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Iron-filled magnetorheological polymers, when
cured in the presence of a magnetic field, result
in having a transversely isotropic structure with
iron particles forming chains along the direction
of applied magnetic induction. In this work,
we model the magneto-viscoelastic deformation
(and magnetization) process of such polymers.
Components of the deformation gradient and the
applied magnetic induction in the direction of
anisotropy are considered to be additional arguments
of the energy density function. The existence of
internal damping mechanisms is considered by
performing a multiplicative decomposition of the
deformation gradient and an additive decomposition
of the magnetic induction into equilibrium and
non-equilibrium parts. Energy density functions
and evolution laws of the internal variables are
proposed that agree with the laws of thermodynamics.
In the end, we present solutions of some standard
deformation cases to illustrate the theory. In particular,
it is shown that the orientation of resultant magnetic
field and principal stress directions change with time
owing to viscoelastic evolution.

1. Introduction
Magnetorheological elastomers (MREs) are materials in
which the mechanical and magnetic responses have a
strong nonlinear coupling with each other [1]. Usually,
these are polymer-like soft materials used for variable
mechanical behaviour in response to an applied magnetic
field. MREs can be used as variable stiffness actuators
and dampers [2–4], which have several potential
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Figure 1. SEM images (Courtesy of Bastian Walter) and illustrative cartoon of MRE cured under a magnetic field in the vertical
direction. Iron filler content: (a) 2% by volume and (b) 20% by volume.

engineering applications. Typically, these materials are made by curing a mixture of ferromagnetic
particles (usually 1–5 µm in size) distributed in a polymeric matrix. Curing in the presence of
a magnetic field causes the particles to form chain-like arrangements that imparts an effective
directional anisotropy to the resulting polymer as can be seen from electron microscopy images
in figure 1. Curing without a magnetic field results in an isotropic material [5,6]. When subjected
to a magnetic field and mechanical loading, the magnetizable particles in the resulting polymer
interact with each other and cause an increase in the overall stiffness of the material. This effect
is more pronounced in the anisotropic materials when magnetization and mechanical loading are
applied along the direction of particle chains [3].

Mathematical modelling of the coupling of mechanical and electromagnetic effects has been
an interesting area of research in the past. Notable are the works of Landau & Lifshitz [7],
Livens [8], Tiersten [9], Brown [10], Maugin & Eringen[11–13], Pao [14] and Eringen & Maugin
[15]. Research in this field has accelerated in recent years mainly due to two reasons—firstly,
the possibility of fabrication and testing of MREs in laboratories [2,3,5,6]; and secondly, further
developments in the area of mathematical modelling and constitutive formulations, such as those
by Brigadnov & Dorfmann [16], Dorfmann & Ogden [17] and Kankanala & Triantafyllidis [18].
In particular, the constitutive formulation of Dorfmann & Ogden [17,19] based on a ‘total’ energy
density function has been helpful in the solution of several boundary value problems on nonlinear
deformation and wave propagation [20–22]. It has been shown that any one of the magnetic
induction, magnetic field or magnetization can be used as an independent input to the energy
density function and the other two obtained through constitutive relations. We also mention the
recent independent contributions of Steigmann [23] and Maugin [24] which discuss several issues
concerning modelling the coupling of continuum magneto-electro-elasticity.

Based on Dorfmann and Ogden’s formulation, the authors of the present paper recently
developed a mathematical model of large strain magneto-viscoelasticity [25]. In that work, we
considered the possibilities of dissipation owing to mechanical viscoelasticity of the polymer
matrix and to the resistance of the material to overall magnetization. We emphasize here that the
overall magnetization of the material can occur not only due to the magnetization of individual
(usually ferromagnetic) particles, but also due to the movement and realignment of these particles
within the elastic matrix. This was affected in the model by a multiplicative decomposition of the
deformation gradient into elastic and viscous parts (F = FeFv) and an additive decomposition of
the magnetic induction (B = Be + Bv)—the former based on the purely mechanical viscoelasticity
theory [26,27]. A similar additive decomposition of the magnetization into a residual and a
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reversible part has been considered by Maugin et al. [28] in order to model magnetomechanical
hysteresis effects. Constitutive laws for material behaviour and evolution equations for Fv and Bv

were proposed that are physically and thermodynamically consistent. In this paper, we extend
this theory to model the rate-dependent properties of MREs with a directional anisotropy owing
to particle chain alignment.

Modelling of soft elastomers with a directional anisotropy has been an active area of research
in the recent times. One very common and useful method of doing so is to use the structural
tensors, cf. Spencer [29] and Zheng [30]. By employing symmetry arguments, the energy function
is considered to depend on scalar invariants of the right Cauchy–Green deformation tensor and
the structure tensor defining anisotropy. This method has been employed by, among several
other researchers, Shams et al. [31] for modelling pre-stressed elastic solids, Holzapfel & Gasser
[32] for modelling fibre-reinforced composites, and Bustamante [33] and Danas et al. [34] for
modelling transversally isotropic magneto-active elastomers. For the same class of methods,
Shariff [35] presented a new set of invariants with immediate physical interpretation for fitting
with experimental data; while Destrade et al. [36] discuss issues concerning the minimum
number of invariants required in the energy density function for completeness, see also [37].
Recently, Srinivasa [38] has proposed a novel modelling method based on a decomposition of
the deformation gradient into product of a rotation and an upper-triangular matrix.

Another approach for modelling anisotropic composite materials is to decouple the response
of the matrix material and the anisotropy creating constituent (e.g. fibres for biological tissues,
particle chains in our case). The two continua are nevertheless connected by the kinematic
constraint of the same deformation gradient being applied to both. This procedure was used by
Klinkel et al. [39] to model elasto-plasticity and was followed by Nedjar [40] in the modelling
of viscoelastic deformation of anisotropic materials. We follow a similar approach with the
additional constraint that along with the deformation gradient, the same magnetic induction
applies to both the magnetoelastic matrix and the particle chains. The additive decomposition of
energy leads to separated constitutive equations for the matrix and the chains which allows one
to study the behaviour of each constituent separately. We take additional components of both the
deformation gradient and the magnetic induction in the direction of particle chains and further
decompose them into equilibrium and non-equilibrium parts to consider dissipation effects.

This paper is organized as follows. In §2, we present the basic kinematic relations required
for the development of the theory. In this step, we define the components of the deformation
gradient and the magnetic induction in the particle chain direction. Section 3 briefly presents the
governing equations and the boundary conditions for a magnetoelastic problem. In §4, using a
Clausius–Duhem form of the second law of thermodynamics, we derive the constitutive relations
for stress and magnetic field as well as dissipation conditions that need to be satisfied by the
time-evolution equations of the internal variables. As a simplification, the energy density is
decomposed into equilibrium, non-equilibrium and anisotropic parts by taking motivation from
experimental observations [6] and modelling considerations [40].

