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Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that ter-

minatae translation at the 30 end can diffuse with increased probability to the

50 end of the transcript, initiating another cycle of translation. This phenom-

enon describes ribosomal flow with positive feedback—an increase in the

flow of ribosomes terminating translating the open reading frame increases

the ribosomal initiation rate. The aim of this paper is to model and rigorously

analyse translation with feedback. We suggest a modified version of the

ribosome flow model, called the ribosome flow model with input and output.
In this model, the input is the initiation rate and the output is the translation

rate. We analyse this model after closing the loop with a positive linear

feedback. We show that the closed-loop system admits a unique globally

asymptotically stable equilibrium point. From a biophysical point of view,

this means that there exists a unique steady state of ribosome distributions

along the mRNA, and thus a unique steady-state translation rate. The solution

from any initial distribution will converge to this steady state. The steady-state

distribution demonstrates a decrease in ribosome density along the coding

sequence. For the case of constant elongation rates, we obtain expressions

relating the model parameters to the equilibrium point. These results may

perhaps be used to re-engineer the biological system in order to obtain a

desired translation rate.

1. Introduction
Translation is one of the stages in the flow of gene expression, i.e. the process in

which cells produce proteins based on the information encoded in the DNA and

mRNA sequences. During translation, ribosomes ‘read’ the mRNA sequence

and translate it into a corresponding amino acid chain. Translation occurs in

all organisms, in almost all the cells, and under almost all conditions; thus, devel-

oping a better understanding of this complex process has numerous potential

applications in medicine, biotechnology, systems biology, functional genomics

and more.

The last few years have witnessed a surge of new empirical techniques for

studying gene expression and specifically the translation mechanism. Ribosome
profiling [1] provides a quantitative snapshot of the protein synthesis process by

ribosomes, including precise measurements of ribosomal positions. Techniques

for measuring absolute protein levels [2–6] and fractionation of mRNA–

ribosome complexes (polysomes) allow the number of ribosomes on each

mRNA to be estimated [1,7]. Other technological advances allow large-scale

measurements of mRNA half-lives [8], protein half-lives [9], protein translation

rates and mRNA transcription rates [10].

These methods produce vast amounts of data. While the amount of data

increases at an exponential rate, the computational approaches for analysing

these data seem to evolve at a slower pace. Mathematical and computational

models of translation are becoming increasingly more important because of

the need to better organize and understand these data.

A standard mathematical model for translation elongation is the totally
asymmetric simple exclusion process (TASEP) [11]. TASEP was introduced by Mac-

Donald et al. [12], and independently by Spitzer [13]. TASEP is a stochastic

model for particle movement along some kind of ‘tracks’ or ‘trails’. A lattice

of sites models the tracks, and particles hop, with some probability, from one
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Figure 1. TASEP and the RFM. (a) The TASEP model—each codon has an
exponentially distributed translation time; ribosomes have volume and can
block each other. (b) The RFM is a coarse-grained mean field approximation
of the TASEP. (Online version in colour.)
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site to a neighbouring one. An important property of this

model is that hops may take place only to a target site that

is not already occupied by another particle. Hence the term

simple exclusion. The term totally asymmetric is used when

the motion along the lattice is unidirectional.

TASEP models have been used to study a large number of

biological systems, ranging from extracellular transport and

gene transcription or translation to pedestrian dynamics

[14]. Despite its rather simple description, it seems that

rigorous analysis of the TASEP is non-trivial.

Reuveni et al. [15] recently introduced a deterministic model

for translation called the ribosome flow model (RFM; figure 1). In

the RFM, mRNA molecules are coarse-grained into a uni-

directional chain of n sites of codons. The value of n may

depend, for example, on geometrical properties of the ribo-

some. Ribosomes reach the first site with initiation rate l . 0,

but are only able to bind if this site is not already occupied

by another ribosome. In practice, the initiation rate is a function

of physical features such as the number of available free ribo-

somes, the folding energy of the 50 untranslated regions

(UTRs), the folding energy at the beginning of the coding

sequence, the base pairing potential between the 50 UTR and

the ribosomal rRNA, and the context of the START ATG

[15–19]. A ribosome that occupies site i moves, with transition

rate li . 0, to the consecutive site, if this site is not already

occupied by another ribosome. Thus, the RFM captures both

the simple exclusion and totally asymmetric properties of the

TASEP. The transition rates li depend on various features of

the transcript [18] (see also the Methods section in [15]).

The simulations in the study of Reuveni et al. [15] show

that, for suitable parameter values, TASEP and the RFM

lead to similar predictions. For example, the correlation

between their predictions over the set of endogenous genes

of Saccharomyces cerevisiae is 0.96.

