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Brief Summary

We propose that complex (nonlinear) fluctuations of hemodynamic variables (including systemic

blood pressure parameters) during cardiovascular surgery contain information relevant to risk

assessment and intraoperative management. Preliminary analysis of a pilot study supports the

feasibility and potential merits of performing a larger, prospective study to assess the clinical

utility of such new dynamical measures and to evaluate their potential role in enhancing

contemporary approaches to risk assessment of major adverse events.
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Introduction

As the population ages, increasing numbers of elderly patients with multiple co-morbid

conditions are presenting for high-risk cardiovascular surgical procedures. The

commensurate increase in perioperative major adverse events (MAEs) increases mortality

by 1.4 to 8-fold,1 with an estimated 1 billion dollars annually spent on managing these

complications.2 Current MAE risk prediction indexes3,4 are typically based on static or

“snapshot” measures, such as the presence or absence of a co-morbid condition like

hypertension. Unfortunately, these indexes have failed to adequately predict which high-risk

patients will have MAEs5–7 possibly, at least in part, because they do not take into

consideration the complex (nonlinear), time-varying features of physiological hemodynamic

signals. Furthermore, a “one-size-fits-all” risk prediction model approach is unlikely to

accurately identify patients at high risk5–7 particularly at extremes of age and predicted

risk.8–13

A major motivation for the program outlined here is that current risk prediction tools may be

improved by incorporating dynamical properties of physiologic signals, thereby enhancing:

(a) individual patient risk assessment and counseling, (b) design of timely interventions to

prevent disabling or fatal complications (e.g., stroke, renal failure, atrial fibrillation and

myocardial infarction), and (c) the accuracy of comparisons of provider and hospital

performances. Toward this end, our goal is to develop a real-time blood pressure variability

(BP variability) index or set of indexes incorporating a patient's own baseline and evolving

pathophysiologic characteristics into current “snapshot” scoring systems.4,5,14

One of the most important physiologic signals obtained in the perioperative period is the

continuously recorded systemic BP signal.15 While the optimization of BP is a major

perioperative target there is no universally accepted guideline for defining hypotension.

Furthermore, hypotensive episodes, are dynamic, not static phenomena and not only vary

from patient to patient but also within a patient at different surgical stages.

Therefore, measures of BP variability, quantified using different metrics, have been the

focus of considerable interest. For example, in one study,16 BP variability was defined as the

time spent above or below a target systolic blood pressure range of 95–135 mm of Hg, and

an increased BP variability value was associated with higher 30-day mortality. In another

study, BP variability was defined as the root mean successive square difference of a moving

5 second time period. In this investigation17, decreased intracranial pressure and BP

variability were shown to predict long-term adverse outcome after aneurysmal subarachnoid

hemorrhage.

An intuitive limitation of traditional measures of variability is the fact that they do not take

into consideration the temporal structure of a sequence of measurements. For example, the

following two sequences: A = {1 2 3 2 1 2 3 2 1 2 3 2 1} and B ={1111222222333}16, have

the same variability, as measured by amplitude of range and standard deviation, but

completely different structures. In fact, while sequence A defines a triangular wave,

sequence B is a step function. Measures that are sensitive to the temporal organization of a

signal have been essential in characterizing and discriminating different dynamical systems.
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Here we assess BP fluctuation (variability) dynamics via two complementary metrics: 1)

traditional standard deviation of BP time series and 2) the degree of complexity of their

dynamics. The motivating framework for quantifying the degree of complexity of nonlinear

physiologic signals, such as BP, is that complexity reflects the degree of robustness/

resilience of the underlying control mechanisms, and it decreases with aging and pathology

(http://physionet.org/tutorials/cv/, accessed Oct 21, 2013).

The term nonlinear may be unfamiliar to readers of physiologic and clinical journals. Linear

systems exhibit two properties: proportionality and superposition. Proportionality, as

implied by the term, means that there is a straight-line relationship between input and

output. Superposition indicates that one can completely understand the system (e.g., a Rube

Goldberg-type device) by breaking it down into multiple sub-components. In contrast, the

sub-components of a non-linear system do not “add up” to the whole because of either

“constructive” or “destructive” interactions between those sub-components. In these cases,

reductionist strategies will fail to provide full understanding of a given system.18,19

Furthermore, in nonlinear systems, unanticipated (“off-target”) effects are likely since small

input changes may induce major changes in the output (the “so-called “butterfly effect”).