In §5, we specialize the material model to specific forms in order to obtain analytical
and numerical solutions. Energy density functions for constitutive and evolution equations
for internal variables are proposed, and stress and magnetic field are expressed in these
specific forms. Some analytical solutions for the non-dissipative case under quasi-static loading
conditions are presented in §6. In §7, we present numerical examples corresponding to three types
of loading conditions—stationary pure shear, a time-dependent magnetic induction and a time-
dependent strain. The obtained results for various material parameters and direction of applied
loading with respect to the material anisotropy are presented graphically. Section 8 contains some
brief concluding remarks.

2. Basic kinematics
Consider an incompressible magnetoelastic material which occupies the reference configuration
B0 with a boundary ∂B0 in an unstressed state with no deformation. Upon a combined action
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of mechanical boundary tractions and magnetic induction, the body is subjected to a static
deformation and achieves a new spatial configuration. The spatial configuration and its boundary
are denoted by Bt and ∂Bt, respectively, at time t. A deformation function χ can be defined
such that it maps every point X ∈B0 to a point x = χ (X, t) ∈Bt. The deformation gradient for
the deformation process is defined as F = Grad χ , where Grad is the differential operator with
respect to X. Its determinant is given by J = det F which is identically equal to unity in the case of
incompressibility.

Let the direction of anisotropy given by a unit vector M in B0. After deformation, it is given by
a vector m = FM in Bt. Corresponding to the particle chain direction, it is now possible to define a
chain deformation gradient Fc = m ⊗ M capturing the one-dimensional deformation in the chain
anisotropy direction. A definition of the structure tensor G = M ⊗ M leads to the identity

Fc = FG. (2.1)

Thus, the tensor Fc is simply a projection of F in the direction of anisotropy. Henceforth, every
quantity corresponding to the anisotropy in the chain direction is denoted with a superscript c.
At this point, we also define the chain stretch in the particle chain direction to be given by λc = |m|
such that the chain deformation gradient in (2.1) can be written as

Fc = λcm̂ ⊗ M, (2.2)

where m̂ is the unit vector in the direction of m. It is also noted that the tensor G is idempotent, a
property which will be useful later.

Let the magnetic induction be denoted by B in B0 and b in Bt, related by the pullback operation
B = JF−1b. We define a component of the magnetic induction in the chain direction to be given
by a projection on the vector m as bc = [b · m̂]m̂. Its Lagrangian form B

c is given by the pullback
operation B

c = JF−1bc as

B
c = BcM and Bc = J[b · m̂]

λc . (2.3)

In order to take into account mechanical viscous effects, we assume the existence of n
imaginary intermediate configurations Bi (i = 1 . . . n) that are related to B0 by a viscous motion
and Bt by a purely elastic deformation. The deformation routes through each of these Bi are
in parallel to the non-dissipative part of the magnetoelastic deformation from B0 to Bt. This
motivates the decomposition of the total deformation gradient into elastic and viscous parts (cf.
[26,27]) as

F = Fi
eFi

v ∀i = 1 . . . n. (2.4)

In the interest of simplicity of analysis and notation, and without losing any mathematical rigour,
we consider only one dissipative mechanism throughout this paper. However, we note that while
proposing models to fit experimental data, one should work with the general case of multiple
dissipative mechanisms. Thus, the above equation is simplified to

F = FeFv. (2.5)

As proposed by Nedjar [40] in the case of viscoelasticity, based on a similar treatment of
elasto-plasticity by Klinkel et al. [39], we also perform a decomposition of the chain deformation
gradient as

Fc = Fc
eFc

v, (2.6)

= [λc
em̂ ⊗ M][λc

vM ⊗ M], (2.7)

where use has been made of equation (2.2) and we have performed a decomposition of the chain
stretch as λc = λc

eλ
c
v.
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An additive decomposition of the magnetic induction into equilibrium and non-equilibrium
parts is done as shown in a previous paper [25]

B = Be + Bv. (2.8)

Similar to the chain deformation gradient, we propose a decomposition of the chain magnetic
induction B

c into equilibrium and non-equilibrium parts as

B
c = B

c
e + B

c
v, (2.9)

and define the scalar equilibrium and non-equilibrium quantities Bc
e and Bc

v such that

Bc = Bc
e + Bc

v, B
c
e = Bc

eM and B
c
v = Bc

vM. (2.10)

For a later use, we define the right Cauchy–Green deformation tensors

C = FtF, Ce = Ft
eFe, Cv = Ft

vFv

Cc = (Fc)tFc, Cc
e = (Fc

e)tFc
e and Cc

v = (Fc
v)tFc

v.

}
(2.11)

The left Cauchy–Green deformation tensor is given by b = FFt. As G is idempotent, this gives

Cc
v = (λc

v)2G. (2.12)

Furthermore, we present some identities for later use

Cc = GCG,
∂Cc

∂C
= G ⊗ G and

∂B
c

∂B
= 1

[λc]2 GC. (2.13)

3. Balance laws and boundary conditions for magnetoelasticity
It is assumed that the material is electrically non-conducting and that there are no electric fields.
Let σ be the symmetric total Cauchy stress tensor that takes into account magnetic body forces
(see, for example, [19] for its definition), ρ be the mass density, fm be the mechanical body force
per unit volume, a be the acceleration, b be the magnetic induction vector in Bt and h be the
magnetic field vector in Bt. Then the following balance laws need to be satisfied in Bt

div σ + fm = ρa, σ t = σ , curlh= 0 and divb= 0. (3.1)

Here, curl and div denote the corresponding operators with respect to x in Bt. Equation (3.1)1
is the statement of balance of linear momentum, equation (3.1)2 is the statement of balance of
angular momentum, equation (3.1)3 is a specialization of Ampère’s law and equation (3.1)4 is the
statement of impossibility of the existence of magnetic monopoles. It is important to note that
in the case of problems studied here through magneto-mechanics, the speed of motions is much
smaller than the speed of light c; and the frequency of oscillations of all physical quantities is much
smaller than the frequency of oscillation of electromagnetic fields involved in the propagation of
a light wave. Thus, under these non-relativistic and ‘magnetostatic’ assumptions, the complete
set of four Maxwell’s equations reduce to (3.1)3,4. The magnetic vectors are connected through
the standard constitutive relation

b= μ0[h+m], (3.2)

where m is the magnetization vector and μ0 is the magnetic permeability of vacuum. If σmech is
the purely mechanical stress tensor, then it is related to the total stress σ by the relation

σ = σmech + 1
μ0

[
b⊗ b− 1

2
[b · b]i

]
+ [m · b]i − b⊗m. (3.3)

