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Abstract

To reconstruct neuromagnetic sources, the minimum-variance beamformer has been extended to

incorporate the three-dimensional vector nature of the sources, and two types of extensions—the

scalar- and vector-type extensions—have been proposed. This paper discusses the asymptotic

signal-to-noise ratio (SNR) of the outputs of these two types of beamformers. We first show that

these two types of beamformers give exactly the same output power and output SNR if the

beamformer pointing direction is optimized. We then compare the output SNR of the beamformer

with optimum direction to that of the conventional vector beamformer formulation where the

beamformer pointing direction is not optimized. The comparison shows that the beamformer with

optimum direction gives an output SNR superior to that of the conventional vector beamformer.

Numerical examples validating the results of the analysis are presented.
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I. Introduction

The Search for efficient algorithms for reconstructing spatio-temporal brain activities from

neuromagnetic measurements has attracted great interest [1]. One promising algorithm is the

minimum-variance beamformer, which was originally developed in the field of array signal

processing such as in radar, sonar, and seismic exploration, and has been successfully
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applied to neuromagnetic source reconstruction problems [2]-[4]. However, the minimum-

variance beamformer in its original form [5] cannot be directly applied to neuromagnetic

source reconstruction. This is because the neural source distribution is an

electrophysiological current distribution, which is a three-dimensional (3-D) vector quantity,

so the method should be extended to incorporate the 3-D vector nature of the sources.

So far, two types of extensions of the minimum variance beamformer that incorporate

source orientation have been proposed in the literature. One extension, called the scalar-type

beamformer, uses a beamformer weight that depends not only on the location but also on the

direction of a source [6]. The other type of extension, called the vector-type beamformer,

uses a set of three weights where each weight detects one component in the three orthogonal

directions [7], [8]. A previous study [9] showed that the scalar-type beamformer can attain

twofold better output SNR compared to the vector formulation.

In this paper, we show that the scalar and the vector formulations give exactly the same

asymptotic output SNR if the beamformer pointing direction is chosen to maximize the

beamformer outputs. We then analyze the performance of this beamformer with optimum

pointing direction, and compare its performance to that of the conventional vector

beamformer formulation where the beamformer pointing direction is not optimized. A

theoretical analysis is given for an isolated source and for two closely located sources. The

results of the analysis show that significant SNR degradation can arise in the conventional

formulation, and numerical experiments validate these results.

Following a brief review on the two types of extensions in Section II, this paper presents our

theoretical analysis in Sections III–V. Section VI presents numerical examples that illustrate

the results of our analysis. Throughout this paper, plain italics indicate scalars, lower-case

boldface italics indicate vectors, and upper-case boldface italics indicate matrices. The

eigenvalues are numbered in decreasing order.

II. Scalar and Vector Minimum-Variance Beamformer Formulations

A. Definitions

We define the magnetic field measured by the mth detector coil at time t as bm(t), and a

column vector b(t) = [b1(t), b2(t), …, bM(t)]T as a set of measured data where M is the total

number of sensor coils and superscript T indicates the matrix transpose. The spatial location

is represented by a 3-D vector r:r. The second-order moment matrix of the measurement is

denoted R, i.e., R = 〈b(t)bT(t)〉, where 〈· 〉 indicates the ensemble average, which is replaced

with the time average over a certain time window in practice. When 〈 b(t)〉 ≈ 0 holds, R is

also equal to the covariance matrix of the measurement. The source magnitude is denoted

s(r,t). The source orientation is defined as a 3-D column vector η(r) = [ηx(r), ηy(r),ηz(r)]T

whose ζ component (where ζ equals x,y, or z) is equal to the cosine of the angle between the

direction of the source and the ζ direction. The 3-D source vector is expressed as [sx(r,t),

sy(r,t), sz(r,t)]T = s(r, t)[ηx(r), ηy(r), ηz(r)]T.

