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Scaling down DNA circuits with
competitive neural networks

Anthony J. Genot, Teruo Fujii and Yannick Rondelez

LIMMS/CNRS-IIS, University of Tokyo, Tokyo, Japan

DNA has proved to be an exquisite substrate to compute at the molecular

scale. However, nonlinear computations (such as amplification, comparison

or restoration of signals) remain costly in term of strands and are prone to

leak. Kim et al. showed how competition for an enzymatic resource could

be exploited in hybrid DNA/enzyme circuits to compute a powerful non-

linear primitive: the winner-take-all (WTA) effect. Here, we first show

theoretically how the nonlinearity of the WTA effect allows the robust and

compact classification of four patterns with only 16 strands and three

enzymes. We then generalize this WTA effect to DNA-only circuits and

demonstrate similar classification capabilities with only 23 strands.
1. Introduction
Intense efforts have been devoted to building synthetic molecular circuits,

in vitro or in vivo, in part to understand and control biological processes

[1–3]. DNA, because of its programmability and biocompatibility, has emerged

as the substrate of choice to build complex structures [4–11], or to compute and

actuate elaborate functions [8,12–22]. In particular, strand displacement has

proved an exquisite mechanism to orchestrate the hybridization of DNA

strands [23–29]. In this mechanism, a strand of DNA (the output) is selectively

displaced from a gate by the action of one or several strands (the inputs)

[30–32]. Efforts in DNA-based molecular programming have culminated in

the construction of a variety of molecular systems [33–35], including large-

scale [36,37], reversible [38,39] and reprogrammable circuits [13,40], as well as

circuits multiplying matrices [41] and neural networks [42]. Besides those

DNA-only circuits, hybrid DNA/enzyme circuits have been reported recently.

Such molecular networks—which use DNA for encoding function and signal-

ling but enzymes for production and degradation of signals—have emerged

as a general approach to construct circuits with dynamic behaviours such as

oscillations or bistability [43–49].

Most logic circuits require nonlinear computations, such as the amplifica-

tion, restoration or comparison of signals, which are often the most difficult

parts of a circuit to implement. Here, we show how to exploit nonlinear chemi-

cal effects to naturally compute nonlinear functions in DNA circuits with a low

number of strands. Kim et al. theoretically demonstrated that competition of

autocatalysts for a common enzymatic resource generates a winner-take-all

(WTA) effect that digitally compares concentrations by amplifying infinitesimal

differences (figure 1; [50]). We generalize this effect by demonstrating theoreti-

cally WTA circuits with DNA strands only. Furthermore, we illustrate the

benefit of competition with a DNA-only classifier that uses only 23 strands to

recognize four patterns and their corrupted versions, and a hybrid DNA/

enzyme circuit that does the same with only 16 strands. We attribute this com-

pactness to the essential features of nonlinearity, generality and invariance of

WTA circuits.

We first describe the classification of patterns with WTA hybrid DNA/

enzyme circuits. Competitive effects naturally appear in enzymatic systems,

because enzymes are resources that are often shared by a great number of sub-

strates [50–53]. Our classifiers are structurally similar to Hamming classifiers, in

which a layer computes Hamming distances (the number of bits that are differ-

ent) between stored and inputted patterns, and another layer selects the
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Figure 1. WTA in enzymatic systems. (a) Several outputs Yj replicate, thanks to a specific template Tj and a common and limited enzymatic resource R. They are
continuously degraded by a mechanism not shown here. The competition for the resource R leads a WTA effect. The output with the highest concentration of
template evicts the others because it provides the fastest replication rate for its output (assuming all other chemical parameters are equal). (b) Schematic
time-plot showing the WTA effect. Although there is initially more Y2 than Y1, the latter eventually evicts the former as [T1] . [T2]. (c) Phase plot in the
space of concentrations for several trajectories with different initial conditions. The template T1 is in slight excess compared with T2. The winner, Y1, does not
depend on the initial concentration of outputs, provided they are all initially present. (d ) The output Y2 wins for the same initial conditions as (c), but with
an excess of T2 over T1. (e) The behaviour is unchanged by a shift of all templates concentrations by a constant concentration c0.
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minimal distance [54]. Our general architecture is the

following. A strand displacement layer computes several

pseudo-weighted sums of the inputs. This linear layer

controls a nonlinear layer that performs all nonlinear compu-

tations through a WTA circuit [55]. The nonlinear layer

amplifies the maximal sum at the expense of the others,

digitizing the outputs. The circuit exhibits a peculiar struc-

ture: the outputs are globally coupled, although there are

no explicit connections between them.