The RFM with n sites is given by

_x1 ¼ lð1� x1Þ � l1x1ð1� x2Þ;
_x2 ¼ l1x1ð1� x2Þ � l2x2ð1� x3Þ;
_x3 ¼ l2x2ð1� x3Þ � l3x3ð1� x4Þ;
..
.

_xn�1 ¼ ln�2xn�2ð1� xn�1Þ � ln�1xn�1ð1� xnÞ
and _xn ¼ ln�1xn�1ð1� xnÞ � lnxn:

9>>>>>>>=
>>>>>>>;

ð1:1Þ
Here, xiðtÞ [ ½0; 1� describes how occupied site i is, where the

value 1 [0] means that the site is completely occupied [comple-

tely free]. The rate of ribosome flow into [out of] the system is

given by l(1 2 x1(t)) [lnxn(t)], whereas the rate of ribosome

flow from site i to site i þ 1 is given by lixi(t)(1 2 xi þ 1(t)).
Since the state variables correspond to normalized occu-

pation levels, we consider initial conditions x(0) in the

closed unit cube

C ¼ fx [ Rn : xi [ ½0; 1�; i ¼ 1; . . . ;ng:

In the study of Margaliot & Tuller [20], we showed that

there exists a unique equilibrium point e [ IntðCÞ, where

IntðCÞ ¼ fx [ Rn : xi [ ð0; 1Þ; i ¼ 1; . . . ;ng

is the interior of C, and that any solution of the RFM, with

xð0Þ [ C, converges to e. The biophysical interpretation is

that the parameters l, li uniquely determine a steady state of

ribosome distributions (and thus translation rate), and that per-

turbations in this distribution will not change the asymptotic

behaviour of the dynamics. In particular, this explains why

the simulations of the RFM in Reuveni et al. [15] converged

to the same final state regardless of the initial condition. Chan-

ging the values of the positive paraments l, li will not change

this qualitative behaviour; however, it will change e, i.e. the

distributions and the translation rates at the steady state.

Determining the relationship between the RFM parameters

and e is an important and difficult problem. It has been shown

[21] that in some cases the transition rate along genes is con-

stant, so the translation efficiencies of all the codons are

identical. This happens, for example, when the rate is limited

by the concentration of elongation factors and not by the

local features of the coding sequence, such as tRNA molecules

or when there is a balance between the codon frequencies and

tRNA levels [22]. Margaliot & Tuller [23] considered the RFM

in the special case where

l1 ¼ l2 ¼ � � � ¼ ln :¼ lc;

i.e. the transition rates li are all equal, and lc denotes their

common value. Since this homogeneous ribosome flow model
(HRFM) includes only two parameters, l and lc, the analysis

is simplified. The results in Margaliot & Tuller [23] show that

the dependence of e on the parameters may be separated into

two different regimes. The transition between these two

regimes takes place when

l

lc
¼ nþ 1

2nþ 4
: ð1:2Þ

This is reminiscent of the phase transition that takes place in the

TASEP [11]. For the HRFM, it is also possible to derive an expli-

cit expression for e ¼ (e1, . . . ,en)‘ at the limit of very high

initiation rate, namely,

lim
l!1

ei ¼
1

2 cosðp=ðnþ 2ÞÞ
sinðpðn� iþ 1Þ=ðnþ 2ÞÞ
sinðpðn� iþ 2Þ=ðnþ 2ÞÞ ;

i ¼ 1; . . . ; n: ð1:3Þ

The steady-state translation rate when l!1 is thus

R ¼ lcen

¼ lc

2 cosðp=ðnþ 2ÞÞ
sinðp=ðnþ 2ÞÞ

sinð2p=ðnþ 2ÞÞ

¼ lc

4 cos2ðp=ðnþ 2ÞÞ : ð1:4Þ
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Figure 2. The eukaryotic translation as an RFM model with feedback. (a) Illustration of the cap-dependent eukaryotic translation mechanism (explanation in the
main text); for simplicity, other proteins, as well as a second eIF4A molecule known to interact with eIF4G, have been omitted. (b) The modelling of the
cap-dependent eukaryotic translation mechanism by the RFMIO with feedback. (Online version in colour.)
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This implies that, when the initiation rate is very high, the

translation rate in the HRFM depends on the coding

sequence, i.e. the length n of the sequence and the translation

rate lc, and that elongation becomes the rate-limiting step.

Note that, as n goes to infinity, R in (1.4) goes to lc/4. One

may define the capacity of a gene as its maximal translation

rate. Thus, in the case of the HRFM, we have a closed-form

formula for the capacity. These results may be applied

when analysing translation rates in mouse embryonic stem

cells, as in this case translation rates are usually constant [21].