We define  as the output of the mth sensor. The output is induced by the unit-

magnitude source located at r and pointing in the ζ direction. The column vector lζ(r) is
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defined as . The array response matrix, which represents

the sensitivity of the whole sensor array at r, is defined as L(r) = [lx(r),ly(r),lz(r)]. The array

response vector in the direction η is defined as l(r,η), where l(r,η) = L(r)η(r). The array

response matrix L(r) and the array response vector l(r,η) are often, respectively, called the

lead field matrix and the lead field vector in the field of the biomagnetic imaging.

B. Scalar-Type Minimum-Variance Beamformer

We focus on the technique referred to as the minimum-variance beamformer [5] for

reconstructing neuromagnetic sources. Since the neuromagnetic source is a 3-D vector

quantity, the original minimum-variance beamformer formulation should be extended to

incorporate the 3-D vector nature of sources. Two types of extensions have been proposed.

The scalar extension derives the weight w(r) by minimizing wT(r)Rw(r) under the constraint

of lT(r,η)w(r) = 1. The explicit form of the weight is expressed as

(1)

Note that the weight in (1) depends not only on the spatial location r but also on the

direction η, and therefore the information regarding the source orientation is needed to

calculate w(r).

Using the weight in (1), the output source power (the power of the reconstructed source) is

obtained from

(2)

We also define the value ZS such that

(3)

where  is the variance of the input noise. Because the square of the weight norm ||w(r)||2 is

the white noise power gain, as is shown in Appendix I, ZS(r) is equal to the reconstructed

source power divided by the reconstructed noise power, and this value is customarily called

the output SNR1. It should be noted that the expression similar to (3) has been reported in

the fields of power spectrum estimation [10] and of antenna-array processing [11].

C. Vector-Type Minimum-Variance Beamformer

The other type of extension, called the vector-type beamformer, allows simultaneous

estimation of the source orientation as well as the source magnitude. It uses a set of three

weight vectors, wx(r), wy(r), and wz(r), which estimate the x,y, and z components of a source

1This value is in fact equal to the output SNR plus 1 because it is the output signal power plus output noise power divided by the
output noise power.
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current vector. (Note that any of three orthogonal directions can be used, instead of the x,y,

and z directions.) A set of weights for a vector-extended minimum-variance beamformer is

derived using the optimization [7], [8]

(4)

where W(r) is a weight matrix defined as W(r) = [wx(r), wy(r), wz(r)]; I is the identity

matrix; and tr{·} indicates the trace operation. The resultant weight matrix is given by [8]

(5)

Using this weight matrix, the x, y, and z components of the source current vector are

estimated from

(6)

where  is the ζ component (ζ = x,y, or z) of the estimated source vector. The output

source power is conventionally given by [8]

(7)

When using the above equation, the white-noise power gain is given tr{WT(r)W(r)} by, as is

shown in Appendix I. Thus, the output SNR corresponding to the output power in (7), Zv, is

expressed in [9]

(8)

III. Equivalence of the Two Types of Beamformers Under the Optimum

Pointing Orientation

This section shows that the scalar-type beamformer in (1) and the vector-type beamformer in

(5) give exactly the same outputs if the beamformer orientation is optimized. As mentioned

previously, the scalar-type beamformer requires the determination of the source orientation

η at each spatial location r. One way to determine the optimum orientation at each r is to

choose the orientation that gives the maximum power output, i.e., η is determined by using

(9)

We define the eigenvalues and eigenvectors of the 3×3 matrix LT(r)R−1L(r) as λj and uj,

where j = 1, 2, and 3. We assume that the eigenvalues are numbered in decreasing order. It is
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well known, based on the Rayleigh-Ritz formula, that η giving the minimum of

[ηTLT(r)R−1L(r)η] is equal to u3, which is the eigenvector corresponding to the minimum

eigenvalue of LT(r)R−1L(r) [12], [13]. The maximum output source power is then expressed

as

(10)

We define this value of the output power as Sopt, namely, Sopt = 1/λ3.

We next show that the vector beamformer also attains Sopt by maximizing the beamformer

output. For the vector-type beamformer, the output source power in the η direction is

expressed as . Using (5), the maximization of the output

power leads to

(11)

Because the relationship

holds, the optimum η obtained in maximizing the right-hand side of (11) is equal to the

eigenvector corresponding to the maximum eigenvalue of the matrix [LT(r)R−1L(r)]−1,

which is equal to 1/λ3. Accordingly, we obtain the optimum direction as the eigenvector

corresponding to 1/λ3, i.e., η = u3. Thus, the output power is expressed as

(12)

This equation indicates that either type of beamformer formulation attains Sopt when the

beamformer pointing direction is set to the direction that gives the maximum output.