The chemical reactions used for the computations are

shown in figure 2. The chemistry is based on the enzymatic

toolbox of Montagne et al. [45]: protected single-stranded

DNA templates encode the topology of a circuit, directing

the enzymatic production of transient signal oligonucleo-

tides. The input strands Xi represent digital variables: their

initial concentrations [Xi](0) can be either 0 (FALSE), c0

(TRUE) or 0.5 c0 (ambiguous input), the latter modelling cor-

ruption of an input. The summation operation is based on the

mass action kinetics of strand displacement. An input Xi dis-

places an inhibiting strand Ii from a weight complex Wij ¼ Ii :

Tj to yield an activated template Tj:

Xi þWij!
kf

Tj þ Xi : Ii: ð1:1Þ

The mass action constant of strand displacement kf is

106 M21 s21, which gives a half-time of displacement of

approximately 10 s for Xi and Wij in the 100 nM range [56].

Because mass action kinetics are linear in each reactant, the

concentration of released template Tj varies approximately

linearly with Xi, thus mimicking a weighted sum. This can

be easily seen when the input strands are in large excess

(c0�
P

j½Wij�ð0Þ), and the level of inputs is either 0 or c0 (no
ambiguous inputs). After completion of displacement, the

amount of active template [Tj](1) is [Tj](1) ¼
P

i min([Wij](0),

[Xi](0)). Because [Xi](0) is either 0 or c0, [Tj](1) will simplify

to the weighted sum

½Tj�ð1Þ ¼
1

c0

X
i

½Wij�ð0Þ½Xi�ð0Þ

The enzymatic layer uses the dual-repeat templates Tj

produced by the linear layer to replicate outputs Yj [45]. This

replication proceeds as follows: the template Tj (reversibly)

binds to Yj to form a primer–template substrate, which trig-

gers the elongation of Yj by the polymerase. A nicking

enzyme recognizes this duplex and cuts one of its strands to

yield two bound output strands Yj, which spontaneously

unbind from the template (the inhibitor strand is chemically

protected from being nicked). The temperature and lengths

of domains are chosen so that outputs—but not inhibitors—

spontaneously unbind from the templates on the experimental

timescale. As a rule of thumb, eight nucleotides for domain 1

and 4 nucleotides for the specific domain of Yj should be

appropriate and provide enough room to accommodate four

different sequences of outputs. Inputs and templates are

chemically protected from degradation, for example by phos-

phorothioate backbone modifications [45].

The net reactions for Yj are as follows. For the reversible

binding, we have

Yj þ Tj$
Kb Yj : Tj: ð1:2Þ

The binding of a template Tj to its output Yj is designed to

be reversible, with a fast equilibration (less than or equal to 1 s)

and a large dissociation constant (Kb ¼ 1 mM). We thus have

½Yj : Tj� ≃ ½Yj�½Tj�=Kb. Kinetic and thermodynamic constants
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Figure 2. Chemical operation of hybrid DNA/enzyme circuits. By a slight abuse of notation, Xi refers either to the output Xi or its specific domain. The
number-labelled domains are global, shared by all outputs. The letter-labelled domains are specific to an input or output. (a) Strand displacement performs
pseudo-weighted-sums of the inputs concentrations. An input Xi displaces an inhibitor Ii from a weight complex Wij ¼ Ii : Tj to give an active template Tj.
(b) Amplification. A template Tj catalyses the replication of Yj through a mechanism mediated by a polymerase and a nicking enzyme. Binding of the output
Yj to the template triggers its elongation by the polymerase and nicking by a nicking enzyme. Spontaneous melting releases the outputs. (c) Degradation. Outputs
are continuously degraded by an exonuclease enzyme which hydrolyses single-stranded DNA.
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are taken to be identical for all templates, outputs and inputs.