Here i is the second-order identity tensor in Bt and use has been made of expression for the
magnetic body force as f = [gradb]tm; cf. [15] and the references therein.
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The total Piola–Kirchhoff stress and the Lagrangian forms of h,b,bc and m for an
incompressible material are defined by using the pullback operations (cf. [19,41])

S = JF−1σF−t, H = Fth, B = JF−1b, B
c = JF−1bc and M= Ftm. (3.4)

The above relations are used to rewrite the balance laws in B0 as

Div(SFt) + ρfm = ρa, St = S, Curl H = 0 and Div B = 0, (3.5)

along with the relation for magnetic quantities

J−1CB = μ0[H +M]. (3.6)

At a boundary ∂Bt which can be the bounding surface of the magnetoelastic body or a surface
of discontinuity within the material, the following jump conditions need to be satisfied by the
magnetic vectors

n × �h� = 0 and n · �b� = 0. (3.7)

Here, n is the unit outward normal to ∂Bt, and �•� = •out − •in represents jump in a quantity
across the boundary. The total Cauchy stress must satisfy

σn = ta + tm, (3.8)

where ta and tm are, respectively, the mechanical and magnetic contributions to the traction per
unit area on ∂Bt. In the reference configuration, the boundary conditions at the boundary ∂B0 are
given by

N × �H� = 0, N · �B� = 0 and FSN = tA + tm, (3.9)

where N is the unit outward normal to ∂B0 and connected to n through the Nanson’s formula
n da = JF−tN dA; da and dA being the current and the reference area elements, respectively. The
vectors tA and tm are, respectively, the mechanical and magnetic contributions to the traction per
unit area on ∂B0.

4. Thermodynamics and constitutive relations
We introduce a total energy density function similar to the one used by Dorfmann & Ogden [19]
but generalized to also depend on the chain deformation tensor Cc, the chain magnetic induction
B

c and the viscous variables Cc
v, Bv and B

c
v, i.e.

Ω(C, Cc, Cv, Cc
v, B, Bc, Bv, Bc

v). (4.1)

The Clausius–Duhem form of the second law of thermodynamics is given as

− Ω̇ + 1
2 S : Ċ + H · Ḃ ≥ 0, (4.2)

while the same for the case of incompressibility is

− Ω̇ + 1
2 [S + pC−1] : Ċ + H · Ḃ ≥ 0. (4.3)

The Lagrange multiplier associated with the incompressibility constraint is given by p and
henceforth we use a superposed dot to represent the material time derivative. On defining
the velocity gradient tensor l = ḞF−1, the rate of deformation tensor as its symmetric part as
d = 1/2[l + lt], and substituting in the above inequality, we can rewrite the above inequalities as

− Ω̇ + σ : d + H · Ḃ ≥ 0, (4.4)

for a compressible material while for an incompressible material, we obtain

− Ω̇ + [σ + pi] : d + H · Ḃ ≥ 0. (4.5)

Here, i is the identity tensor in Bt.
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On substituting the form of Ω from (4.1) into the above dissipation inequalities and using the
standard Coleman–Noll procedure along with the identities in equation (2.13), we arrive at
the following constitutive equations:

S = 2
∂Ω

∂C
+ 2G

∂Ω

∂Cc G and H = ∂Ω

∂B
+ 1

[λc]2 GC
∂Ω

∂Bc , (4.6)

and a reduced form of the dissipation inequality

∂Ω

∂Cv
: Ċv + ∂Ω

∂Cc
v

: Ċ
c
v + ∂Ω

∂Bv
· Ḃv + ∂Ω

∂Bc
v

· Ḃ
c
v ≤ 0. (4.7)

In the case of incompressibility, the constitutive equation (4.6)1 is given by

S = 2
∂Ω

∂C
+ 2G

∂Ω

∂Cc G − pC−1. (4.8)

It is noted in the above constitutive equations for stress and magnetic field that we get
two components—one corresponding to the contribution from the isotropic matrix while the
other coming from the particle chains. As G = M ⊗ M, the anisotropic components of stress and
magnetic field (second term in equations (4.6)1 and (4.6)2) can be rewritten as

Saniso = 2
[

∂Ω

∂Cc : G
]

G and Haniso = 1
[λc]2

[
∂Ω

∂Bc · M
]

CM. (4.9)

These can be pushed forward to current configuration using the transformations σ = J−1FSFt and
h= F−t

H to give

σ aniso = 2J−1
[

∂Ω

∂Cc : G
]

m ⊗ m and haniso = 1
[λc]2

[
∂Ω

∂Bc · M
]

m. (4.10)

Thus, by definition, the principal component of the anisotropic part of the total stress and of the
magnetic field lie in the direction of the particle chains m.

From equation (2.12), we get the relation

Ċ
c
v = 2λc

vλ̇c
vG, (4.11)

while from (2.10)3, we obtain
Ḃ

c
v = Ḃc

vM, (4.12)

and thus the inequality (4.7) can be expressed as

∂Ω

∂Cv
: Ċv + ∂Ω

∂Bv
· Ḃv + 2λc

v

[
∂Ω

∂Cc
v

: G
]

λ̇c
v +

[
∂Ω

∂Bc
v

· M
]

Ḃc
v ≤ 0. (4.13)

Each one of the above expressions in (4.13) are of the form F · İ with F being the driving force
for the evolution of the internal variable I . It is interesting to note that the driving forces for the
internal variables Cv and λc

v are similar to the expressions for isotropic and anisotropic parts of
the stress in equations (4.6)1 and (4.9)1, and the same for Bv and Bc

v are similar to the expressions
for isotropic and anisotropic parts of the magnetic field in equations (4.6)2 and (4.9)2.

Using the relations Cc
v = [λc

v]2G, Bc
v = Bc

vM and G : G = M · M = 1, the last two expressions can
be further simplified so that the above inequality (4.13) becomes

∂Ω

∂Cv
: Ċv + ∂Ω

∂Bv
· Ḃv + ∂Ω

∂λc
v
λ̇c

v + ∂Ω

∂Bc
v

Ḃc
v ≤ 0. (4.14)

(a) Magnetorheological elastomer preparation and some observations
In order to be able to provide physically reasonable models for anisotroipc MREs, we prepare
and analyse the samples for varying particle volume fractions. Iron particles coated with silicon-
dioxide are mixed with ELASTOSIL and allowed to cure in the presence of a magnetic field for
16 h. Two different concentrations of 2 and 20% by volume of iron particles are taken. The cured
samples are then analysed using scanning electron microscopy (SEM) images shown in figure 1.



8

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140082

...................................................

