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SUMMARY

We consider modeling the dependence of sensitivity and specificity on the disease prevalence in diag-
nostic accuracy studies. Many meta-analyses compare test accuracy across studies and fail to incorporate
the possible connection between the accuracy measures and the prevalence. We propose a Pearson type
correlation coefficient and an estimating equation–based regression framework to help understand such a
practical dependence. The results we derive may then be used to better interpret the results from meta-
analyses. In the biomedical examples analyzed in this paper, the diagnostic accuracy of biomarkers are
shown to be associated with prevalence, providing insights into the utility of these biomarkers in low- and
high-prevalence populations.
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1. INTRODUCTION

Sensitivity is the probability for a diagnostic test to correctly identify diseased subjects, while specificity
is the probability to correctly identify healthy subjects (Zhouand others, 2002, Pepe 2003, Kranowski and
Hand, 2009). These two components have long been regarded as the intrinsic accuracy measures of a test
independent of the prevalence of the disease (p). That is, the accuracy remains constant across different
populations with different disease prevalence. However, in practice such a belief may not be correct. It is
sometimes useful to consider the dependence of these accuracy measures onp. In the following, for ease
of presentation, we focus on sensitivity, although the results given in this paper are equally applicable to
specificity.

The independence of the sensitivity and prevalence has been scrutinized, with many empirical studies
suggesting that the disease prevalence may impact the sensitivity. SeeBrenner and Gefeller(1997) for
a comprehensive historical review. Prevalence could influence analyses of accuracy at three levels. First,
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low prevalence of disease might lead to small number of diseased subjects (denoted byN) included in a
study sample. Thus, the estimatorŝe might have a low precision relative to an estimator obtained from a
population with high disease prevalence. Second, as argued inBrenner and Gefeller(1997), the disease
prevalence might potentially affect the number of correctly identified diseased subjects (denoted byX).
One might assume that the occurrence of the disease is linked to the event that some underlying continuous
variable crosses a threshold and that such a latent variable might also determine the binary classification
of the diagnostic test. Such dependence might be explained by the disease spectrum being linked to preva-
lence, for example higher percentages of severe cases in populations with higher prevalences. Third, a
human factor might play a role. If prevalence is high, as in a clinical setting, the medical staff who is judg-
ing an image might be more aware that the patient might be diseased than in a screening setting with few
diseased, but thousands of disease-free individuals. This would result in a positive correlation between
prevalence and sensitivity and a negative correlation between prevalence and specificity.

In a given population from a particular study, the distribution ofX givenN is binomial with probability
of success equal to a fixed se. The estimator of sensitivity is naturallyŝe= X/N. However, as we examine
sensitivity across multiple studies corresponding to multiple populations, we may view both sensitivity
andp as random variables which may be associated. In this paper, we propose methods for understanding
how prevalence influences sensitivity. We exclude consideration of case–control studies since they cannot
provide the estimation of prevalence.

Meta-analysis provides a convenient avenue for this objective since it synthesizes the results of many
studies pertaining to the performance of a diagnostic test. There is a rich literature on statistical method-
ology for meta-analysis of diagnostic accuracy measures.Mosesand others(1993) introduced a useful
summary measure to combine multiple studies by plotting the sensitivity against specificity in a single
graph.Rutter and Gatsonis(1995, 2001) proposed the regression modeling approach for the meta-analysis.
Lijmer and others(2002) further extended the regression method to control confounding factors.Dukic
and Gatsonis(2003) examined the role of different thresholds used by different studies.Reitsmaand
others(2005) analyzed bivariate distribution of sensitivity and specificity across populations via a para-
metric random-effects approach.Harbordand others(2007) provide a recent review of progress of meta-
analysis methodology. However, none of these earlier authors considered modeling the sensitivity as a
function of the prevalence.Chuand others(2009) considered joint models for sensitivity and prevalence
using a special random-effects structure. Such analyses permit an indirect assessment of associations be-
tween sensitivity and prevalence, but do not address these issues using standard tools like correlation and
regression analysis. Our goal is to directly apply standard association methods to analyze the bivariate
relationships and to develop a rigorous framework for how such methods perform in different scenarios.