We then show that the scalar and vector beamformer formulations also give exactly the

same output SNRs (the Z values) when the beamformer pointing direction is optimized. In

the scalar beamformer formulation, the output SNR maximized with respect to η is defined

as , which is obtained by

(13)

We define the generalized eigenvalues and eigenvectors of [LT(r)R−2L(r)] in the metric

[LT(r)R−1L(r)] as γj and νj, i.e., γj and νj satisfy
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(14)

where j = 1, 2, and 3. Then, it is shown in Appendix II (and in [14]) that the optimum η in

(13) is given as ν3, which is the eigenvector corresponding to the minimum eigenvalue of

(14), and thus  is expressed as

(15)

Because the matrix [LT(r)R−1L(r)] is invertible, the generalized eigenproblem in (14) can be

changed to the following conventional eigenproblem:

(16)

and γ3 can also be obtained as the minimum eigenvalue of (16).

In the vector beamformer formulation, the output SNR maximized with respect to η is

defined as , which is obtained by using

(17)

where

We define the generalized eigenvalues and eigenvectors of Ω in the metric [LT(r)R−1L(r)]−1

as  and , i.e.,  and  satisfy

(18)

The optimum η in (17) is equal to , and  is expressed as . It is

easy to see that the generalized eigenproblem in (18) can be changed to the conventional

eigenproblem

(19)

and  is obtained as the minimum eigenvalue in (19).

Comparing the matrix in (19) with that in (16), one can see that both of these matrices

consist of the product of the same two matrices [LT(r)R−1L(r)]−1, and [LT(r)R−2L(r)], and
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only the order of multiplication differs. Therefore, the eigenvalue  in (19) is equal to γj in

(16) [12], and  is rewritten as

(20)

Because  is exactly the same as , it can be concluded that the scalar and the

vector formulations can attain the same output SNR when the direction that gives the

maximum SNR is chosen. We denote this output SNR obtained with the optimum

beamformer direction as Zopt, namely, .

IV. Asymptotic Output SNR of Beamformers With Optimum Orientation

In Section III, we show that when the beamformer pointing direction is optimized, both the

vector and the scalar beamformer formulations attain the output SNR Zopt. In this section,

we derive the explicit form of Zopt. Here, we omit the notations of t and r for simplicity

unless any confusion arises. We define for later use the generalized cosine between two

column vectors a1 and a2 in the metric C as

. When C is equal to the identity

matrix, this cosine is simply denoted cos2(a1,a2).

We first assume the simplest case where a single source whose orientation is equal to η1

exists at r1, and define the lead field vector for this single source as f, such that f = L(r1)η1.

The power of the source is defined as . The power of the input noise is again denoted .

The covariance matrix and its inverse are then expressed as

(21)

(where σ0 is again the power of the input noise) and

(22)

where  and ξ = α(1+α). This α is sometimes referred to as the input power

SNR [15]. This α is usually much greater than 1 for large sensor arrays such as those used in

recent neuromagnetic measurements, and ξ is approximately equal to 1. (Numerical

examples of these values are given in Section VI.)

In the scalar beamformer formulation, when the beamformer pointing direction is set to η,

the output SNR ZS is expressed, using (3), as

(23)
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It can be seen that ZS(r1) reaches its maximum when η = η1. Setting η equal to η1 in (23),

Zopt(r1) is expressed as

(24)

Thus, the input SNR and the output SNR are equal and there is no SNR degradation in the

beamformer reconstruction.