It is observed that for low concentrations of 2%, the iron particles are able to form chain-like
structures which are quite distinct from the elastomeric matrix. For a higher concentration of 20%,
the particles do not just form chain-like structures but also disperse isotropically inside the matrix
as shown in the accompanying cartoons in figure 1. These images are quite consistent with those
obtained by, for example, Boczkowska & Awietjan [6].

These observations motivate the decomposition of the total free energy that is presented in §4b.

(b) Decomposition of free energy
The energy contribution from the homogeneous matrix is considered to be different from the
contribution by the particle chains. Moreover, each one of them is also individually decomposed
into equilibrium and non-equilibrium parts. Thus, we propose

Ω = Ωe(C, B) + Ωec(Cc, Bc) + Ωv(C, Cv, B, Bv) + Ωvc(Cc, Cc
v, Bc, Bc

v). (4.15)

Here, Ωe is the equilibrium magnetoelastic energy density of the homogeneous matrix, Ωec is the
equilibrium anisotropic contribution due to the particle chains, Ωv and Ωvc are non-equilibrium
parts of the isotropic and anisotropic energies, respectively.

For this decomposition of energy in equation (4.15), the total Piola–Kirchhoff stress and the
magnetic field are given from (4.6) as

S = 2
∂Ωe

∂C
+ 2

∂Ωv

∂C
+ 2G

∂Ωec

∂Cc G + 2G
∂Ωvc

∂Cc G (4.16)

and

H = ∂Ωe

∂B
+ ∂Ωv

∂B
+ 1

[λc]2

[
∂Ωec

∂Bc · M
]

CM + 1
[λc]2

[
∂Ωvc

∂Bc · M
]

CM. (4.17)

For the case of incompressibility, the stress is given from (4.8) as

S = −pC−1 + 2
∂Ωe

∂C
+ 2

∂Ωv

∂C
+ 2G

∂Ωec

∂Cc G + 2G
∂Ωvc

∂Cc G. (4.18)

We note that, in general, the functional forms for Ωe, Ωv, Ωec and Ωvc used in equations
(4.16) and (4.18) will be different because they correspond to compressible and incompressible
materials, respectively.

Remark 4.1. Normally, the isotropic matrix of a magneto-sensitive solid is made of rubber-
like polymer material which, on its own, has no magnetic properties. However, in an iron-filled
rubber cured in the presence of a magnetic field, the proportion of particles aligning to form
particle chains largely depend on the volume fraction of the particles and type of base matrix,
cf. figure 1 and the results of Boczkowska & Awietjan [6], for instance. For high volume fractions
(approx. 20%) of iron particles, some particles align in chain like formations while the remaining
are isotropically distributed in the matrix as shown in figure 1b. Thus, for this case, the entire
material can be considered as magnetoelastic chains embedded in a magnetoelastic isotropic
matrix and the decomposition of energy in equation (4.15) is reasonable. For very low volume
fractions (approx. 2%) of iron particles, the structure can be considered to be that of a purely
rubber matrix embedded with iron particle chains as shown in figure 1a. In this case, the isotropic
equilibrium and non-equilibrium energies should be given by even simpler forms Ωe(C) and
Ωv(C, Cv), respectively.

Remark 4.2. An alternative and useful approach towards writing the equilibrium part of
energy has been given by Bustamante [33]. Using the theory of invariants, cf. Zheng [30], who
shows that for a transversely isotropic magnetoelastic material the total equilibrium energy
(Ωe + Ωec according to our definition) can be taken to depend on 10 invariants of C, B ⊗ B and
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G = M ⊗ M given as

I1 = C : I, I2 = 1
2 [I2

1 − C2 : I], I3 = det C, I4 = [B ⊗ B] : I,

I5 = [B ⊗ B] : C, I6 = [B ⊗ B] : C2, I7 = G : C, I8 = G : C2,

I9 = [B ⊗ B] : G and I10 = CGC : [B ⊗ B],

⎫⎪⎪⎬
⎪⎪⎭ (4.19)

where I being the identity tensor in B0. In this paper, however, we follow a different approach
and separate the contribution arising owing to anisotropy as done in equation (4.15). Hence, only
I1, . . . , I6 are used to define the isotropic part of free energy and the anisotropic part is written
such that I7, . . . , I10 are taken into account implicitly. This leads to simpler forms of energy density
function as can be seen later and one can easily identify the isotropic and anisotropic contributions
of the stress and the magnetic field. We believe that the present approach will lead to an easier
identification of material parameters by correlation with experiments.

5. Specialized constitutive laws
We now consider some specialized form of energy density functions and evolution equations
with a motivation to analyse the problem with analytical and numerical solutions. The material
is considered to be incompressible henceforth.

(a) Energy density functions
For the equilibrium energy density corresponding to the isotropic matrix, we consider a functional
form that is a generalization of the Mooney–Rivlin elastic solid to magnetoelasticity similar to the
one used by Otténio et al. [21]

Ωe = μe

4
[[1 + ν][I1 − 3] + [1 − ν][I2 − 3]] + qI4 + rI6. (5.1)

Here, μe is the shear modulus of material in the absence of any magnetic induction.
The parameters q and r are magnetoelastic coupling constants with qμ0, rμ0 and ν being
dimensionless, ν being restricted to the range −1 ≤ ν ≤ 1 as for the classical Mooney–Rivlin
model. We consider a similar functional form as above for the non-equilibrium part, albeit with
non-equilibrium variables Cv and Bv.

Ωv = μv

2
[C−1

v : C − 3] + qv[[B − Bv] ⊗ [B − Bv]] : I

+ rv[[C[B − Bv]] ⊗ [C[B − Bv]]] : I. (5.2)

This form was used by the authors in a previous work while modelling isotropic materials [25].
The parameters μv, qv and rv are viscous equivalents of the corresponding parameters in (5.1).

For the equilibrium energy density corresponding to the anisotropic part, we propose a one-
dimensional form of the neo-Hookean function with an additional term to account for magnetic
energy

Ωec = μc
e

[
[λc]2 + 2

λc − 3
]

+ β[λc]4[Bc]2. (5.3)

Here, λc is the stretch in the direction of chains as defined earlier in §2. The first term corresponds
to an increase in the purely elastic energy due to the stretch λc with the elastic modulus μc

e while
the second term (similar to the I6 term in (5.1)) couples the deformation and magnetic induction
in the anisotropy direction, β being a coupling parameter with dimensions of μ−1

0 . We consider a
similar form of energy for the anisotropic non-equilibrium part as

Ωvc = μc
v

[
[λc

e]2 + 2
λc

e
− 3

]
+ βv[λc]4[Bc − Bc

v]2, (5.4)

where μc
v and βv are the viscous counterparts of the parameters in (5.3).



10

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140082

...................................................