Regarding the enzymatic steps, we have

Yj : Tj !
Vmax ;Km

2Yj þ Tj and Yj!
kr

�; ð1:3Þ

for the replication and decay. The polymerase has a Michaelis–

Menten constant Km ¼ 40 nM. At full speed, the polymerase

replicates outputs at a rate of Vmax ¼ 10 nM s21. The output

strands are degraded by an exonuclease, assuming a first-

order degradation with a rate of kr ¼ 0.01 s21. We

assume nicking is much faster than polymerization, which

becomes the kinetically limiting step. The production of

DNA is therefore approximated by a competitive Michaelis–

Menten model for the polymerase. We assume that the

degradation of DNA is first order. This yields equation
(1.4), governing the evolution of the concentration of output

strands

½ _Yj� ¼
Vmax½Tj�½Yj�

KmKb þ
P

i ½Ti�½Yi�
� kr½Yj�: ð1:4Þ

Competition is reflected by the presence in the denomi-

nator of all outputs Yi that use the polymerase [52]. We

base our discussion and simulations on biochemical con-

stants found in the literature [45].

The WTA effect is a nonlinear kinetic effect that amplifies

selectively one output to the detriment of the others. It spon-

taneously emerges when several outputs compete for the

polymerase (figure 1). The higher the level of an output,

the higher the fraction of polymerase it sequesters. This non-

linear feedback reinforces the output with the quickest
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replication rate and gradually evicts other outputs—leaving

only one output at the steady state [50,53]. From a perspective

of signal processing, the WTA effect is a perfect nonlinear

primitive to digitize signals. We use WTA effects to compare

the replication rates of species, amplify the fastest and suppress

the others, thereby instantiating the response of the circuit.

Because the autocatalysis is first order (only one Yi is

required to catalyse the production of a new Yi), the WTA cir-

cuits have an important property of invariance: the winning

output Yj depends only on the kinetic parameters and the

steady-state concentration of templates, and not on the initial

concentrations of outputs [53,57]. (The situation would be

different for higher-order autocatalysis [50].) Any large

excess of a slowly replicating output will eventually be over-

come by a tiny fraction of another output replicating faster.

Because all kinetic parameters are assumed equal, the

winner is determined solely by the concentration of activated

templates. Thus, the winner is unchanged by a shift of all

templates concentrations by a common constant (figure 1e).

This invariance a priori allows all the weights to be positive,

and surmounts a limitation of molecular circuits, which

cannot easily handle negative values because concentrations

are always positive. Molecular engineers often overcome

this limitation with a dual-rail representation: the positive

and negative parts of a signal are carried by two distinct

species [37]. Unfortunately, the dual-rail representation com-

plicates the synthesis and debugging of logic circuits because

it doubles their size [37,42]. Our circuits do not require nega-

tive values, because we constrain the weights to be positive in

the selection algorithm.

The general structure of the classification circuit is shown

in figure 3. It takes as input the answers to four questions

about a scientist and returns as output the corresponding

scientist (following the game proposed by Qian et al. [42]).

Input strands X1. . . X4 encode the answers of a human

player to the questions. The circuit’s answer is given by the

surviving output strand Yj at the steady state.
We found the weights using a randomized search based

on the perceptron algorithm (see the electronic supplemen-

tary material). For the simulations in figure 4, the concentra-

tion of c0 is 300 nM, and the concentration of the weights is

(in nM):

W ¼

130 290 170 400
400 280 90 250
320 270 330 120
110 280 370 220

0
BB@

1
CCA: ð1:5Þ

The sum of a column j in W gives the maximal amount of

template Tj produced when all inputs are present in large

excess. Simulations of a hybrid DNA/enzyme circuit that

classifies 36 patterns (four correct and 32 corrupted) are

shown in figure 4. The patterns are the same as electronic

supplementary material, fig. S15 of Qian et al. [42]. We

model the corruption of an input by injecting an ambiguous

concentration of 0.5 c0 rather than 0 or c0.