The methods developed in this paper are motivated by data commonly encountered in biomedical
meta-analyses. We consider two recent examples that are typical of such research. The first,Kang and
others(2010), evaluates biomarkers for ovarian cancer, while the second,Kwee and Kwee(2009), as-
sesses the use of imaging for cancer detection. In these publications, it was noted that sensitivities and
specificities varied across studies, but the influence of prevalence on such heterogeneity was not explored.
Since these systematic reviews involved studies from populations with very different disease spectra, it
seems likely that the prevalence of the disease may help explain these observed differences in diagnostic
accuracies. The methods we propose will be used to directly evaluate the impact of prevalence in these
meta-analyses.

To assess the dependence of diagnostic accuracy measures on the prevalence, we have to resolve
several obstacles. First, the true sensitivity (se), a fixed parameter for any given population, is usually
unknown and has to be estimated byŝe. Replacing se witĥse could influence the study of its dependence on
the prevalence due to the estimation uncertainty. The other difficulty is regarding the unknown prevalence
value. In many cross-sectional or cohort studies, it may be possible to estimatep using the observed data
and an assessment of the effect ofp on se may be carried out usinĝp in place of the true unknownp.
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Using such an estimated prevalence introduces another source of variability for the analysis. We develop
results that demonstrate how the estimation uncertainty of these population-specific parameters influences
the inferential procedures.

2. SETTINGS AND KNOWN RESULTS

Suppose se∈ 2 ⊂ [0, 1] is the sensitivity for the test, on average, across all different populations. The
quantity se may take random valueSi in the i th study population, whereas the prevalence of the disease
for that population ispi ∈ P ⊂ (0, 1), i = 1, ∙ ∙ ∙ , n. One may regard se as the expectation of then i.i.d.
Si ’s. The prevalencepi might vary across studies and thus are random variables across populations. For
then studies, we assumepi ’s are i.i.d. with a probability distribution5, with μp =

∫
p d5(p) denoting

the mean ofpi .
WhenSi and pi are not known a priori we have to estimate them from the observed samples. Denote

Ni and Mi as the number of observations used for estimation in studyi , respectively. In the simplest
design,Mi is the sample size of thei th study andNi is number of diseased individuals included in this
study. We notice that usually a case–control study selects subjects according to their disease status and
thus does not provide a valid estimate for the prevalence. Since our primary goal is to show the relationship
between the two important population-specific parameters across different studies, we exclude any such
kind of studies where the estimates for eitherSi or pi is not available.

We denoteŝei to be the estimated sensitivity of thei th study, usually computed as the fraction of
positive test recipients among all cases. We use the estimated sensitivity to replaceSi as needed. We
assume that such an estimator is conditionally unbiased in thatE(ŝei |Si , pi ) = Si for the i th study. Such
a property can be verified easily for the proportion estimatorŝei = Xi /Ni introduced in Section1. For
such estimator, we also have var(ŝei |Si , pi ) = Si (1 − Si )/Ni .

If the i th study is a cross-sectional or cohort study with total sample sizeMi , p̂i can be obtained
easily asNi /Mi , which is the fraction of total number of diseased subjects among the total number of
subjects examined. Sometimes one may acquire more complicated estimatesp̂i via statistical modeling
(Walter and Irwig, 1988) or combining information from similar observational studies for the particular
study population. We assume thatp̂i ’s are independent and that eachp̂i converges in probability to the
true pi as the sample sizeMi based on whicĥpi is constructed tends to infinity. Denote the variance of
this estimator as var( p̂i |pi ) = λi /Mi . For a cohort or nested case–control study,λi = pi (1 − pi ).