(b) Evolution laws
In order to complete the mathematical model of the material, we need to provide evolution laws
for the non-equilibrium variables Cv, Cc

v, Bv and B
c
v which satisfy the dissipation inequality (4.14)

and stop evolving if an equilibrium state is reached. Equilibrium in this case is defined by

Cv = C, λc
v = λc, Bv = B and Bc

v = Bc. (5.5)

For the two variables Cv and Bv, we use the same evolution laws as used in the earlier work
[25] because they satisfy the condition of thermodynamical consistency (4.14) as well as they stop
evolution when equilibrium is reached. They are given by

Ḃv = μ0

Tm
[qvI + rvC2][B − Bv] and Ċv = 1

Tv

[
C − 1

3
[C : C−1

v ]Cv

]
. (5.6)

The evolution equation for Cv has been used by Koprowski-Theiss et al. [42] and is based on a
simpler form of that given by Lion [43].

For the internal variables corresponding to anisotropy (Bc
v and λc

v), we propose the following
evolution laws:

Ḃc
v = −1

βvTc
m

∂Ωvc

∂Bc
v

= 1
Tc

m
[λc]4[Bc − Bc

v] (5.7)

and

λ̇c
v = −λc

v
2μc

vTc
v

∂Ωvc

∂λc
v

= 1
Tc

v

[
[λc]2

[λc
v]2 − λc

v
λc

]
. (5.8)

In these equations, the parameters Tm, Tv, Tc
m and Tc

v are the specific relaxation times
corresponding to each dissipation mechanism. For a simple case of constant deformation and
magnetic induction (λc and Bc being constants), the evolution equation (5.7) can be integrated
analytically to give

Bc
v = Bc

[
1 − exp

(
− [λc]4

Tc
m

t

)]
, (5.9)

assuming Bc
v = 0 initially.

It is evident from the above equations that the thermodynamical inequality (4.14) is satisfied;
equality occurring only when the equilibrium (5.5) is reached. The evolution laws are also
physically consistent because evolution stops at the equilibrium (5.5)2,4 and the differential
equations otherwise tend to evolve Bc

v and λc
v to approach the equilibrium values Bc and λc,

respectively.

(c) Stress and magnetic-field calculations
For the given forms of energy density functions, the total Cauchy stress σ = FSFt is given in the
following form

σ = σ e + σv + σ c
e + σ c

v − pi, (5.10)

where each of the above individual components are given as

σ e = μe

2
[[1 + ν]b + [1 − ν][I1b − b2]] + 2rb⊗ [bb] + 2r[bb] ⊗ b, (5.11)

σv = μvFC−1
v Ft + 2rvbe ⊗ [bbe] + 2rv[bbe] ⊗ be, (5.12)

σ c
e =

[
μc

e

[
1 − 1

[λc]3

]
+ 2β[λc]2[Bc]2

]
g (5.13)

and

σ c
v =

[
μc

v

[
1

[λc
v]2 − λc

v
[λc]3

]
+ 2βv[λc]2[Bc − Bc

v]2
]

g. (5.14)
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Here, we have defined the structure tensor of anisotropy in Bt as g = FGFt and used the formula
for the derivative with respect to Cc = [λc]2G as

∂Ω

∂Cc = 1
2λc

∂Ω

∂λc G. (5.15)

The magnetic field h= F−t
H is given as

h=he + hv + hc
e + hc

v, (5.16)

where each of the individual components are given by the following expressions

he = 2qb−1b+ 2rbb, (5.17)

hv = 2qvb−1be + 2rvbbe, (5.18)

hc
e = 2β[λc]2Bcm (5.19)

and hc
v = 2βv[λc]2Bc

em. (5.20)

Here, we have used the relation m = FM.
It is worth noting the additional components here that arise owing to the directional anisotropy

of the material (in comparison to eqns (47)–(51) of [25]). Both the total stress and the magnetic field
have equilibrium and non-equilibrium terms in the direction of anisotropy.

6. Quasi-static loading conditions
In this section, we consider quasi-static changes in the deformation F and the magnetic induction
B such that the non-equilibrium energies Ωv and Ωc

v remain identically zero. Equilibrium stress
and equilibrium magnetic field are calculated for this case to understand the effects of directional
anisotropy. We discuss two examples corresponding to uniaxial tension and simple shear in
cartesian coordinates.

(a) Uniaxial tension, equilibrium solution
For the first case, a uniaxial deformation and a magnetic induction is applied in the direction
of particle chain alignment. Let, M = {1, 0, 0}t, B = {B1, 0, 0}t and F = diag(λ, λ−1/2, λ−1/2). For this
deformation and magnetic induction, the principal components are given by Bc = B1 and λc = λ,
and the principal stress in the chain direction is

σ11 = μe

2

[
[1 + ν]

[
λ2 − 1

λ

]
+ [1 − ν]

[
λ − 1

λ2

]]
+ μc

e

[
λ2 − 1

λ

]
+ 4rλ4B2

1 + 2βλ4B2
1. (6.1)

The magnetic field h= {h1, h2, h3}t in this principal direction is given as

h1 = 2
[ q
λ

+ [r + β]λ3
]

B1. (6.2)

For this simple case of deformation and magnetization, the anisotropic component of energy
provides a simple increment in the values of stress and magnetic field. The presence of parameter
μc

e increases the effective value of the ‘mechanical’ shear modulus by linearly combining with
μe while the parameter β increases the effective value of magnetic stress and magnetic field by
linearly combining with r.

We now consider a different case in which the magnetic induction and the applied uniaxial
deformation are perpendicular to the particle chain direction. Thus, M = {0, 1, 0}t, B = {B1, 0, 0}t

and F = diag(λ, λc, [λλc]−1). In this case, Bc = 0 and one needs to compute λc along with the



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140082

...................................................

0 1 2 3
–0.5

0

0.5

1.0

1.5

2.0

2.5

s 11
 (×

10
7 ) B1 = 0.2 T

B1 = 0
b

a

b

a

l
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Lagrange multiplier p. These are obtained by solving the set of simultaneous equations

σ22 = 0 = μe

2

[
[1 + ν][λc]2 + [1 − ν]

[
[λλc]2 + 1

λ2

]]
+ μc

e

[
[λc]2 − 1

λc

]
− p (6.3)

and

σ33 = 0 = μe

2

[
1 + ν

[λλc]2 + [1 − ν]
[

1
λ2 + 1

[λc]2

]]
− p. (6.4)

The expressions for λc and p can be computed from equations above and are too big to
reproduce here. They can be substituted below to obtain the value of σ11 as

σ11 = μe

2

[
[1 + ν]

[
λ2 − 1

[λλc]2

]
+ [1 − ν]

[
[λc]2 + 1

[λλc]2 − 1
λ2 − 1

[λc]2

]]
+ 4rλ4B2

1. (6.5)

The magnetic field is simply given by

h1 = 2
[ q
λ

+ rλ3
]

B1. (6.6)

In the absence of anisotropy, we have λc = 1/λ1/2, β = 0 and the two expressions in (6.1) and
(6.5) become the same. We also observe the mechanical and magnetic stress additions to σ11
and additional contribution to magnetic field owing to anisotropy by comparing the two
expressions in (6.1), (6.5) and (6.2), (6.6).