In this paper, we consider for the first time the RFM as a

control system, with the initiation rate as the input, and the

translation rate R(t) ¼ lnxn(t) as the output. We analyse the

behaviour of the RFM after closing the loop from output to

input with positive linear feedback. The motivation for this

stems from the fact that in eukaryotic translation the

poly(A)-binding protein binds both the poly(A) tail at the 30

end of the transcript and eIF4G at the 50 end of the transcript,

promoting mRNA circularization. Thus, if the UTRs of the

transcript are short enough, the ribosomes that terminate

translation at the 30 end can diffuse with increased probability

to the 50 end of the transcript, re-initiating another cycle of

translation.

Our results show that several nice properties of the RFM and

the HRFM hold also for the closed-loop system. In particular,

there exists a unique globally asymptotically stable equilibrium

point e. For the case of equal lis, we obtain closed-form

expressions relating the closed-loop system parameters with e.
Our results may be used to explain experimental data and, in
the context of synthetic biology, to re-engineer the biological

translation process in order to obtain a desired synthesis rate.

The remainder of this paper is organized as follows. In §2,

we describe the ribosome flow model with input and output

(RFMIO) with feedback as a model for the eukaryotic trans-

lation process. Section 3 states our main results. The proofs,

given in §5, use some known tools that are reviewed in §4.

The final section includes a comparison between our model

and the TASEP, and describes some open questions for

further study.
2. Ribosome flow model with input and output
with feedback

A typical eukaryotic mRNA includes, in addition to the open

reading frame (ORF), also the 50 and 30 UTRs (figure 2)

[24,25]; it also includes a cap structure (called RNA 7-methyl-

guanosine cap, or m7G cap), which is a special tag added to

the 50 end of the mRNA; the cap is a terminal 7-methylguano-

sine residue that is linked to the first transcribed nucleotide.

In addition, the mRNA includes the ORF (i.e. the codons

that are translated to the protein), and the poly(A) tail at

the 30 end of the mRNA.

In eukaryotes, mRNA molecules usually form circular
structures; a simplified schematic of the closed-loop model

of translation initiation appears in figure 2 [26,27]. In this

structure, the eIF4F complex (which includes a few proteins,

eIF4E complexed with eIF4G and eIF4A) interacts with both
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the 50 end of the mRNA (via the protein eIF4E) and the

poly(A) tail (via the poly(A) binding protein, PABP) and

recruits the 40S ribosomal subunit (i.e. the small ribosomal

unit) via its interaction with the protein eIF3. The small ribo-

somal subunit is part of the 43S pre-initiation complex (which

includes the 40S ribosomal subunit loaded with the proteins

eIF3, eIF1 and eIF1A, the initiator Met-tRNAiMet, eIF2 and

GTP binds the eIF4F–mRNA complex) that usually scans

along the mRNA molecule from the 50 end of the 50 UTR

towards the beginning ORF until it reaches the start codon

(usually an AUG triplet). Circularization is thought to pro-

mote cycling of the ribosomal subunits (figure 2), leading

to time-efficient translation, and may also function to

ensure that only intact mRNA molecules are translated (par-

tially degraded mRNA characteristically has no m7G cap and

no poly(A) tail) [28].

The poly(A) tail protects the mRNA molecule from enzy-

matic degradation in the cytoplasm and aids in: transcription

termination, export of the mRNA from the nucleus, and

translation [29]; thus, almost all eukaryotic mRNAs are poly-

adenylated [30] and transcripts lacking the poly(A) tail are

expected to have improper regulation.

Summarizing, it is biologically reasonable to consider the

translation initiation rate to be affected by the translation ter-

mination rate. Mathematically, this can be done as follows.

Consider the RFMIO

_x1 ¼ ð1� x1Þu� l1x1ð1� x2Þ;
_x2 ¼ l1x1ð1� x2Þ � l2x2ð1� x3Þ;
_x3 ¼ l2x2ð1� x3Þ � l3x3ð1� x4Þ;
..
.

_xn�1 ¼ ln�2xn�2ð1� xn�1Þ � ln�1xn�1ð1� xnÞ;
_xn ¼ ln�1xn�1ð1� xnÞ � lnxn

and y ¼ lnxn;

9>>>>>>>>>=
>>>>>>>>>;

ð2:1Þ

where u : Rþ ! Rþ is a non-negative function of time, and

then ‘close the loop’ by letting

uðtÞ ¼ k1 þ k2yðtÞ; k1 . 0; k2 � 0: ð2:2Þ

Here, k1 represents diffusion of ribosomes to the 50 UTRs that

is not related to recycling of ribosomes. In practice, this par-

ameter depends on biochemical features such as the number

of available ribosomal subunits and mRNA molecules in the

cell, and the properties of the 50 UTR.

The term k2y(t) represents the recycling/reinitation of

ribosomes that have already finished translating the mRNA

(and is thus proportional to the output rate y(t)). The value

of k2 depends on various biophysical properties of the

mRNA sequence affecting the diffusion of ribosomes that

terminated translation at the 30 end back to the 50 end.