We argue that̂sei and p̂i areconditionally uncorrelated. This property will be proven by the following
equations. Assuming that they are based on the same sample, as with cohort or nested case–control studies,
we notice for thei th study (thusSi and pi fixed)

E{(ŝei − Si )( p̂i − pi )|Si , pi } = E{(Xi /Ni − Si )(Ni /Mi − pi )|Si , pi }

= E{(E(Xi |Ni , Mi , Si , pi )/Ni − Si )(Ni /Mi − pi )|Si , pi }

= E{(Ni Si /Ni − Si )(Ni /Mi − pi )} = 0.

Such a fact often leads people to ignore any further examination of the relationship betweenSi and pi .
It only claims theconditional uncorrelatedness of two estimators and thisconditional uncorrelatedness
does not imply their independence. That is, it says nothing about the dependence betweenSi andpi since
these two quantities are treated as fixed parameters in the above equations.

Inference for individualpi andSi can be made by considering the conditional asymptotical distribu-
tions of their estimators. Conditional onpi , asMi → ∞, we have

√
Mi ( p̂i − pi ) →d N(0, λi ), (2.1)
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and conditional onSi , asNi → ∞
√

Ni (ŝei − Si ) →d N(0, Si (1 − Si )). (2.2)

In this paper, we assume that asymptoticallyM−1
i = Op(N−1

i ), whereX = Op(Y) meansX = RY and
R is bounded in probability (chapter 2,van der Vaart, 1998). Such a requirement is usually satisfied when
the estimations of disease prevalence and sensitivity are based on the same sample.

Of course, it is well known that unconditionally
√

Ni (ŝei − se) →d N(0, se(1 − se)).

Depending on the choice of estimation methods, the unconditional asymptotic distribution ofp̂i may
assume a complicated structure, being a mixture of normal distributions with an overall mean equal toμp

(chapter 17,van der Vaart, 1998).
The purpose of this paper was to explore the relationship betweenpi andSi across different studies.

In Section3, we study a simple correlation measure, while in Section4, we consider linear/nonlinear
regression for predicting sensitivity using disease prevalence.

3. CORRELATION ANALYSIS

A measure of correlation between the random Si and pi across populations is

ρ =
cov(Si , pi )√
var(Si )var(pi )

. (3.1)

Such a Pearson type correlation coefficient is easy to understand and capable of assessing the linear
dependence betweenSi and pi . It is important to recognize that the correlation ofSi and pi is defined
with respect to their unconditional joint distribution, with means se andμp. In practice, we
estimate (3.1) by

ρ̂ =

∑n
i =1 wi (ŝei − s̄e)( p̂i − p̄)

√∑n
i =1 wi (ŝei − s̄e)2

∑n
i =1 wi ( p̂i − p̄)2

, (3.2)

where the weightswi > 0 are chosen to represent the fraction of each specific study population in the
overall population,̄se andp̄ are the sample means ofŝei and p̂i , respectively. The weights may be chosen
to be the inverses of the study variances and can be normed such that

∑n
i =1 wi = 1. A good choice of

weights may reduce the estimation variability of the correlation coefficient. In cases whereSi ’s or pi ’s are
known, we plug-in their exact values in (3.2) instead of estimates.

When all study populations are treated with equal emphasis, we may putwi = 1 uniformly across
i . In general, we assumewi ’s to be i.i.d. bounded positive variables with a finite expectationμw and
independent of̂sei , p̂i , Si andpi . However, we realize that there are some situations that this assumption is
violated when the investigators tend to place higher emphasis on studies with larger estimated prevalence
values. The consistency of the estimate (3.2) is unaffected but the asymptotic distribution might be more
complicated than what we report below.

The exact mean of̂ρ is not equal toρ. Even in the most ideal case wherepi andSi are known, it is
shown inMeng(2005) that for a finite sample sizen > 4 and equal weights,

−
1

n − 3

1 − ρ2

1 + ρ2
<

E(ρ̂) − ρ

ρ
< 0.
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The absolute relative bias is bounded byn−1 and therefore usually of no practical concern for a relatively
large sample. An unbiased estimator can be constructed by followingOlkin and Pratt(1958). The strong
consistency of (3.2) is given in the following theorem.