Pilot Study: Overview

In this pilot study, we tested the feasibility of: i) acquiring BP waveform data of sufficient

length and quality for nonlinear complexity analyses, and ii) converting the data from a

proprietary to an open-source format. Our specific hypothesis is that the complexity of the

dynamics of systolic arterial (SAP), diastolic arterial (DAP) and pulse pressure (PP) from

the post-bypass period is lower for the group of patients with MAEs (cases) than for a

control group with comparable risk but no MAEs. We included pulse pressure dynamics in

light of evidence that abnormalities in pulse pressure has been independently associated with

up to 3-fold increase in MAEs following cardiac surgery.20

Methods

Pilot Study Population

Our institution collaborates in the Multiparameter Intelligent Monitoring in Intensive Care II

(MIMIC II) data collection program with the Massachusetts Institute of Technology

(MIT).21 The MIMIC II project involves collection of all clinical and bedside monitoring

data from patients in critical care bed and has been approved by the Institutional Review

Boards of Beth Israel Deaconess Medical Center and MIT. Recently, we expanded the

MIMIC II project to the operating room (OR) by collecting all monitoring data during

cardiovascular surgery.

Metadata including type and duration of surgery, preoperative medications, intraoperative

anesthetic, and surgical events (anesthetic induction, surgical incision, bypass time, post

bypass period, chest closure, and surgery end) were collected from the Anesthetic

Information Management Systems (AIMS; Philips CompuRecord). Time-stamped data

reporting the anesthetic dosage (end-tidal agent concentration, minimal alveolar

concentration of anesthetic) and details of circulatory support were collected from the
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hospital's AIMS systems. The deidentified metadata were then integrated into the STS

system which also served as the source of preoperative ontology definitions, including

demographic data, comorbid conditions, inotropic support, STS predictive risk index for

morbidity and 30-day mortality, surgery type and postoperative adverse outcome

information. Standard STS definitions were used to adjudicate endpoints (http://

www.sts.org/doc/4862; Accessed Sep 25, 2010) and to report the postoperative outcome.

Twenty patients with MAEs admitted for cardiac surgery at the Beth Israel Deaconess

Medical Center between the months of November 2009 and Feb 2010 were chosen for the

pilot study. Twenty controls, without MAEs, matched for age, gender and body surface area

were chosen from the same period.

Data Acquisition and Pre-processing

The monitoring data from the ORs are streamed at 125 Hz and 12-bit amplitude resolution to

a dedicated, data-archiving server located within the secure environment of the Beth Israel

Deaconess ORs. The data are retrieved from the server after completion of surgery and

translated from a commercial system's (Philips, Andover, MA) proprietary data format to an

open-source (WFDB) waveform data format. After data conversion, signal quality

assessment is performed by visual inspection. We then used an open-source software

algorithm22 to identify and annotate the onset of the arterial BP waveforms. We derived the

beat-to-beat systolic and diastolic sequences of values that constitute the systolic and

diastolic time series by determining the minimum and the maximum values of the BP

waveforms in a neighborhood of the previously identified onsets.

Finally, for each beat, we coded and archived the stage to which the surgical procedure had

progressed (pre-induction, induction, vessel harvesting, bypass, post-bypass). These

procedure-specific hemodynamic data were integrated with the intraoperative surgical

events and postoperative STS database.

For the pilot study presented here, we focused on the analysis of post-bypass SAP, DAP,

and PP time series segments with a minimum of 95% usable data. The selection of data from

this time period was based on the assumption that the period of time during which chest

closure is being performed is likely to be a hemodynamically stable phase of surgery and

relatively comparable between subjects.

Such segments (one per subject, Fig. 1) were available in 12 cases (one in-hospital death,

two patients with post-operative renal failure and nine patients with new onset post-

operative atrial fibrillation) and 11 control subjects. Segment length varied between 12 and

30 minutes (Table 1).