In this paper, we study the closed-loop system, obtained

by combining (2.1) and (2.2), i.e.

_x1 ¼ ð1� x1Þðk1 þ k2lnxnÞ � l1x1ð1� x2Þ;
_x2 ¼ l1x1ð1� x2Þ � l2x2ð1� x3Þ;
_x3 ¼ l2x2ð1� x3Þ � l3x3ð1� x4Þ;
..
.

_xn�1 ¼ ln�2xn�2ð1� xn�1Þ � ln�1xn�1ð1� xnÞ
and _xn ¼ ln�1xn�1ð1� xnÞ � lnxn:

9>>>>>>>=
>>>>>>>;

ð2:3Þ

The next examples illustrate the dynamic behaviour

of this closed-loop system. In order to allow the trajectories

to be plotted, we consider examples with n ¼ 3.
Example 2.1.

Figure 3 depicts the trajectories of the closed-loop system

(2.3), with n ¼ 3, l1 ¼ l2 ¼ l3 ¼ 1, k1 ¼ 1 and k2 ¼ 100, for

three initial conditions in C. It may be seen that all three tra-

jectories converge to an equilibrium point

e ¼ 0:9902; 0:6153; 0:3809½ �0 ð2:4Þ

(all numerical values are to four-digit accuracy).

Example 2.2.

Consider (2.3) with n ¼ 3, l1 ¼ l2 ¼ l3 ¼ 1 and k1 ¼ 0.01.

The simulations indicate that the closed-loop system admits a

unique globally attractive equilibrium point e [ IntðCÞ; for

all k2 . 0. Figure 4 depicts e3 as a function of k2 [ ½0; 10�. It

may be seen that e3 increases with k2. For small values of

k2, the increase rate is very low. The reason for this is that

k1 is close to zero, and when k1 ¼ k2 ¼ 0 the closed-

loop system admits an equilibrium point at 0. The slow

increase corresponds to ‘escaping’ from this equilibrium

point. For larger values of k2, the increase of e3 is more or

less linear in k2, and then the graph ‘flattens’ and the limit

limk2!1 e3 exists.
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If e [ Rn is an equilibrium of (2.3) then the right-hand

side of every equation in (2.3) must be zero, so

ð1� e1Þðk1 þ k2lnenÞ ¼ l1e1ð1� e2Þ
¼ l2e2ð1� e3Þ

..

.

¼ ln�1en�1ð1� enÞ
¼ lnen: ð2:5Þ

If en ¼ 0, then this implies that ei ¼ 0 for all i, and k1 ¼ 0,

which is a contradiction to our assumption that k1 . 0.

Thus, en=0, and then

en�1 ¼
lnen

ln�1ð1� enÞ
;

..

.

e2 ¼
lnen

l2ð1� e3Þ
;

e1 ¼
lnen

l1ð1� e2Þ
;

9>>>>>>>>>=
>>>>>>>>>;

ð2:6Þ

and

e1 ¼ 1� lnen

k1 þ k2lnen
: ð2:7Þ

Note that (2.6) implies that

en�2 ¼
ðln=ln�2Þen

1� en�1

¼ ðln=ln�2Þen

1� ððln=ln�1Þen=ð1� enÞÞ
;

and, more generally, for all i � 1,

en�i ¼
ðln=ln�iÞen

1� ðln=ln�iþ1Þen

1� ðln=ln�iþ2Þen

. .
.

1� en

; ð2:8Þ

where on the right-hand side the term en appears a total of

i þ 1 times. This implies in particular that en uniquely
determines e.

It is important to note that the closed-loop system con-

sidered here is quite different from the RFM. Indeed, the

RFM is an open-loop system with a constant initiation rate,

whereas (2.3) includes a feedback connection from xn to x1.

From a biological point of view, the closed-loop system is a

more accurate description of translation in eukaryotes, as it

includes recycling of ribosomal subunits that have not

been analysed mathematically before. In fact, the closed-

loop system is a generalization of the original RFM, as it

includes both a term related to ribosomal recycling and a

term related to ribosomal diffusion without recycling.
3. Main results
As will be shown in §5, the closed-loop system is a monotone
dynamical system. Roughly speaking, bounded trajectories of

such systems have a ‘simple’ behaviour: they almost always

converge to an equilibrium point.

3.1. Bounded trajectories
The next result shows that C is an invariant set of the closed-

loop dynamics so, in particular, trajectories that emanate
from C remain bounded for all t � 0. Let @C ¼ C\Int(C ), i.e.

the boundary of C. We use x(t,a) to denote the solution of

(2.3) at time t for the initial condition x(0) ¼ a.