THEOREM 3.1 SupposeE(S2
i ) > 0 andE(p2

i ) > 0. If n → ∞, Mi → ∞, and Ni → ∞, then the
estimate (3.2) converges to (3.1) with probability 1.

The proof of this theorem is provided in the supplementary materials (available at Biostatistics online).
Next, by using multivariate central limit theorem onn pairs of independent observations(ŝei , p̂i ), we can
show that under the same conditions in Theorem3.1,

√
n(ρ̂ − ρ) →d N(0, v2),

where

v2 =

(

1 +
ρ2

2

)
E(S− se)2(p − μp)

2

σ 2
seσ

2
p

− ρ
E(S− se)3(p − μp)

σ 3
seσp

− ρ
E(S− se)(p − μp)

3

σseσ 3
p

+
ρ2E(S− se)4

4σ 4
se

+
ρ2E(p − μp)

4

4σ 4
p

. (3.3)

We note thatμp is the mean prevalence across populations, not the mean prevalence in the com-
bined population, which may differ, depending on the relative contributions of each population to the
combined population. The quantityS is a generic notation for a random sensitivity. The standard devia-
tion terms involved in the expression above are defined according toσse = {E(S− se)2}1/2 andσp =
{E(p − μp)

2}1/2.
One should recognize that the variancev2 is not influenced by uncertainty in estimation ofpi andSi .

That is, replacing these quantities with their estimators does not influence the variance (3.3). The only
quantities influencing this variance are moments from the underlying joint distribution ofpi andSi . Ad-
ditional details regarding these results are given in the supplementary materials (available at Biostatistics
online). This differs from results in Section4 when fitting regression models relatingpi to Si .

The variance can be estimated by plugging in sample versions of various moments. The empirical
estimator ofv2 is

v̂2 =

(

1 +
ρ̂2

2

) ∑n
i =1 wi (ŝei − s̄e)2( p̂i − p̄)2

nσ̂ 2
seσ̂

2
p

− ρ̂

∑n
i =1 wi (ŝei − s̄e)3( p̂i − p̄)

nσ̂ 3
seσ̂p

−ρ̂

∑n
i =1 wi (ŝei − s̄e)( p̂i − p̄)3

nσ̂seσ̂ 3
p

+
ρ̂2

4

∑n
i =1 wi (ŝei − s̄e)4

nσ̂ 4
se

+
ρ̂2

4

∑n
i =1 wi ( p̂i − p̄)4

nσ̂ 4
p

, (3.4)

where

σ̂ 2
se = n−1

n∑

i =1

wi (ŝei − s̄e)2, σ̂ 2
p = n−1

n∑

i =1

wi ( p̂i − p̄)2.

The estimator is consistent to the true variance by applying the law of large number.
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4. REGRESSION ANALYSIS

We note that the correlation coefficient can only measure the linear dependence and therefore may be
rather limited. A finer analysis for the relationship betweenSi and pi can be carried out with a formal
regression. We consider the following mean model

E(Si |pi ) = f (pi , ααα), i = 1, ∙ ∙ ∙ , n, (4.1)

whereααα ∈ A ⊂ Rk is an unknown parameter andf is a known link function. We are interested in finding
the regression parameterααα to determine the relationship between population-specific sensitivity and the
prevalence of the population. We assume that variance var(Si |pi ) exists for alli in this paper.

We seek to estimate the regression parameter by solving the following quasi-likelihood type estimating
equations:

n−1
n∑

i =1

wi
(Si − f (pi , ααα)) ḟααα

f (pi , ααα)(1 − f (pi , ααα))
= 0, (4.2)

where ḟααα is the derivative of f (pi , ααα) with respect toααα. Since pi and Si are generally unknown in
practice, their estimators are substituted in the estimating equations. Denote the solution of the estimating
equations (4.2) to beα̂αα.