An automated algorithm, used to eliminate artifacts, excluded SAP values < 50 mm Hg and

> 250 mm Hg; DAP values < 20 mm Hg and > 150 mm Hg; DAP ≥ SAP, and SAP – DAP <

10 mm Hg.
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Signal analysis

For each of SAP, DAP and PP signals we calculated: 1) the mean, 2) the standard deviation

for the entire length of the time series, a measure of the amount of variability around the

mean value, and 3) a complexity index, computed using the multiscale entropy (MSE)

method, which quantifies the information content of the signal over a range of scales (~1 –

10 seconds). Table 3 presents the group mean and standard deviation values for each of

these measures.

In addition to the original data segments, we also analyzed detrended time series, since non-

stationarities, due to factors such as slow drifts of the baseline of a time series, can lead to

misleadingly low complexity values. For an example of the type of non-stationarity (drift)

that we removed, see the PP signal (original and detrended) shown in the middle plot of Fig.

1. For detrended, we employed an adaptive data decomposition method, called empirical

mode decomposition.23 We preserved the first 4 components of the decomposed signals,

which is equivalent to eliminating frequencies < 0.07 Hz. For the detrended signals, we also

calculated the standard deviation values (the mean is approximately zero).

The MSE method24 quantifies the information content of a signal over multiple time scales.

In practice, the algorithm comprises two steps: (1) a coarse-graining procedure that allows

us to look at representations of the system's dynamics at different scales, and (2) the

quantification of the degree of irregularity of each coarse-grained time series, which can be

accomplished using a measure termed sample entropy.25 The graphical output of the MSE

method is the entropy of a signal plotted as a function of scale factor (Fig. 2). The most

complex time series have higher entropy values over a range of time scales. The number of

scales probed depends on the length of the original time series. Typically, for a time series

with N data points, the largest time scale n included in the analysis is such that N/n > 200.

The SAP, DAP and PP time series are not evenly sampled because the timing of each value

is determined by the cardiac interbeat interval cadence. Let {PP(t1), PP(t2), …PP(tN)}

represent the PP time series where PP(ti) represents the value of PP at time ti. For scale 1 of

the MSE curve, entropy is calculated for the original time series. For scale 2, entropy is

calculated for the sequence of values obtained by averaging 2 consecutive data points of the

original time series, that is, for the following sequence: (PP(t1) + PP(t2))/2, (PP(t3) +

PP(t4))/2, (PP(t5) + PP(t6))/2, …). For scale 3, entropy is calculated for the sequence of

values obtained by averaging 3 consecutive data points, [(PP(t1) + PP(t2) + PP(t3)]/3,

[(PP(t4) + PP(t5) + PP(t6)]/3, …), and so forth.

In the general case, scale n, the entropy is calculated for the following sequence: (PP(t1) + ..

+ PP(tn))/n, (PP(tn+1) + … + PP(t2n))/n, (PP(t2n+1) + … + PP(t3n))/n, …). In summary, to

derive the coarse-grained time series for scale n, we divide the original signal into non-

overlapping segments of length n and then take the average of each of these segments. The

scale factor is the number of data points in each of these segments.

The coarse-graining of the time series allows us to quantify the structure of the signal on

different time scales. Effectively, the coarse-graining procedure works as a low-pass filter.

As an example consider an SAP time series. The timing of each SAP value is determined by

the cardiac interbeat interval cadence. If heart rate is 60 bpm, then the SAP time series will
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be sampled at 1Hz and the coarse-grained SAP time series for scale 10 will be sampled at

0.1 Hz. Thus, by the Nyquist sampling theorem, the duration of the fastest oscillatory

component of the coarse-grained SAP time series for scale 10 will be 20 seconds. MSE

analyses encompassing scale factors 1 to 10 quantify the entropy of time series fluctuation

patterns whose minimum duration range from 2 to 20 seconds and whose maximum duration

range from 6 to 60 seconds. These values are also determined taking into consideration the

value of a parameter (m=2) of the entropy algorithm that sets the length of the template

vectors (see Costa et al. ref. 24–26 for details).