We next analyze a case where two sources exist. The locations of the sources are denoted r1

and r2, and their orientations are denoted η1 and η2. We define the lead field vectors for the

two sources as f and g, such that f = L(r1)η1 and g = L(r2)η2. Here, we define the spatial

correlation [16] between the two sources as cos2(f,g), which is nearly equal to 1 when the

two sources create similar lead field vectors, but is nearly equal to zero when their lead field

vectors are very different. We define the power of the first source as , and that of the

second source as . The covariance matrix is then expressed as

(25)

We define β as  and ν as ν = β/(1+β). Generally, the relationship β >> 1

holds for a large sensor array and the value of ν is very close to 1. (Numerical examples of

these values are presented in Section VI.) As shown in Appendix III, it is straightforward to

derive Zopt(r1), as follows:

(26)

Equation (26) shows that the output SNR is directly affected by the spatial correlation, and

only when the relationship cos2(f,g) = 0 holds, the input SNR is preserved in the

beamformer reconstruction process.

V. Asymptotic Output SNR of Vector Beamformer without Orientation

Optimization

In Section IV, we derived the explicit form of Zopt, which is the output SNR attained either

by the scalar or the vector beamformer formulations when the beamformer pointing

direction is optimized. On the other hand, as mentioned in Section II-C, the vector

beamformer conventionally does not optimize the beamformer pointing direction, and (8) is

used for calculating the output SNR. In this section, we derive the explicit form of the output

SNR when (8) is used.

We first assume a case where a single source exists, and use the expression in (22) for the

inverse of the covariance matrix. We use the three orthogonal directions u1, u2, and u3

(where uj (j = 1, 2, 3) is the three eigenvectors of LT(r)R−1L(r)) to calculate the weight
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matrix W, and define lj such that lj = Luj(j = 1, 2, 3). Then, the output power obtained using

(7) is denoted Sconv(r), which can be expressed as

(27)

Let us define the output SNR obtained using (8) as Zconv(r). The denominator in (8) can be

expressed as

(28)

where we use the relationship

(29)

Assuming cos2(uj,η1|LTL) << 1 where j = 1, 2, and substituting (27) and (28) into (8), we

finally obtain

(30)

Assuming that , and using the relationship, u3 = η1, Zconv(r1) is

finally expressed as

(31)

This equation indicates that Zconv(r1) is one third of the input SNR. This is in contrast to

Zopt(r1), where the input SNR is preserved.

When the spherically symmetric homogeneous conductor model [17] is used for the forward

calculation, the source current vector is expressed in the two tangential components. As a
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result, the lead field matrix L(r) is an M × 2 matrix, and LT(r)R−1L(r) is a 2 × 2 matrix. In

such cases, it is easy to show that (31) changes to

(32)

The above equation indicates that Zconv(r1) is half of the input SNR. This result is in

accordance with that obtained by Vrba and Robinson [9], who assumed a special source-

sensor configuration where a single source exists directly below the center of a rotationally-

symmetric sensor array.

By further assuming the use of the spherically symmetric homogeneous conductor model,

we can next derive an expression for Zconv(r1) when two sources exist. We use the same

notations defined in Section IV. After some lengthy calculations, (a part of which is shown

in Appendix III), we finally obtain

(33)

where

(34)

and where we have (35), as shown at the bottom of the page. The definition of H(l1, f, g) is

given in (47). In deriving (33)-(35), we use several appropriate approximations such as l2 ≈

f or ||l1|| ≈ ||l2||. However, it is not straightforward to evaluate ε1 and ε2 using (34) and (35).

In Section VI, we numerically determine these values and show that ε1 is much smaller than

1 but is considerably larger than 1 in typical neuromagnetic measurement conditions.

VI. Numerical Examples

Numerical examples are presented here to illustrate several results of the analysis in Sections

II–V. A sensor alignment of the 148-sensor array from Magnes 2500™ (4D Neuroimaging

Inc., San Diego) whole-head neuromagnetometer was used. The coordinate origin was set at

the center of the sensor coil located at the center of the coil array. The x direction was

defined as that from the posterior to the anterior; the y direction was defined as that from the

right to the left hemispheres; and z direction was defined as that perpendicular to the surface

of the coil at the origin.