Depending on the form off , we may choose either linear or nonlinear optimization programs to find
the numerical solution̂ααα. Provided with the first- and second-order gradient information, most solvers in
common statistical computing packages such as R or Matlab can converge quickly to the optimum.

In order to show that the estimatorα̂αα is consistent, we have to show that (4.2) is asymptotically unbi-
ased. The proof for the following theorem is contained in the Appendix.

THEOREM 4.1 Suppose the parameter spaceA is compact andḟααα is continuous and bounded. Ifn → ∞
andMi → ∞, we have that the solution̂ααα exists and converges to the true parametersααα with probability 1.

When pi and Si are known, we only needn to go to infinity in the above theorem. The additional
requirement forMi → ∞ is necessary whenpi are estimated bŷpi . Basically we need̂pi to be close
enough to the realpi in the estimation equation so that the regression parameters can be estimated consis-
tently. Otherwise there will be nonignorable biases in the estimates. We do not necessarily needNi → ∞
in practice even thougĥsei are used to replaceSi . This occurs because of the finitesample unbiasedness
property ofŝei , as shown in the proof in the supplementary materials (available at Biostatistics online).

The following theorem provides the asymptotic distribution property of the estimates.

THEOREM 4.2 Assume the same condition as Theorem4.1, further assume thaẗfααα, the second derivative
of f with respect toααα, is continuous and bounded. Suppose in probability that limn→∞ n−1∑n

i =1 w2
i =

w̌ ∈ (0, ∞). If the matrixE ḟααα(p) ḟααα(p)T is nonsingular, then the sequence
√

n(α̂αα − ααα) is asymptotically
normal with mean zero and covariance matrixH−1(W̃1 + W̃2)H−1. where

W̃1 = lim
n→∞

n−1
n∑

i =1

E

[
w2

i
Si (1 − Si ) ḟααα(pi ) ḟααα(pi )

T

Ni f (pi , ααα)2(1 − f (pi , ααα))2

]
,

W̃2 = lim
n→∞

n−1E

[
n∑

i =1

w2
i

var(Si |pi ) ḟααα(pi ) ḟααα(pi )
T

f (pi , ααα)2(1 − f (pi , ααα))2

]

,
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and

H = μw E
ḟααα(p) ḟααα(p)T

f (p, ααα)(1 − f (p, ααα))
.

When pi and Si are known, the covariance matrix reduces toH−1W̃2H−1. In the above results,
H−1W̃2H−1 reflects the estimation variation for the conditional analysis ofSi on pi . H−1W̃1H−1 corre-
sponds to the additional variation due to replacingSi with its estimatorŝei . If at least oneNi is considered
far from being infinity,W̃1 does not vanish and affects the overall variance even ifn tends to infinity. The
covariance matrix can be approximated by the empirical estimator in practice.

5. SIMULATION STUDIES

To evaluate the performance of the proposed methods, we conduct simulation studies in this section. We
set the number of studiesn = 15 and 30 and generatedpi from a uniform distribution on [0.1, 0.9]. For
each study, we fix the total sample sizeMi = 200 and simulated the number of casesNi from a binomial
distribution with parametersMi and pi . We then considered the following three models for sensitivity:

Model 1: E(Si |pi ) = α0 + α1pi ;

Model 2: E(Si |pi ) = 1/
[
1 + exp{−(α0 + α1pi )}

]
;

Model 3: E(Si |pi ) = exp{− exp(α0 + α1pi )}.