Statistical Analysis—Continuous data was analyzed with Wilcoxon rank sum test.

Proportions were analyzed with Chi-square test. SPSS 18.0 (Chicago, IL) was used for

analysis. P value < 0.05 was considered significant.

Results

The demographics and preoperative co-morbid conditions (excepting the history of

hypertension) of cases and controls were comparable (Table 1). While preoperative

medications, intraoperative cross clamp time, and bypass time were also comparable

between the two groups, statin use was more common in cases than in controls (Table 2).

The mean values of post-bypass SAP, DAP and PP were not significantly different between

cases and controls. BP variability, defined as the standard deviations of the BP waveform

derived time series, that is, the standard deviations of SAP, DAP and PP, were also not

significantly different between the two groups. In contrast, the complexity indexes of SAP,

DAP and PP were significantly lower for the groups of patients with MAEs than for

controls. These differences cannot be attributed to differences in the magnitude of the

fluctuations of the signals analyzed, since there were no significant differences between the

standard deviation of the SAP, DAP and PP detrended time series used for the computation

of the complexity index.

We note that oscillatory patterns in the systolic, diastolic and pulse pressure time series due

to breathing will influence the values of the standard deviation of these time series as well as

the entropy values for scale factors < 6. For scales 6 and above, the oscillatory patterns that

could be due to breathing will have been filtered out through the coarse-graining procedure.

Furthermore, Figure 2 clearly shows that the level of separation between the case and

control groups remains approximately the same for all scales. Since in this study the

complexity index was defined as the summation of the entropy values from scales 1 to 10,

this index will be affected by oscillatory patterns due to breathing. However, when we

calculate the complexity index for scales 1 to 5 (influenced by breathing) and for scales 6 to

10 (not influenced by breathing) separately, the same statistically significant degree of

separation between the two groups was observed.

Discussion

Our preliminary findings are notable from the following three major perspectives. First, we

established the feasibility of: i) acquiring BP waveform data of sufficient length and quality
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for nonlinear complexity analyses and, ii) converting the data from a proprietary to an open-

source format. Second, we showed that the complexity of systolic, diastolic and pulse

pressure time series derived from blood pressure waveform signals obtained during the post-

bypass period were significantly lower in patients who had MAEs compared to those who

did not. These results are consistent with our general underlying hypothesis that loss of

signal complexity is associated with decreased physiologic adaptiveness and functional

integrity. Support for this hypothesis derives from previous studies showing complexity loss

with aging and a variety of pathologic conditions in multiple signals26, including heart rate

in chronic heart failure and in trauma victims with increased mortality27,

electroencephalograms in dementia28, body sway motions in older vs. younger subjects29

and heart rate of fetuses with intrauterine growth retardation vs. normally developing

fetuses.30 Furthermore, to our knowledge, this pilot study is the first to use multiscale

entropy to analyze intraoperative BP dynamics.

Third, we showed that traditional measures of BP variability, namely, the standard deviation

of systolic, diastolic and pulse pressure time series, were not statistically different between

cases and controls, in this pilot study. This result suggests that the difference between the BP

dynamics of cases and controls is in encoded in the temporal sequence of BP values to

which traditional measures of variability are insensitive.

We emphasize that we chose to study BP instead of HR fluctuations for a number of

reasons. BP regulation determines organ perfusion and complex variability may be a

surrogate measure of the cardiopulmonary reserve (adaptability) of a given patient.

Furthermore, a substantial proportion of patients undergoing cardiac surgery have

electronically paced rhythms in the perioperative period, obviating the utility of heart rate

variability analyses.

Limitations

Not all relevant intraoperative data may get collected and stored due to electronic failures or

the presence of electrical or mechanical artifacts.31 To overcome this potential limitation,

important events such as induction, incision, as well as sternotomy, cannulation, and bypass

times, were time-stamped and obtained from AIMS to examine the influence of these

confounders on outcome by multivariate analyses. Major methodological challenges include

the intrinsic nonstationarity of the data, extrinsic perturbations induced by surgical and

anesthetic interventions, artifacts in the data, and missing data points.