For large and random patterns, an algorithmic search for

the weights is probably not needed. Indeed, for Hamming

classifiers, the pattern matrix (or its transpose, depending

on how it is defined) always provides correct weights [54].

In our case, the pattern matrix should be an appropriate

weight matrix for large and random patterns. Indeed, con-

sider a set of patterns Xj with N bits, each bit of each

pattern being chosen independently and randomly to be 0

or 1. We have

kXa � Xbl ¼
N
2
; if a ¼ b

N
4
; if a = b

8><
>:

where the brackets denote the average value of the dot

product. Thus, for two distinct patterns Xa and Xb, the aver-

age of (Xa . Xa 2 Xa . Xb) is on the order of N, whereas its

standard deviation is on the order of
ffiffiffiffi
N
p

. For a large

number of bits N, it is extremely unlikely that there will
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exist a spurious pattern Xb such that (Xa . Xa 2 Xa . Xb) , 0

and the weight matrix ½Wij� ¼ ½Xj
i� will provide satisfying

weights with a high probability. Note that for small patterns

such as those used here, this approach will not necessarily

yield correct weights. For example, the pattern 1111 would

win for all presented inputs if we used the pattern matrix

as a weight matrix.

Note that the steady-state level of the winning output

varies according to the pattern presented. This occurs because

the concentration of template released also varies between

patterns. In order to obtain a truly digital behaviour, a set of

threshold/amplifying gates could be added downstream to

normalize the concentration of outputs [36,37].

The classification is robust to corruption of patterns; it clas-

sifies without errors all the presented correct and corrupted

patterns (similar to Qian et al. [42]). The classification is

quick; it takes about 5–15 min for the winning output to

reach 50 per cent of its steady state. For comparison,
the half-time for similarly complex computations with a

DNA-only circuit ranges from 30 min to 10 h [34,37,42].

An interesting metric for a DNA circuit is the number of

strands required for its construction. This gives a proxy for

the practical complexity of the synthesis and preparation.

Note that similar but distinct metrics, such as the number

of DNA complexes or the total number of base pairs, also

inform on the experimental complexity of DNA circuits.

According to the strand count, our hybrid circuit is remark-

ably compact: it classifies four patterns and 32 corrupted

versions with only 16 strands (four inputs, four templates,

four outputs and four inhibitors). As a point of comparison,

we can compare our circuit with some propositions [50] or

demonstrations [42] of Hopfield associative memories

(which are however recurrent classification circuits). The

memory of Qian et al. [42]—which recognizes and completes

four-bit patterns—is built from 71 strands (112 strands with

the reporters) [42]. The proposal of Kim et al. for the
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construction of an associative memory with a hybrid DNA/

enzyme circuit would require 28 strands [50].

Three factors contribute to the compactness of our circuit

based on enzymatic competition. First, DNA strands serve

only to encode the circuit, whereas enzymes are in charge of

the digitization machinery. In DNA-only circuits, a DNA

machinery specific to each gate is in charge of digitization

[34,36,37]. Second, competitive inhibition between n outputs

usually requires O(n2) connections between them. We do not

need those mutual connections, because the WTA effect is a

general and global effect: the variation of one output immedi-

ately affects the replication rate of all others. The polymerase

acts as a means to communicate information between outputs.

Similar use of subtle physical effects to implement WTA effects

in electronic circuits has been demonstrated [58]. Finally, the

invariance property of the WTA effect dispenses with the

use of dual-rail logic, which roughly doubles the size of

logic circuits. More generally, our circuits highlight how

neural networks are a promising paradigm for molecular com-

putation, given their capacity to encode a larger number of

functions with fewer species than Boolean circuits [42].