Variation of stress σ11 with λ and B1 for the two cases discussed above is shown in figure 2 for
the following material constants:

μ0 = 4π × 10−7 N A−2, μe = 2.6 × 105 N m−2, ν = 0.3,

μc
e = 3 × 105 N m−2 q = r = 1

μ0
and β = 2

μ0
.

⎫⎪⎬
⎪⎭ (6.7)

The value of μe is taken to be the shear modulus at zero magnetic field for an elastomer filled
with 10% by volume of iron particles, cf. Jolly et al. [5]. Values of ν, q, r are what have been used
by Otténio et al. [21] and Saxena & Ogden [22]. The parameters μc

e and β are introduced in this
paper and they being chain counterparts of μe and r, have been assigned values with the same
order of magnitude.

In general, a larger magnetic field leads to an increase in the stress which is to be expected. For
both extension and compression, a higher stress is achieved when magnetic induction is applied
in the direction of chain anisotropy than when it is applied perpendicular to the chain direction.
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(b) Simple shear, equilibrium solution
Let the particle chain be initially aligned along the x2 direction such that M = {0, 1, 0}t. The
material is sheared in the (1, 2) plane such that the deformation gradient and the various powers
of the left Cauchy–Green deformation tensor are given by

[F] =

⎡
⎢⎣1 γ 0

0 1 0
0 0 1

⎤
⎥⎦ , [b] =

⎡
⎢⎣1 + γ 2 γ 0

γ 1 0
0 0 1

⎤
⎥⎦ (6.8)

and

[b2] =

⎡
⎢⎣γ 2 + [1 + γ 2]2 2γ + γ 3 0

2γ + γ 3 1 + γ 2 0
0 0 1

⎤
⎥⎦ , [b−1] =

⎡
⎢⎣ 1 −γ 0

−γ 1 + γ 2 0
0 0 1

⎤
⎥⎦ . (6.9)

In the first case, we consider a magnetic induction applied in x2 direction given by B = {0, B2, 0}t,
which for the given deformation gives b= {γ B2, B2, 0}t. The components in the chain direction
are given by λc =

√
1 + γ 2 and Bc = B2. The structure tensor is given as

[g] =

⎡
⎢⎣γ 2 γ 0

γ 1 0
0 0 0

⎤
⎥⎦ . (6.10)

For these loading conditions, the Lagrange multiplier is obtained by setting σ33 = 0 as

p = μe

2
[[1 + ν] + [1 − ν][2 + γ 2]]. (6.11)

Thus, the various components of stress are obtained as

σ11 = μe

2
[1 + ν]γ 2 + μc

e

[
1 − 1

[1 + γ 2]3/2

]
γ 2 + 4r[2 + γ 2]γ 2B2

2 + 2β[1 + γ 2]γ 2B2
2, (6.12)

σ22 = −μe

2
[1 − ν]γ 2 + μc

e

[
1 − 1

[1 + γ 2]3/2

]
+ 4r[1 + γ 2]B2

2 + 2β[1 + γ 2]B2
2 (6.13)

and σ12 = μeγ + μc
e

[
1 − 1

[1 + γ 2]3/2

]
γ + 2r[1 + 3γ 2 + γ 4]γ B2

2 + 2β[1 + γ 2]γ B2
2. (6.14)

The expression for the components of magnetic field h= {h1, h2, h3}t in this case is given by

h1 = 2rγ [2 + γ 2]B2 + 2βγ [1 + γ 2]B2 (6.15)

and

h2 = 2qB2 + 2r[1 + γ 2]B2 + 2β[1 + γ 2]B2. (6.16)

Now consider a case where the magnetic induction is applied in x1 direction given by
B = {B1, 0, 0}t. For the given deformation, the magnetic induction component in the chain
direction is given as Bc = γ B1/[1 + γ 2]. The various components of stress are obtained as

σ11 = μe

2
[1 + ν]γ 2 + μc

e

[
1 − 1

[1 + γ 2]3/2

]
γ 2 + 4r[1 + γ 2]B2

1 + 2βγ 4B2
1, (6.17)

σ22 = −μe

2
[1 − ν]γ 2 + μc

e

[
1 − 1

[1 + γ 2]3/2

]
+ 2βγ 2B2

1 (6.18)

and σ12 = μeγ + μc
e

[
1 − 1

[1 + γ 2]3/2

]
γ + 2rγ B2

1 + 2βγ 3B2
1. (6.19)
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The expressions for components of magnetic field are given by

h1 = 2qB1 + 2r[1 + γ 2]B1 + 2βγ 2B1 (6.20)

and
h2 = 2[r − q]γ B1 + 2βγ B1. (6.21)

The extension of particle chains owing to shear deformation causes increments in all the three
components of stress, the increase being zeroth order, linear and quadratic in γ for σ22, σ12 and
σ11, respectively. The magnetic part of stress has a strong nonlinear coupling with the shear γ for
the chosen material model, as can be seen in equation (6.14), for example. Variation of all the three
components of stress are plotted with respect to the shear γ in figures 3 and 4. As γ → 0, in the
first case h1 → 0 while in the second case h2 → 0 and a linear constitutive relationship between
magnetic field and magnetic induction is obtained.

The strong nonlinear coupling between chain anisotropy direction and deformation is evident
from figure 3 where we observe that for small deformations, σ11 is higher when the particle chains
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are perpendicular to the magnetic induction. This changes in the case of large deformations where
a larger value of stress is obtained in the case when magnetic induction is applied in the direction
of particle chains. Normal stress σ22 in the particle chain direction and the shear stress σ12 are,
as expected, larger for the case when magnetic induction is applied in the direction of particle
chains compared with the case when it is applied perpendicular to the chain direction. We also
note that for the given magnetoelastic deformation, the magnitude of σ11 and σ12 is much higher
than that of σ22.

7. Numerical evaluations
We now present some numerical results corresponding to standard loading conditions to
analyse the performance of our model. Several results corresponding to the variation of stress
and magnetic field on static and dynamic magneto-mechanical loading conditions have been
presented in a previous work for isotropic materials [25]. Hence in this section, we particularly
focus on the effect of a directional anisotropy on the material response.