Proposition 3.1. For every a [ IntðCÞ, the solution of the closed-
loop system satisfies xðt; aÞ [ IntðCÞ for all t � 0. Furthermore, for
every a [ @C there exists a time e . 0 such that xðe; aÞ [ IntðCÞ.

Section 3.2 shows that all these bounded trajectories

converge to a unique equilibrium point.
3.2. Equilibrium point and stability
Theorem 3.2. The set C includes a unique equilibrium point e of
the closed-loop system (2.3). This equilibrium point is globally
asymptotically stable in C.

This implies that limt!1 xðt; aÞ ¼ e, for all a [ C, so a

simulation of the closed-loop system from any initial

condition in C will converge to the same final state.

From a biophysical point of view, this means that the

closed-loop system admits a unique steady state of ribosome

distributions along the mRNA, and thus a unique steady-

state translation rate. Perturbations in the distribution of

ribosomes due, for example, to events that are assumed to

be rare, such as ribosomal drop-off or internal initiation,

will not change the asymptotic behaviour of the translation

dynamics. It will still converge to the same distribution of

ribosomes and the same translation rates.

When the gain k2 is sufficiently small, more can be said

about what happens until convergence. Recall that the L1

norm of a vector x [ Rn is jxj1 ¼
Pn

i¼1 jxij.

Theorem 3.3. Consider the closed-loop system (2.3). If k2 [ ½0; 1�
then

jxðt; aÞ � xðt; bÞj1 � ja� bj1; ð3:1Þ

for all a, b [ C.

In other words, the convergence is monotone in the sense

that the (L1) distance between trajectories is always bounded

by the distance between their initial conditions. Taking b ¼ e
in (3.1) yields

jxðt; aÞ � ej1 � ja� ej1;

i.e. the convergence to e is monotone, as the distance to e can

never increase.

Note that combining proposition 3.1 and theorem

3.2 implies that e [ IntðCÞ, so ei [ ð0; 1Þ for all i. We

already saw that en determines e, i.e. that there exist functions

gi : (0, 1)! (0, 1) such that

ei ¼ giðenÞ; i ¼ 1; . . . ; n� 1:

It is natural to consider the following question. Suppose that

we fix the lis, and change the control parameters (k1, k2), thus

changing en. How will this affect the other coordinates ei? The

next result shows that if en increases [decreases] then every ei

increases [decreases].

Proposition 3.4. The gis satisfy

@

@z
giðzÞ . 0;

for all i ¼ 1, . . . , n 2 1, and all z [ ð0; 1Þ.
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From a biophysical point of view, this implies that if a

change in (k1, k2) yields an increase [decrease] in the trans-

lation rate, then it also yields an increase [decrease] in all

the ribosome distributions along the mRNA.

For two vectors a, b [ Rn, we write a � b if ai � bi for

i ¼ 1, . . . , n. We write a , b if a � b and ai , bi for some i,
and we write a�b if ai , bi for i ¼ 1, . . . , n.

The next result provides more information on the change

in e induced by a change in the control parameters.

Proposition 3.5. Suppose that the lis are fixed and let (k1, k2) and
ð~k1;~k2Þ be two sets of feasible control parameters. Denote by e and ~e
the corresponding equilibrium points. Let

d ¼ ~k1en � k1~en þ en~enlnð~k2 � k2Þ: ð3:2Þ

If d . 0 then e� ~e. If d ¼ 0 then e ¼ ~e. If d , 0 then e� ~e.

The case where we change only one control parameter

follows immediately.

Corollary 3.6. Suppose that the lis are fixed. Let e and ~e corre-
spond to the control parameters (k1, k2) and ð~k1; ~k2Þ, respectively.
If k1 ¼ ~k1 then e� ~e if and only if k2 , ~k2. If k2 ¼ ~k2 then
e� ~e if and only if k1 , ~k1.

From a biophysical point of view, this implies the intuitive

result that increasing any one of the positive feedback par-

ameters leads to an increase in the ribosome distribution

along the mRNA and thus to an increase in the translation rate.

It is important to obtain more explicit information on the

relationship between e and the system parameters. This

seems to be a non-trivial problem. However, in the special

case of the homogeneous ribosome flow model with input and
output (HRFMIO) the analysis becomes simpler.
3.3. Homogeneous ribosome flow model with input
and output with feedback

From here on, we assume that

li ¼ lc; i ¼ 1; . . . ; n; ð3:3Þ

with lc . 0. In this case, we refer to (2.3) as the HRFMIO with

feedback.

The next result gives a closed-form expression for all the

coordinates of e in terms of en.