However, there are important differences between the

recurrent circuits of Qian et al. or Kim et al., and the circuits

presented here. First, our classification circuit is feed-forward

(it associates an output to a set of inputs), whereas the circuits

of Qian et al. and Kim et al. are recurrent (they complete their

inputs so as to converge to a stable pattern). Thus, if we

require some information about the bits of the classified pat-

terns (turning our classifier into a memory), a look-up table is

needed, which will increase the size of the circuit. Conver-

sely, if we need to interpret the result of recurrent circuits

(turning the memory into a classifier), then a look-up

table is equally needed. Second, the storage capacity of Hop-

field memories is limited, growing sublinearly with the

number of bits in the patterns [59]. The feed-forward circuits

presented here could potentially store many more patterns,

because they are structurally similar to Hamming classifiers

(which use positive or negative values for weights and

inputs) and whose capacity grows exponentially with the

number of bits in the patterns [60]. Third, the distributive

architecture of recurrent networks confers them robustness

to deletion of strands. By contrast, in our feed-forward circuit,

omission of an output in the preparation of the circuit will

prevent this output from competing, thus effectively erasing

the corresponding pattern from the classifier.

The competition leading to a WTA effect is not limited to

enzymes and applies equally to amplification mechanisms
based on DNA only. It is straightforward to enforce

competition in synthetic DNA circuits, because strands with

common domains can easily be designed, thanks to the

modularity of Watson–Crick base pairing.

Figure 5 shows how to exploit competition for a fuel

strand in order to perform the WTA effect in DNA-only sys-

tems. First, inputs displace outputs from weights strands

(similar to the way inputs release templates in figure 4).

Xi þWij ! Yj þwaste. ð1:6Þ

The rest of the circuit is based on the strand-exchange

mechanism of Zhang et al. [31]. The autocatalytic outputs

compete for a common fuel and are continuously sequestered

by threshold gates [42].

Yj þ Fþ Gj ! 2Yj þwaste ð1:7Þ

and

Yj þ Thj ! waste. ð1:8Þ

Those processes replace the continuous production–

degradation of DNA in hybrid circuits. The crucial point is

that all outputs cannot survive, because there is not enough

fuel to saturate all the respective thresholds, [Thj](0) ,

[Fuel](0) ,
P

[Thi](0). The fuel becomes a limiting resource

for the replication of outputs. Intuitively, this shortage of

fuel should lead to a competition between outputs that non-

linearly amplifies small differences, leading to a WTA effect.

Contrary to the hybrid circuits, the winner of this competition

should depend on initial concentrations, because exhaustion

of fuel will stop amplification before the circuit has had

enough time to ‘forget’ its initial state. Because the concen-

trations of gates and thresholds are initially identical for all

outputs, we expect that the initial concentration of outputs

will determine the surviving output after exhaustion of

fuel. The DNA-only circuits are compact for reasons similar

to the hybrid circuits (no dual-rail, nonlinear and global

nature of competition). They require the synthesis and

mixing of 23 strands, which should allow their fast prep-

aration. An experimental implementation of this scheme

should be careful of potential cross-interactions between com-

ponents. For example, the toehold of the weights may initiate

an invasion of the amplification or threshold gates through a

four-way branch migration (the speed of which is greatly

reduced in a magnesium buffer [61]).

We used visual DNA strand displacement (Visual DSD)

[62–64] to simulate this circuit and verify numerically

the existence of a WTA effect (code in the electronic
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supplementary material). Inspired by model-checking in

computer science, Visual DSD automatically compiles and

simulates strand displacement reactions from a domain-

level definition of strands. We used the standard kinetic par-

ameters and default compilation of Visual DSD. All toehold

domains have identical lengths and binding constants.

The response of the circuit to the 36 patterns is computed

in deterministic mode, without leaks simulated (figure 6).

After a transient period of about 15 min, the output corre-

sponding to the presented pattern emerges as the winner

for the majority of patterns. The final concentration of the

winning output is a small fraction of the total amount of

output produced; the vast majority of outputs are seques-

tered by their threshold gates. The final level of the

winning output varies by a factor of 10, a larger ratio than
for the hybrid circuit. For some patterns, all the outputs

decay (such as ??10, 0??1, ??0?), or a winner exists but with

a very low level (?00?). Note that while we have found

numerically conditions in which a WTA effect occurs in

DNA-only circuits, it is not guaranteed that a unique

winner will exist whenever competition for fuel occurs. The

competition condition ([Thj](0) , [Fuel](0) ,
P

[Thi](0))

does not exclude cases where a winner may fail to emerge,

or more than one winner may exist. Thorough analytical

studies are needed to better understand the regimes that

lead to it.