They represent three typical regression models: linear regression, logit link binary regression and com-
plementary log–log link binary regression. The sensitivitySi is generated from a Beta distribution (Gupta
and Nadarajah, 2004) with two parameters given by

ai = E(i Si |pi )
2{1 − E(Si |pi )}η

−1 − E(Si |pi ),

bi = E(Si |pi ){1 − E(Si |pi )}
2η−1 − 1 + E(Si |pi ),

where the variance parameterη is chosen so that the Monte Carlo signal-to-noise ratio is roughly 4:1.
One can easily verify that the mean of this beta distribution isE(Si |pi ). For each study, we simulated the
number of true-positiveXi from a binomial distribution with parametersNi and Si . A total number of
1000 simulations were conducted.

We summarized in Table1 the results regarding estimation of the correlation coefficient andααα in
the correctly specified regression model. These results include biases and empirical and model-based
variances. Only results for the practically relevant case of unknownSi and pi are provided, in whicĥpi

andŝei are utilized in the estimation. The correlation estimates have a slight downward bias. In fact, linear
correlation is not a sensible measure for Models 2 and 3 since the underlying relationship is not linear.
The biases decrease as we enlarge the sample sizen. One can see that all the regression parameters and
standard errors can be consistently estimated with the proposed methods. Therefore for a study with a
small or moderate sample size the regression model approach seems to outperform the simple correlation
coefficient since the regression parameters can be estimated more accurately, when the model is correctly
specified.

To understand the impact of model misspecification, we next consider fitting a model in whichf may
be misspecified. That is, the sensitivity is simulated from Modeli , while we use Modelj to estimate
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Table 1. Estimation of correlation and regression parameters under three models over 1000simulations

Model Parameter True n Est. SD SE

1 ρ 0.85 15 0.78 0.108 0.114
30 0.82 0.082 0.086

α0 0.5 15 0.49 0.004 0.003
30 0.50 0.002 0.002

α1 0.5 15 0.50 0.014 0.013
30 0.50 0.010 0.009

2 ρ 0.88 15 0.77 0.13 0.15
30 0.83 0.11 0.12

α0 1 15 0.89 0.69 0.75
30 0.95 0.55 0.60

α1 3 15 3.09 3.20 3.54
30 2.98 2.15 2.26

3 ρ 0.94 15 0.85 0.12 0.10
30 0.90 0.095 0.093

α0 −0.5 15 −0.54 0.035 0.038
30 −0.48 0.022 0.026

α1 −1.5 15 −1.46 0.12 0.12
30 −1.51 0.092 0.097

True, fixed true parameter values;n, sample size; Est., sample means of the estimated parameters; SD, empirical standard deviations
of the parameter estimates; SE, means of the estimated standard errors.

parameters (i, j = 1, 2, 3; i 6= j ). We investigate how the predicted sensitivityŜpred based on the wrong
model might differ from the true sensitivity. The results for the prediction error

n−1
n∑

i

(Ŝpred
i − Si )

2

are summarized in Table2. It is noted that when linear model (Model 1) was mistakenly chosen for
nonlinearly generated data (Models 2 and 3), the prediction errors were somewhat smaller. Nonetheless,
in all settings, the prediction errors for misspecified models are close to the prediction errors for correctly
specified models. The procedures are thus to some degree insensitive to the model choices. A similar
phenomenon has been witnessed in the analysis of experimental design (chapter 12,Wu and Hamada,
2000) that for a small sample sizen usually there may be little qualitative difference between the use
of various models or parameterizations. In practice, since we cannot evaluate the true prediction errors
due to the lack of knowledge ofSi , we choose to use a leave-one-out cross-validation (CV) procedure to
estimate the prediction error and select among candidate models. We may replaceŜpred

i with the predicted
sensitivity for thei th study based on a model built with data excluding thei th study and replaceSi with ŝei .

We thus also report the frequency that CV correctly selects the true model that generates the data in
the simulations. The results are reported in the brackets in Table2, suggesting that CV indeed pinpoints
the correct model with high probability. The performance of CV improves as sample size increases.