Proposition 3.7. Suppose that (3.3) holds. Let s ¼ 1=ð2 ffiffiffiffi
en
p Þ. If

s , 1, let u [ ð0;p=2Þ be such that cos(u) ¼ s. If s . 1, let u . 0

be such that cosh(u) ¼ s. Then

ekffiffiffiffi
en
p ¼

sinððn� k þ 1ÞuÞ
sinððn� k þ 2ÞuÞ ; s , 1;

n� k þ 1

n� k þ 2
; s ¼ 1;

sinhððn� k þ 1ÞuÞ
sinhððn� k þ 2ÞuÞ ; s . 1;

8>>>>>>><
>>>>>>>:

ð3:4Þ

for k ¼ 1, 2, . . . , n 2 1.

Example 3.8.

Consider the closed-loop system in example 3.1, i.e.

with n ¼ 3, lc ¼ 1, k1 ¼ 1 and k2 ¼ 100. In this case, the simu-

lation results show that e is as given in (2.4). In particular,

en ¼ e3 ¼ 0.3809, so s ¼ 1=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3809
p

Þ ¼ 0:8101, and (3.4)
yields

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3809
p sinð3 arccosðsÞÞ

sinð4 arccosðsÞÞ

	 0:99

and

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3809
p sinð2 arccosðsÞÞ

sinð3 arccosðsÞÞ

	 0:6152;

and this agrees with (2.4).

Since en determines all the coordinates of e (see (3.4)), it is

enough to consider how en depends on the parameters lc, k1

and k2.

Theorem 3.9. Suppose that (3.3) holds. Define s and u as in
proposition 3.7. Then

k1 þ k2lcen

lc
ffiffiffiffi
en
p ¼

sinððnþ 1ÞuÞ
sinððnþ 2ÞuÞ ; s , 1;

nþ 1

nþ 2
; s ¼ 1;

sinhððnþ 1ÞuÞ
sinhððnþ 2ÞuÞ ; s . 1:

8>>>>>><
>>>>>>:

ð3:5Þ

An important goal in synthetic biology and biotechnology

is to artificially engineer and control the expression levels of

various genes. Equation (3.5) connects the flow from the

last site of the mRNA (i.e. the protein production rate) with

k1, k2. Thus, it may be used for reprogramming the expression

levels of genes. For example, modifying the properties or

structure of the 50 UTR may be used to change the value of

k1, and thus change en (and consequently all the other eis)

and the translation rate. The next example demonstrates this.

Example 3.10.

Consider the HRFMIO with n ¼ 3 and lc ¼ 1. Suppose that

we are interested in determining parameter values such that

e3 ¼ 1/4. This corresponds to s ¼ 1, so (3.5) becomes

k1 þ k2=4

1=2
¼ 4

5
:

Thus, we can take, for example, k1 ¼ 3/20 and k2 ¼ 1; these

parameters correspond to the features of the UTRs and can be

manipulated relatively easily. Solving (2.6) for these parameter

values yields e ¼ [3/8, 1/3, 1/4]’, so e3 ¼ 1/4, as required.

Equation (3.5) implies that the dependence of e on the par-

ameters has two different forms. The transition between these

forms takes place when s ¼ 1, i.e. when en ¼ 1/4, and then

(3.5) yields

4k1 þ lck2 ¼
2lcðnþ 1Þ

nþ 2
: ð3:6Þ

For example, if n ¼ 3, lc ¼ 1 and k1 ¼ 0.01, this implies that,

for k2 ¼ 1.56, we have e3 ¼ 1/4 (so the steady-state translation

rate is R ¼ lcen ¼ 1/4). This agrees with figure 4.

When either k1! 1 or k2!1, equation (3.5) implies that

sin((n þ 2)u) must go to zero. Thus, u! p/(n þ 2), so the
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equation s ¼ cosðuÞ ¼ 1=ð2 ffiffiffiffi
en
p Þ yields

en !
1

4 cos2ðp=ðnþ 2ÞÞ :

Note that this implies that en is a monotonically decreasing

function of n. For example, for n ¼ 3 this yields

e3 !
4

ð1þ
ffiffiffi
5
p
Þ2

	 0:38197;

and this agrees with figure 4.

From a biophysical point of view, the cases k1!1 or

k2!1 correspond to the situation where the effective

initiation rate is very high because of either general diffusion

of ribosomes to the 50 UTR (large k1) or highly efficient recy-

cling of ribosomes (large k2). In this case, the steady-state

translation rate

R ¼ lcen

	 lc

4 cos2ðp=ðnþ 2ÞÞ

depends on the rate-limiting factor, which is the (uniform)

elongation rate.

Remark 3.11. Note that (3.5) may be written as

k1 þ k2lcen ¼ f ðn; enÞ: ð3:7Þ

This implies that, given a desired value en, any two control

parameters (k1, k2) and ð~k1;~k2Þ that satisfy the linear equation

(3.7) lead to this same en, and thus to the same e. The next

example demonstrates this.

Example 3.12.