Two point sources were assumed to exist at (0, −0.8, −6) and (0, 0.8, −6) cm, i.e., they were

1.6 cm apart and located 6 cm below the center of the sensor array on the plane x = 0. The

source-sensor configuration and the coordinate system are illustrated in Fig. 1. The

simulated time courses assigned to the first and the second sources, s1(t) and s2(t), are also

shown in Fig. 1. The cross correlation coefficient between these two time courses is

approximately equal to 0.086, and they are nearly orthogonal to each other. The amplitudes
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of s1(t) and s2(t) are adjusted to have the relationship , i.e., the two sources have equal

powers.

The lead field vectors of the sensor array for these sources, f and g, were calculated by using

the spherically homogeneous conductor model with its center set at (0,0, −11). The

simulated magnetic recording b(t) is calculated using b(t) = s1(t) f + s2(t)g. Simulated sensor

noise uncorrelated among sensor channels was added so that the ratio between the average

power of the signal magnetic field 〈||b||2〉/M to the noise power  is equal to 1. Here, M is

the total number of

(35)

sensors and it is equal to 148 in our numerical experiments. Typical simulated recording

with this SNR is shown in the lower panel in Fig. 1.

First, we simulated a case where a single source exists. We assigned the time course s1(t) to

the first source, but we set the second-source time course to zero, i.e., s2(t). In this case, the

input SNR for the first source, α, is equal to M (148) and ξ results in 0.998. The cross

sections of the reconstructed first source along the line (x =0; z = −6 ) are shown in Fig. 2.

Here, the reconstruction with Zopt is shown by the solid line, and that with Zconv is shown by

the broken line. The peak value of Zopt is equal to 147.5, and that of Zconv is equal to 70.5.

These results show that the peak from Zopt is nearly twice as high as the peak from Zconv,

and this is in accordance with the results in Section V.

We then simulated a case where the two sources are both active by assigning the time

courses s1 and s2(t), shown in Fig. 1, to the first and the second sources. The orientation of

the two sources were set equal to (0.91, 0.42) and (0.91, −0.42). The spatial correlation

represented by is nearly equal to zero in this case (cos2(f, g) = 0.02). Simulated sensor noise

was added so that the ratio  is equal to one. The input SNRs for the first and

second sources, α and β, are both equal to 131, and the values of ξ and ν are both equal to

0.992. The cross sections of the reconstructed results along the line (x = 0; z = −6) cm are

shown in Fig. 3. The reconstruction with Zopt is shown by the solid line, and that with Zconv

is shown by the broken line.

The peak intensities of Zopt were found to be 131 for the first and the second sources, and

those of Zconv were found to be 19. Thus, the peak-intensity ratio of Zconv to Zopt is

calculated to be Zconv/Zopt = 19/131.5 ≈ 0.14. On the other hand, since the values of ε1 and

ε2 in this case are 0.047 and 6.04, respectively, the SNR reduction factor (1+ε1)/(1+ε2) in

(33) is approximately equal to 1/7 ≈ 0.13. Therefore, the intensity reduction of Zconv can be

well explained by the factor (1+ε1)/(1+ε2), and these results clearly validate (33).

VII. Conclusion

In conclusion, this paper proves that the scalar and vector minimum-variance beamformer

formulations give exactly the same output power and output SNR, if the beamformer
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pointing direction is optimized. We then compare the theoretical output SNR of a

beamformer with optimum pointing direction to the output from the conventional vector

beamformer formulation without an optimized pointing direction. The comparison shows

significant SNR degradation with the conventional vector beamformer formulation.

The primary purpose of this paper was to show that both the scalar and vector types of

beamformers potentially attain the same SNR performances, although the conventional way

of formulating the vector beamformer can cause significant SNR degradation. However, it is

not within the scope of this paper to discuss the superiority of one of the two formulations

over the other. This is because the quality of the source reconstruction results are determined

not only by the asymptotic SNR but also by various factors such as spatial resolution, source

correlation or the influence from background physiological noise. Therefore, To determine

the superiority, a thorough investigation would be required, not only of the theoretical SNR

but also of other performance measures including the spatial resolution and the robustness to

various causes of errors such as mentioned above. Such investigations are currently being

conducted with results to be published in the near future.
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Appendix I

This Appendix shows that the white-noise power gain is equal to ||w(r)||2 for the scalar

beamformer and it is equal to tr{WT(r)W(r)} for the conventional vector beamformer. We

assume that the additive noise n(t) is contained in the measurement, i.e., the measurement

b(t) is expressed as , where Q is the number of sources.