6. EXAMPLES

Example 1: We consider a meta-analysis for evaluating the diagnostic performance of preoperative
CA-125 levels in the assessment of suboptimal cytoreduction in ovarian cancer.Kangand others(2010)
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Table 2. Prediction errors for three model specifications and the percentages of the model being selected
by CV (in parentheses)

Actual model n Specifiedmodel

1 2 3

1 15 0.0062 0.0068 0.0069
(65.0) (16.5) (18.5)

30 0.0059 0.0065 0.0067
(72.8) (15.3) (11.9)

2 15 0.0029 0.0029 0.0032
(15.7) (61.1) (23.2)

30 0.0026 0.0025 0.0026
(8.3) (72.5) (19.2)

3 15 0.0033 0.0033 0.0032
(29.4) (19.3) (51.3)

30 0.0028 0.0028 0.0027
(19.1) (12.6) (69.3)

Fig. 1. Fitted models for sensitivity (left panel) and specificity (right panel) for Example 1.

reviewed 15 prospective studies that reported sensitivities, specificities, and prevalences. These data are
included in Table1 of the supplementary materials (available at Biostatistics online). The scatter plots of
sensitivity and specificity versus prevalence are given in Figure1. One observes that the specificities of
the test are generally quite high regardless of prevalence, while the sensitivities show a decreasing trend.

The Pearson correlation coefficient between the estimated sensitivity and prevalence is−0.62 (95%
confidence interval [−0.86 to−0.16]), while that between the estimated specificity and prevalence is
−0.30 (95% confidence interval [−0.70 to 0.24]). There is no significant linear correlation between speci-
ficity and prevalence but a rather strong negative correlation between sensitivity and prevalence, which
is statistically significant. To better understand the dependence of accuracy measures on prevalence, we
conducted a regression analysis.
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Table 3. Fitted results for two examples

Model 1 Model 2 Model3

Est. SE P value Est. SE P value Est. SE P value

Example 1
se
α0 1.07 0.14 <0.0001 2.80 0.70 0.0016 −2.69 0.59 0.005
α1 −0.71 0.24 0.0131 −3.63 1.25 0.0121 3.05 1.05 0.0125

sp
α0 0.92 0.27 0.0048 1.90 1.24 0.1500 −1.90 0.98 0.0739
α1 −0.55 0.48 0.2698 −2.44 2.20 0.286 1.95 1.73 0.2804

Example 2
se
α0 0.68 0.10 <.0001 0.81 1.22 0.5290 −1.01 1.18 0.4110
α1 0.45 0.24 0.0846 4.03 2.32 0.0830 −3.72 2.38 0.0970

sp
α0 0.65 0.05 <.0001 −0.79 0.63 0.2309 0.59 0.60 0.3446
α1 0.48 0.12 0.0024 7.13 1.42 0.0005 −6.84 1.37 0.0005

Est., estimated regression coefficient; SE, standard error for the estimated parameter; P value, corresponding p value for testing
whether the parameter is different from zero.

For both sensitivity and specificity, we explored using the identity, logit, and complementary log–
log link functions (Models 1–3 given in Section5) to model the association with the prevalence. The
estimated parameters and variance estimates are given in Table3. The fitted response curves were su-
perimposed in the scatter plots of the observed sensitivity–specificity versus the prevalence in Figure1.
For sensitivity, for all three models, the coefficientsα1 are significant in Table3. These results indicate
a strong decreasing relationship between se and prevalence. The CVs for predicting the sensitivity are
0.0125, 0.0145, and 0.0171 for the three models, respectively. The simple linear model may be the most
appropriate choice over the observed range of prevalences, although the CV values are fairly small for all
models. For specificity, we found no dependence on prevalence since in Table3 none of the coefficients
α1 was significant. The CVs for predicting the specificity are 0.0325, 0.0329, and 0.0330 for the three
models, respectively. These values are quite large in comparison with those for specificity and indicate
that the three models perform similarly, as one would expect if prevalence and specificity are not strongly
associated.