Suppose that n ¼ 3, lc ¼ 1, and that the desired value is

e3¼ 1/3. Then s ¼
ffiffiffi
3
p

=2, and (3.5) becomes

k1 þ
k2

3
¼ 1ffiffiffi

3
p sinð4 arccosð

ffiffiffi
3
p

=2ÞÞ
sinð5 arccosð

ffiffiffi
3
p

=2ÞÞ

¼ 1:

Figure 5 depicts the trajectories of the closed system for

(k1, k2) ¼ (2/3, 1) and for ð~k1;~k2Þ ¼ ð1=3; 2Þ for the same

three initial conditions. It may be seen that the dynamics in

these two cases is different (although similar), yet in both

cases all the trajectories converge to the same equilibrium

point, namely,

e ¼ 2=3; 1=2; 1=3½ �0: ð3:8Þ

Remark 3.13. Consider the special case k2 ¼ 0. In this case,

u(t) ; k1, so the closed-loop system becomes the HRFM

with initiation rate k1. Equation (3.5) becomes

k1

lc
ffiffiffiffi
en
p ¼

sinððnþ 1Þ arccosð1=2
ffiffiffiffi
en
p ÞÞ

sinððnþ 2Þ arccosð1=2
ffiffiffiffi
en
p ÞÞ ; en .

1

4
;

nþ 1

nþ 2
; en ¼

1

4
;

sinhððnþ 1Þarccoshð1=2
ffiffiffiffi
en
p ÞÞ

sinhððnþ 2Þarccoshð1=2
ffiffiffiffi
en
p ÞÞ ; en ,

1

4
:

8>>>>>>><
>>>>>>>:

ð3:9Þ

This provides a closed-form expression for the mapping

from en to k1. The inverse of this mapping, i.e. the mapping
from the initiation rate k1 to en, combined with (3.4), is the

input-to-state characteristic [31] of the HRFM with input u
and output y ¼ lcen.

The next result shows that the steady-state distribution

satisfies a kind of ‘traffic jam’ or ‘diffusion-like’ behaviour: as

we move towards the end of the chain (i.e. from the 50 end to

the 30 end of the ORF), the number of ribosomes decreases.

Proposition 3.14. Suppose that (3.3) holds. The equilibrium point
e [ IntðCÞ satisfies

e1 . e2 . � � � . en: ð3:10Þ

One may think of ei as the steady-state ribosomal density

at site i. A higher value of ei implies a higher chance that site i
is occupied by a ribosome, and so higher values along some

part of the chain corresponds to a ‘traffic jam’. The monotonic

decrease of ei in (3.10) resembles the diffusion of particles

(ribosomes in our case) from a region with higher particle

density (50 end of the ORF in our case) to a region with

lower density (30 end of the ORF in our case). These results

seem to agree with experimental results for eukaryotes

(i.e. usually containing mRNA circulation and thus feedback)

showing that there is a decrease in ribosomal density from

the 50 end to the 30 end of the ORF even when the elongation

speed is constant [21]. It is interesting to note that

even when the elongation speed is not constant there is an

increase in ribosomal density at the beginning of genes [1]

(see also [7,32]).
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4. Preliminaries
In order to make this paper more self-contained, we briefly

review some known results that will be used in the proofs

of the main results.
cietypublishing.org
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4.1. Monotone dynamical systems
Let V , Rn be an open set. Consider a system of n ordinary

first-order differential equations

_x ¼ f ðxÞ; ð4:1Þ

where f : V! Rn is continuously differentiable. For t � 0 and

x0 [ V, let x(t, x0) denote the solution of (4.1) at time t for the

initial condition x(0) ¼ x0.1

Definition 4.1. The vector field f : V! Rn is said to satisfy

the Kamke condition if, for any two vectors a, b [ V satisfy-

ing a � b and ai ¼ bi,

fiðaÞ � fiðbÞ:

The Kamke condition implies that the flow of (4.1) is

monotone in the following sense.

Proposition 4.2. ([33], ch. 3) Let ,r denote any of the relations �,

, or�. Suppose that the vector field f in (4.1) satisfies the Kamke
condition. Then

x0 ,r y0

implies that

xðt; x0Þ ,r xðt; y0Þ; for all t � 0:

In other words, the flow preserves the ordering of the initial

conditions for all t � 0.

Let @f=@x : V! Rn
n denote the Jacobian matrix of f, i.e.

the matrix whose ijth entry is @fi/@xj. If V is convex and

@fi
@xj
ðxÞ � 0; for all i = j and all x [ V; ð4:2Þ

then the Kamke condition holds [33].

