Kidney Donor Profile Index (KDPI), will

be allocated to candidates with the highest estimated post-transplant survival (EPTS). The

remaining 80% will be allocated to candidates within 15 years of the donor range. The

introduction of the ESP in Europe has already resulted in increased utilization of older

organs. In 2012, 25% of deceased donors in the Eurotransplant area were >65 years old

(Eurotransplant Annual Report 2012). Moreover, outcomes when utilizing older kidneys in

the ESP were comparable to those of younger kidneys transplanted into older recipients
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outside the program (158). Of note, older recipients have been shown to mount a less potent

immune response (4), which may offset the increased immunogenicity of older donor

organs. Levels of cellular senescence in pretransplant renal biopsies have been shown to

more accurately predict postoperative function than donor age alone (159), and have thus

been proposed as an additional component assessing transplant outcome (160).

Future perspective

Developing strategies minimizing organ damage and improving outcomes of older organs

should receive high priority. Adaptations of practical nature, such as an optimization of

allocation protocols to limit cold ischemic times have already shown good outcomes in the

ESP and could be implemented on a broader scale. Moreover, widespread implementation of

machine perfusion could also aid in better preserving damage-prone older organs.

Particularly appealing, however, is the prospect of directly targeting age-dependent

deficiencies and pharmacological interventions could be deployed to address impaired

cellular stress responses. Ex vivo conditioning may provide an additional avenue of interest.

Presently, most interventions remain on an experimental level, but as age-specific research

progresses, we expect a clinical demand to implement age- and injury-specific preservation

methods.

Concluding remarks

Aging affects a majority of organs currently utilized for transplantation. Organ damage

caused by physiological aging or pathological processes accumulate and impact transplant

outcomes. An increased sensitivity to ischemia reperfusion injury and enhanced

immunogenicity aggravate graft injury. Additionally, defective cellular stress and

maintenance systems, as well as a diminished cell proliferation debilitate the capacity for

repair and regeneration. It is to be expected that the rate of older donors will furthermore

increase in the future. At the same time, discard rates of organs, particularly from older

donors are alarming. Age-specific research will therefore become even more clinically

relevant to guide policies for organ recovery, distribution, and to optimize treatments.
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Figure 1.
Organ age contributes to an augmented susceptibility to injury and to an impaired repair and

regenerative capacity. Recipient immune responses are augmented subsequent to an

inflammatory environment of the donor organ, increased antigenic burden, epigenetic DNA

alterations and an enhanced antigen presentation by resident dendritic cells. Additionally,

the old organ is more prone to acute injuries such as ischemia reperfusion injury.

Degenerative processes of the organ such as reduced functional mass, vasculopathies,

steatosis and fibrosis advance the injury furthermore, while impaired cellular stress

responses and diminished growth signaling and receptor responsiveness debilitate repair

function.
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