In summary, by aggregating evidence from multiple studies, we can conclude that sensitivity and
specificity have different relationships with disease prevalence. The sensitivity is clearly decreasing as
prevalence increases, with a simple linear model providing a reasonable approximation to this relationship,
as evidenced in Figure1. Results for specificity are consistent with the linear correlation analysis—the
relationship between specificity and prevalence is weak, even when considering nonlinear association
models.

Example 2: We consider another meta-analysis for the accuracy of combined 18F-fluoro-2-
deoxyglucose positron emission tomography/computed tomography (FDF-PET/CT) in the detection of
primary tumors where 11 prospective studies were investigated (Kwee and Kwee, 2009). The data for
sensitivities, specificities, and prevalences from this study are included in Table2 of the supplementary
materials (available at Biostatistics online). The scatter plots of sensitivity and specificity versus preva-
lence are given in Figure2 along with the fitted superimposed regression curves from the three models.
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Fig. 2. Fitted models for sensitivity (left panel) and specificity (right panel) for Example 2.

The Pearson correlation coefficient between the estimated sensitivity and prevalence is 0.52 (95%
confidence interval [−0.08 to 0.84]), while that between the estimated specificity and prevalence is 0.79
(95% confidence interval [0.39–0.94]). The correlation between sensitivity and prevalence is moderately
strong but not statistically significant, while that between specificity and prevalence is quite strong and
statistically significant.

The estimated regression coefficients under three different models are also given in Table3. For sen-
sitivity, the coefficientsα1 are significant at level 0.10 but not significant at level 0.05. There is only
a moderate dependence between sensitivity and prevalence. The CVs for predicting the sensitivity are
0.0183, 0.0180, and 0.0182 for the three models. For specificity, we found the slope coefficientsα1 are
significant under three models. The p values are much more significant for logistic and complementary
log–log link models than the simple linear model. The models with these more complicated links are thus
more likely to detect the association between the specificity and the prevalence. The CVs for predicting
the specificity are 0.0038, 0.0032, and 0.0033 for the three models, respectively. The logistic model seems
superior, particulary relative to the linear model, confirming the nonlinear pattern in Figure2. One may
conclude that the specificity of the test tends to increase as the prevalence increases and that the increasing
trend may be well described using the logistic link model.

7. DISCUSSION

Our focus has been on the dependence of the sensitivity and specificity on the prevalence. There are other
intrinsic accuracy measures such as the receiver operating characteristic (ROC) curve and the area under
the ROC curve (AUC) for a diagnostic test. Since ROC and AUC are derived from the sensitivity and
specificity, their dependence on the prevalence can be inferred subsequently based on the known results
for the sensitivity and specificity.

We propose our methodology mainly for studies where an estimate ofpi is available. In a retrospective
study, the prevalence cannot be directly estimated. Lack of an estimatorp̂i muddies the waters, especially
when external or historical information for the prevalence is unattainable for the study. A potential sta-
tistical framework is to jointly model the distribution ofSi and pi , which may enable the use of studies
without p̂i .



Dependence of sensitivity and specificity on prevalence 721

We have analyzed the prevalence dependence separately for sensitivity and specificity. It has been
advised inRutter and Gatsonis(1995, 2001) andReitsmaand others(2005) that a more coherent analysis
might involve analyzing the dependence of sensitivity and specificity on the prevalence jointly. A limita-
tion of existing joint modeling approaches is that they may not provide simple assessments of the associa-
tion between diagnostic accuracy and prevalence. Random effects models have been studied (Arendsand
others, 2008; Chuand others, 2009; Reitsmaand others, 2005), with the dependencies implicitly captured
via latent variables. In general, data analysts who are interested in assessing the prevalence dependence
of diagnostic accuracy measures may find the simplicity of interpretation and the ease of implementation
of the proposed methods in the current paper. Another practical concern for the joint model is the poten-
tial model misspecification. If the joint model is incorrectly specified, nonignorable bias might enter the
model-based parameter estimates.

SUPPLEMENTARY MATERIALS

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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