Future directions

As a follow-up we are now performing a larger (n=600) NIH funded study to further assess

the utility of complexity-related and other proposed measures32,33 of BP fluctuations in

predicting MAEs. Our study will also help understand the mechanistic factors that influence

BP fluctuations. To the extent that automated assessment of BP dynamics can be

incorporated into real-time monitoring systems, this project has the potential to help identify

modifiable “dynamical targets” and improve perioperative decision-making, management

strategy, and resource allocation. Finally, BP dynamics can potentially be obtained

Subramaniam et al. Page 7

J Cardiothorac Vasc Anesth. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



preoperatively using continuous noninvasive monitors to assess risk and refine treatment

plans.
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Figure 1.
Systolic, diastolic, pulse pressure and heart rate fluctuation time series from a control

subject. Note: the heart rate time series were not analyzed because most patients had

sustained electronic pacing that confounds heart rate variability analyses.

Subramaniam et al. Page 10

J Cardiothorac Vasc Anesth. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Multiscale entropy (MSE) analysis of the detrended pulse pressure time series from the post-

bypass period for the case and control groups. Symbols and error bars represent group

means and standard deviation values.
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Table 1

Demographic data for cases and controls

Cases (n=12) Controls (n=11) `p' value

Age (years) Mean±SD 72 ± 10 62 ± 15 0.400

Gender (male/female) 7/5 6/5 1.000

BSA (m2) Mean ± SD 1.9 ± 0.3 1.9 ± 0.2 0.950

Diabetes 7 3 0.214

Hypertension 12 7 0.037*

Lung disease 1 2 0.590

Dialysis 0 0 1.000

Preoperative CHF 3 2 1.000

Preoperative CVA 1 1 1.000

Previous MI 3 0 0.217

BSA-Body Surface Area, CHF-Congestive Heart Failure, CVA-Cerebrovascular accident, MI-Myocardial Infarction.

*
p value < 0.05 was considered significant
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Table 2

Preoperative medications, type of surgery and bypass times

Cases (n=12) Controls (n=11) `p' value

N (%) or Mean ± SD N (%) or Mean ± SD

Beta blockade 9 (75) 8 (73) 1.000

ACE inhibitors 10 (83) 5 (45) 0.089

Aspirin 10 (83) 8 (73) 0.640

Statins 12 (100) 5 (45) 0.005*

Type of surgery CABG ± valve Valve 0.214
9 (75) 5 (45)

3 (25) 6 (55)

Cross clamp time (min) 70 ± 25 87 ± 24 0.100

Bypass time (min) 91 ± 27 114 ± 32 0.110

STS Morbidity mortality (% Risk) 18 ± 11 14 ± 11 0.390

ACE-Angiotensin Converting Enzyme Inhibitors

CABG-Coronary Artery Bypass Grafting surgery

STS-Society of Thoracic Surgery

*
p<0.05 is significant
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Table 3

Traditional and Complexity measures of Blood Pressure time series

Cases (n=12) Controls (n=11) p value

Mean (mm Hg)

  Systolic 117.71 ± 8.47 115.98 ± 6.09 0.603

  Diastolic 67.75 ± 7.89 70.85 ± 4.53 0.064

  Pulse pressure 49.99 ± 9.83 45.18 ± 8.34 0.280

Standard Deviation (mm Hg)

  Original time series

  Systolic 11.32 ± 4.07 10.89 ± 2.79 0.976

  Diastolic 5.44 ± 2.47 7.97 ± 7.13 0.516

  Pulse pressure 9.83 ± 2.78 8.34 ± 2.08 0.170

  Detrended time series

  Systolic 4.48 ± 1.31 3.61 ± 2.11 0.060

  Diastolic 1.59 ± 0.48 1.84 ± 0.65 0.207

  Pulse pressure 3.54 ± 0.96 3.02 ± 2.32 0.069

Complexity index (unitless)

  Systolic 12.52 ± 2.72 15.50 ± 2.02 0.004

  Diastolic 13.81 ± 1.98 15.45 ± 1.59 0.034

  Pulse pressure 12.38 ± 2.97 15.60 ± 2.13 0.004
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