In addition to those given in equation (6.7), the following values of the material parameters
are used for performing the computations

μv = 5 × 105 N m−2, μc
v = 6 × 105 N m−2, rv = 1

μ0
, qv = 5

μ0
,

βv = 3
μ0

, Tm = 5 s, Tv = 100 s, Tc
m = 2 s and Tc

v = 50 s.

⎫⎪⎪⎬
⎪⎪⎭ (7.1)

The parameters μv, rv, qv, Tm, Tv have been used by us in a previous work [25]. The parameters
μc

v, βv, Tc
m, Tc

v are nothing but the chain counterparts of μv, rv, Tm and Tv, respectively, and are
therefore assigned values with an order of magnitude same as them. The evolution laws (5.6)–(5.8)
are integrated using the ode45 solver in Matlab which works using the Runge–Kutta method.

(a) No deformation, step magnetic induction
Let the anisotropy direction be given by M = {1, 0, 0}t and a sudden magnetic induction
B = {B1, B2, 0}t is applied at time t = 0 at an angle φ to the chain direction M while keeping the
material undeformed (F = I). For these loading conditions, Bc = B1 and the evolution equation
(5.6) can be directly integrated to give

[Bv]1 = B1

[
1 − exp

(
−μ0[qv + rv]

Tm
t
)]

and [Bv]2 = B2

[
1 − exp

(
−μ0[qv + rv]

Tm
t
)]

. (7.2)

The out of plane stress and magnetic field components vanish (σ33 = h3 = 0) and the other
components are given in the following form:

σ11 = [4r + 2β]B2
1 + 4rvB2

1 exp
(

−2μ0[qv + rv]
Tm

t
)

+ 2βvB2
1exp

(
− 2t

Tc
m

)
, (7.3)

σ22 = 4rB2
2 + 4rvB2

2 exp
(

−2μ0[qv + rv]
Tm

t
)

, (7.4)

σ12 = 4rB1B2 + 4rvB1B2 exp
(

−2μ0[qv + rv]
Tm

t
)

. (7.5)

h1 = 2[q + r + β]B1 + 2[qv + rv]B1 exp
(

−μ0[qv + rv]
Tm

t
)

+ 2βvB1 exp
(

− t
Tc

m

)
(7.6)

and h2 = 2[q + r]B2 + 2[qv + rv]B2 exp
(

−μ0[qv + rv]
Tm

t
)

. (7.7)
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Figure 5. Principal directions of total Cauchy stressσ as principal axes of the ellipse, magnetic inductionB, magnetic fieldh
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In general, the principal directions of the stress are at an angle ϑs to the Cartesian basis vectors
as shown in figure 5 and the angle ϑs keeps changing with the evolution of internal variables. The
variation of ϑs with time is plotted in figure 6. Similarly, we define the angle between the magnetic
field and the applied magnetic induction as ϑh and its evolution is plotted in figure 7. The



17

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140082

...................................................

0 5 10
t t

15 20
10

15

20

25
(i)

(ii)

(iii)

0 5 10 15 20
10

12

14

16

18
(a) (b)

Jh Jh

Figure 7. Variation of angle ϑh (deg) between magnetic field and magnetic induction with time t (s). (a) (i) φ = π/6,
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computations are performed for a magnitude of the magnetic induction |B| = 0.5 T and various
values of the angle φ and the parameters Tc

m, qv and βv.
It is seen that starting from a non-zero value, ϑs first falls and then rises again to reach a

steady value with time. This inflection point (minimum obtained by ϑs) may be attributed to
the two different rates of evolution along the chain direction and along the direction of applied
induction. The isotropic contribution from the stress relaxes faster causing the resultant principal
stress to shift towards the chain direction and thereby reducing the value of ϑs. As the anisotropic
contribution of stress also relaxes after some time, the resultant principal stress direction shifts
away from the chain direction thereby increasing the value of ϑs, which then obtains a steady-state
value. For an initial angle of φ = 30◦ between applied magnetic induction and the particle chain
direction, the maximum principal stress forms an angle of ϑs ∼ 17.3◦ with the chain direction at
the steady state. The higher the initial angle φ between the magnetic induction and the chain
direction, the higher is the angle of maximum principal stress ϑs. Increasing the values of either
of the parameters Tc

m, qv or βv decreases the intermediate value of ϑs but eventually they reach
the same equilibrium point.

Variation of the angle ϑh is slightly different where it first increases with time and then
after obtaining a maximum, decreases to obtain an equilibrium value. The contribution of the
magnetoelastic matrix to the magnetic field relaxes faster than that from the anisotropy direction,
thereby causing the resultant magnetic field to tilt towards the chain direction and increasing
the value of ϑh. It should be noted that the angle between the resultant magnetic field and the
chain direction is given by [φ − ϑh]. As the magnetic field contribution from the chain direction
also relaxes, the resultant field shifts away from the chain direction and the value of ϑh increases.
The higher the initial angle φ of loading, the higher is the response ϑs. Increasing the value of
parameter Tc

m causes a higher intermediate angle ϑh which finally evolves to reach the same
equilibrium level. For the material parameters used, an initial angle φ = 30◦ between magnetic
induction and particle chain direction results in the magnetic field being generated at an angle
ϑh ∼ 13.9◦ to the magnetic induction direction at the steady state.

(b) Pure shear
Consider a case where the particle chains are aligned at an angle φ with the unit vector e1 where
{e1, e2, e3} form an orthonormal basis of R

3. A magnetic induction B = {B1, 0, 0}t and a stretch
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λ1 = λ are applied in the direction of e1 at t = 0 while λ2 is held constant at unity. The deformation
gradient tensor is given by

[F] =

⎡
⎢⎢⎣

λ 0 0
0 1 0

0 0
1
λ

⎤
⎥⎥⎦ , (7.8)

while the vectors M and m are given by

M = 1√
1 + tan2 φ

⎡
⎢⎣ 1

tan φ

0

⎤
⎥⎦ and m = 1√

1 + tan2 φ

⎡
⎢⎣ λ

tan φ

0

⎤
⎥⎦ . (7.9)

Various quantities calculated for these deformation conditions are given by

σ33 = 0, λc =
[

λ2 + tan2 φ

1 + tan2 φ

]1/2

, Bc = λ2
√

1 + tan2 φ

λ2 + tan2 φ
B1 (7.10)

and

[g] =

⎡
⎢⎣ λ2 cos2 φ λ sin φ cos φ 0

λ sin φ cos φ sin2 φ 0
0 0 0

⎤
⎥⎦ . (7.11)

For these loading conditions, we define ϑs to be the angle between the direction of the
maximum principal stress (σmax) and the basis vector e1. The angle between the direction of
the resultant magnetic field h and e1 is denoted as ϑh.