Strand displacement is prone to leak, which is thought to

arise mainly from blunt-end displacement (displacement of a

strand from a duplex without the assistance of a toehold)

[32,65,66]. Leak is especially problematic for first-order
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autocatalytic circuits because they amplify exponentially even

a miniscule leak (contrary to second-order amplification

which occurs only above a threshold, in the presence of

first-order degradation) [31]. Yet, we expect our classification

circuit to be robust to leak because of the invariance of the

WTA effect. A small, uniform leak of outputs will shift

their levels by a common concentration, which should not

change the winner. Note that there are limits to the invariance

of the DNA-only circuit, because shifting the level of all

outputs by a very large concentration will annihilate the

WTA effect, because all thresholds will be saturated.

Fully simulating all possible leak reactions is prohibitive

for deterministic simulations, so we simulated the circuit

with the just-in-time mode (which performs stochastic simu-

lations and compiles reactions on-the-fly) in order to evaluate

the robustness to leaks [62,67]. Figure 7 shows the effect of

increased leaking rates on the circuit. For the standard rate

of leak of 1 M21 s21 [56,66], the classification is robust, and

only the correct winner persists. For a stronger leak rate of

10 M21 s21, the correct winner initially dominates, but after

a dozen of minutes, the levels of all outputs drift upwards.

This is not unexpected as strong leakage should accelerate

the convergence of such single-use circuit towards a thermo-

dynamic equilibrium, in which the concentration of all free

outputs is non null (see figure 7 right). Similar drifts in

DNA circuits have been observed experimentally before

[23,31,34,37]. The robustness of WTA circuits to moderate

leakage, which we probed at the stochastic level for technical

reasons, is a property that we expect to be true at the

deterministic level.

We have presented two implementations of the WTA

effect in synthetic DNA systems. While they both use auto-

catalysis and competition for a resource, their properties are

different. The hybrid DNA/enzyme circuit used competition

for an enzyme, whereas the DNA-only circuit used compe-

tition for a fuel. The winning output of the hybrid DNA/

enzyme circuit was determined by the concentration of

template released and was independent of the initial concen-

tration of outputs. In the DNA-only circuits, the winning

output was determined by the initial concentration of
output Yi released (all gates have equal concentrations).

Those differences in design illustrate the flexibility of the

WTA effect and, in principle, any limiting and shared

resource is appropriate to enforce competition [50,53].

The precise implementation of the WTA effect may be dic-

tated by criteria of performance, robustness or ease of design.

DNA-only circuits are entirely synthetic, which facilitates their

debugging and increases their modularity. Cascading WTA

modules appears easier with DNA-only circuits than hybrid

DNA/enzyme circuits, because the competitive effects can be

localized to various subnetworks using different fuel strands

(whereas competition for enzymes would lead to system-

wide coupling). On the other hand, hybrid DNA/enzyme

designs may prove more suitable for actuating circuits that

respond dynamically to change in their input patterns, given

that they continuously degrade and produce DNA strands

(instead of simply releasing and sequestering them).
2. Conclusion
We have sought to exploit low-level physical effects inherent

to biochemistry in order to compute nonlinear functions. We

have shown that a powerful computational primitive (WTA

effect) is naturally implemented in DNA circuits when repli-

cating strands are forced to compete for a limited resource.

We identify three features of the WTA effect (invariance, non-

linearity and compactness) which allow robust nonlinear

computations from a reduced set of strands. We believe

that such low-level routines may considerably widen the

repertoire of DNA logic circuits, while facilitating their prep-

aration. Last, our work further highlights how competition

for a limited resource may provoke the emergence of complex

dynamics, which has often been noted in studies on the

origin of life, and searches for early replicating peptides or

nucleic acids [57,68–70].

We thank Jongmin Kim, Lulu Qian, David Soloveichik, Andrew
Turberfield, Erik Winfree and David Zhang for discussions, as well
as Andrew Phillips for help with Visual DSD. A preliminary version
of this manuscript appeared as an extended abstract in Genot et al. [71].
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