We assume that n(t) is the white Gaussian noise uncorrelated among sensor channels. The

variance of the noise is denoted . Then, the output noise for the scalar beamformer is

expressed as w(r)n(t). The variance of the output noise is, thus, equal to

(36)

For the vector beamformer, using (6), the output noise is expressed as WT(r)n(t). Therefore,

the variance of the output noise is expressed as

(37)

where tr{ · } indicates the trace operation.
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Appendix II

We define A and B as M × M positive definite matrices, and x as an M × 1 column vector.

This Appendix shows that

(38)

where κmin and xmin are the minimum eigenvalue and its corresponding eigenvector of the

following generalized eigen problem:

(39)

Since the value of the ratio (xTAx)/(xTBx) is not affected by the norm of x, we set the norm

of x so as to satisfy the relationship xTBx = 1. Then, the minimization problem in (38) is

rewritten as

(40)

We change this constrained minimization problem to an unconstrained minimization

problem by introducing the Lagrange multiplier κ, i.e., we define the function Φ(x,κ) such

that

(41)

The minimization in (40) is equivalent to minimizing Φ(x, κ). To obtain the minimum of

Φ(x, κ), we calculate the derivatives

(42)

By setting these derivatives to zero, we can derive the relationships, Ax = κBx and κ = xTAx.

Therefore, the minimum value of xTAx is equal to κmin, which is the minimum eigenvalue of

Ax = κBx, and x that attains this minimum value is equal to the eigenvector xmin.

Appendix III

This Appendix provides several supplementary formulae that are the basis of the analysis for

the two-source case in Sections IV and V. We define the lead field vector for the first source

as f and its power as . The lead field vector for the second source is defined as g and its

power as . The power of the input noise is denoted . When two sources exist, the

covariance matrix is expressed as (25). Its inverse is expressed as

(43)
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where ; ; ; ν = β/(1+ β);

and . Using (43), we can obtain the following equations:

(44)

and

(45)

where

(46)

and

(47)

Note that l(= l(r,η) is an arbitrary lead field vector, andH(l,f,g) = 0 when l = f.

Using (44) and (45), the output SNR for the scalar beamformer is expressed as

(48)

The optimum output SNR is obtained using this equation by setting l equal to f, and it results

in (26). To derive (33), we choose the two orthogonal directions as the directions u1, and u2,

which are the eigenvectors of LT(r)R−1L(r) when the spherical homogeneous conductor is

used. We then calculate the numerator and the denominator of (8). The numerator can be

expressed as

(49)

(50)

and the denominator can be expressed as in (50), shown at the top of the page. We assume

that the beamformer can correctly detect the source orientation at r1 and thus l2 is equal to f.
We also assume that the norm of the lead field vector is similar between the two tangential

directions, i.e., ||l1|| ≈ ||l2||. Using these appropriate approximations, we can derive (33) from

(49) and (50).
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Fig. 1.
Coordinate system and source-sensor configuration used in the numerical experiments. The

coordinate origin was set at the center of the sensor coil located at the center of the array.

The plane at x = 0 cm is shown. The two point sources, shown by the small filled circles,

were located on the line (x = 0; z = −6) cm. The time courses assigned to the two sources are

shown in the two upper panels.
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Fig. 2.
Cross-sectional view of the reconstructed first source along the line (x = 0; z = −6)cm for the

single-source experiments. The solid line shows Zopt and the broken line shows Zconv. The

SNR of the simulated data  was set to 1, resulting in α equal to 148.
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Fig. 3.
Cross-sectional view of the reconstruction results along the line (x = 0; z = −6) cm for the

experiments where the two sources are both active. The solid line shows Zopt and the broken

line shows Zconv. The SNR of the simulated data  was set to 1, and this

results in both α and β equal to 131. The source orientations of the two sources were set to

(0.91, 0.42) and (0.91, −0.42), resulting in cos2(f,g) ≈ 0.
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