We now consider two separate cases—one with constant strain and time-varying magnetic
induction and other with constant magnetic induction and time-varying strain.

(i) Magnetic induction rate

Let the material be pre-strained with a stretch λ = 2 such that the mechanical viscous effects have
vanished when we start measuring the time at t = 0. At this instant, we gradually increase and
then decrease the applied magnetic induction in the form shown in figure 8a. This corresponds to
a magnetic induction rate of 0.8 T s−1 while the maximum value of magnetic induction reached is
0.8 T. We plot the evolution of σmax and ϑs with time in the same graph for two directions of the
orientation of particle chains given by φ = π/6 and φ = π/4.

It is seen from figure 8b,c that the principal stress first increases and then decreases with time
following the applied magnetic induction. It is interesting to note the evolution of ϑs in this case
which first starts from a high value, falls down to a minimum and then rises again to reach a
steady value. This essentially means that the axes of principal stresses keeps rotating with time
owing to different behaviour of the material along the anisotropy direction as compared with the
general isotropic behaviour. Initially, most of the stress is undertaken by the anisotropy direction
(hence the high value of ϑs) which is gradually transferred to the bulk material when B1 rises and
ϑs falls. As B1 falls again, ϑs rises because the majority of stress is regained by the anisotropy
direction. For the combination of parameters chosen, the maximum value of σmax reached is
higher for the smaller value of angle φ between the loading and the chain directions. Also the
steady state value of ϑs is different from the value of φ which implies that the principal stress
directions are in general different from the directions of anisotropy and the applied deformation.
When the magnetic induction is turned off at time t = 2 s, a discontinuity in the slope of σmax is
observed and the stress decay is faster after that point.

The total magnetic field |h|, as can be seen in figure 8d,e, also increases and then falls with time
following the applied magnetic induction. The interesting feature to note is the sudden rise in the
total magnetic field |h| and the angle ϑh as B1 → 0. On the application of a magnetic induction,
the material develops a magnetization in the direction of applied b and as B1 is switched off, the
magnetization is still non-zero and decays gradually. As a result, a magnetic field h is developed
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Figure 8. (a) Applied magnetic induction at ±0.8 T s−1. Maximum principal stress σmax (N m−2) and its direction ϑs

(deg) versus time (s) for two values of angle φ: (b) φ = π/6 and (c) φ = π/4. Magnetic field |h| (A m−1) and its angle
ϑh (deg) versus time (s) for two values of angle φ: (d) φ = π/6 and (e) φ = π/4. Solid curves correspond to σmax in (b,c)
and |h| in (d,e); dotted curves correspond toϑs in (b,c) andϑh in (d,e). (Online version in colour.)

in the material in the opposite direction to counter the effect of m in order to balance the
constitutive relation (3.2). This effect can be seen at t = 2 s in figure 8d,e. We observe a rise in |h|
and a huge rise in ϑh which essentially means that the total magnetic field has changed direction.

(ii) Strain rate

Let the material be pre-magnetized with a magnetic induction of B1 = 0.5 T such that the magnetic
viscous effects have vanished when we start measuring the time at t = 0. At this instant, we
gradually increase and then decrease the applied strain λ in the form shown in figure 9a. This
corresponds to a strain rate of 0.8 s−1 while the maximum value of the stretch λ reached is 3. The
evolution of σmax, |h|, ϑs and ϑh is shown with time.

The maximum principal stress σmax rises and falls following the increase and decrease of λ.
Starting from a non-zero, although small, value due to magnetic contribution of stress, it reaches
a maximum and then sharply falls down to the same equilibrium value. The maximum value
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Figure 9. (a) Applied strain at±0.8 s−1. Maximum principal stress σmax (N m−2) and its angle ϑs (deg) versus time (s) for
two values of the angleφ: (b)φ = π/6 and (c)φ = π/4. Magnitude of magnetic field |h| (A m−1) and its angleϑh (deg)
versus time (s) for two values of the angle φ: (d) φ = π/6 and (e) φ = π/4. Solid curves correspond to σmax in (b,c) and
|h| in (d,e); dotted curves correspond toϑs in (b,c) andϑh in (d,e). (Online version in colour.)

reached is higher for smaller value of φ or when the angle between anisotropy and loading
direction is small.

The orientation ϑs of the maximum principal stress starts from a non-zero value, decreases to
reach a minimum and then rises again with time. As the stretch is reduced to 1 when t → 5 s, the
direction of maximum principal stress changes rapidly due to which we observe a jump in the
value of ϑs. The angle ϑs is also slightly larger for the case of smaller φ.

The magnetic field |h|, like in the previous case, first increases and then decreases with time
following the change in λ. The evolution of magnetic field stops as soon as the changes in λ are
ceased because h has no dependence on Cv as can be seen from equation (5.16). A smaller value
of φ leads to a higher maximum value obtained by htot. The angle ϑh increases with time slightly
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and then falls to a minimum, it then increases again falling back to the steady state. Thus, for the
chosen material parameters, the effective magnetic field direction keeps changing quite rapidly
with time.

8. Concluding remarks
In this paper, we have proposed a procedure to model nonlinear magneto-viscoelastic
deformations for polymers with a transverse isotropic arrangement of magnetic particle chains.
An additional deformation gradient Fc and an additional magnetic induction B

c are defined in the
particle chain direction. Following the ideas in [25], they are then decomposed into equilibrium
and non-equilibrium parts to consider the dissipation effects. A further decomposition of the
free energy into isotropic elastic, isotropic viscous, anisotropic elastic and anisotropic viscous
parts is performed to simplify the problem. It is observed that this decomposition yields very
clear expressions for the total Cauchy stress and the magnetic field. This approach towards
modelling anisotropy in magnetoelasticity is different from that proposed by Bustamante [33],
but it gives rather simpler expressions and fewer material parameters. Physically reasonable and
thermodynamically consistent free energy density functions and evolution laws are proposed
in order to obtain illustrative solutions to some simple problems. Analytical expressions for
the total Cauchy stress and the magnetic field are computed for non-dissipative magnetoelastic
deformations that show the effect of the anisotropy direction on material response.

It is interesting to observe that the principal stress directions and the direction of the
resulting magnetic field are in general different from the loading directions owing to the inherent
anisotropy in the material. As is seen from, for example, figures 6 and 7, these directions change
with time owing to evolution of the internal variable. The evolution strongly depends on the
material parameters Tc

m, qv, βv, the angle φ between magnetic induction and chain direction
as well as the rate of applied magnetic induction and strain. Possibility of existence of more
physically reasonable constitutive relations (by matching with experimentally obtained data) and
solutions of several boundary value problems using numerical computations will be studied in
forthcoming papers.
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