Note that (4.2) implies that a positive change in xj

increases fi(x). Since _xi ¼ fiðxÞ, this implies that different

state variables augment the growth of each other. A system

(4.1) that satisfies (4.2) is called a cooperative system. If a coop-

erative system satisfies @fi/@xj ¼ 0 for all ji 2 jj . 1, then the

system is said to be a tridiagonal cooperative system [34]. If, fur-

thermore, @fi/@xj . 0 for ji 2 jj ¼ 1, then the system is called a

strongly cooperative tridiagonal system (SCTS). Smillie [34] has

shown that any bounded trajectory of an SCTS must converge

to an equilibrium point.

As noted in Margaliot & Tuller [20], the RFM (1.1) is an

SCTS on the open unit cube Int(C). For example, since

_x2 ¼ f2ðxÞ, with f2(x) ¼ l1x1(1 2 x2) 2 l2x2(1 2 x3), we have

@f2=@xiðxÞ= 0 only for i ¼ 1,2,3. Also, for every x [ IntðCÞ,
@f2
@x1
ðxÞ ¼ l1ð1� x2Þ . 0

and

@f2
@x3
ðxÞ ¼ l2x2 . 0:

However, the closed-loop system (2.3) considered in this

paper is not tridiagonal, as f1(x) depends on xn.
4.2. Periodic continued fractions
Consider the finite continued fraction

c ¼ 1

b1 �
a1

b2 �
a2

. .
.

� an�1

bn

: ð4:3Þ

If bi ¼ b and ai ¼ a for all i, then (4.3) is (a special case of) a

finite periodic continued fraction [35]. In this case, there

exists a closed-form expression for c in terms of Chebyshev
polynomials of the second kind. These polynomials are defined

by the recurrence relation ([36], ch. 1)

U0ðxÞ ¼ 1;
U1ðxÞ ¼ 2x

and Unþ1ðxÞ ¼ 2xUnðxÞ �Un�1ðxÞ; n ¼ 1; 2; . . . :

9=
; ð4:4Þ

Lemma 4.3. [37] Consider the continued fraction (4.3) with bi ¼ 1
and ai ¼ a for all i, where a . 0. Then

c ¼ Un�1ð1=ð2
ffiffiffi
a
p
ÞÞffiffiffi

a
p

Unð1=ð2
ffiffiffi
a
p
ÞÞ :

We list some properties of the Uis that will be used below.

For more details and proofs, see Mason & Handscomb [36].

For z [ ½�1; 1�,

UnðzÞ ¼
sinððnþ 1ÞuÞ

sinðuÞ ; ð4:5Þ

where u [ ½0;p� is the angle such that cos(u) ¼ z. Similarly,

for z [ ½1;1Þ,

UnðzÞ ¼
sinhððnþ 1ÞuÞ

sinhðuÞ ; ð4:6Þ

where u is such that cosh(u) ¼ z.

4.3. Contraction principle
We briefly review a contraction principle that will be used in

the proof of theorem 3.3. For more details, see Vidyasagar

([38], ch. 3), Russo et al. [39] and Lohmiller & Slotine [40].

Let j � j : Rn ! Rþ be a vector norm. The induced matrix

norm jj � jj : Rn
n ! Rþ is

jjAjj ¼ max
jxj¼1
jAxj;

and the induced matrix measure m : Rn
n ! R is

mðAÞ ¼ lim
e#0

1

e
ðjjI þ eAjj � 1Þ:

Matrix measures have an important role in the stability

analysis of dynamical systems. Indeed, consider the linear

system _y ¼ Ay. Then, up to a first-order approximation

yðtþ eÞ ¼ ðI þ eAÞyðtÞ;

so jy(t þ e)j � jjI þ eAjjjy(t)j, and

1

e
ðjyðtþ eÞj � jyðtÞjÞ � 1

e
ðjjI þ eAjj � 1ÞjyðtÞj:

Hence,

dþ

dt
jyðtÞj � mðAÞjyðtÞj;

where dþ/dt denotes the right-hand derivative.
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Recall that a set K # Rn is called an invariant set of the

dynamical system _x ¼ f ðxÞ if xð0Þ [ K implies that xðtÞ [ K
for all t � 0. Intuitively, this means that, once a trajectory of

the system enters K, it will never leave it.

Theorem 4.4 (Contraction principle). Consider the equation

_x ¼ f ðxÞ; ð4:7Þ

with f : Rn ! Rn continuously differentiable. Let J : Rn ! Rn
n

denote the Jacobian of f. Suppose that a convex set K # Rn is an
invariant set for (4.7), and that there exists a vector norm
j � j : Rn ! Rþ such that the induced matrix measure satisfies

mðJðxÞÞ � r; for all x [ K:

Then for all a, b [ K and all t � 0,

jxðt; aÞ � xðt; bÞj � ertja� bj:

For a self-contained proof of this result, see Russo et al. [39].

If r , 0 then the distance between the two trajectories

x(t, a) and x(t, b) decays exponentially with t, the system is

said to be contracting, and r is called the contraction rate.

From the point of view of mathematical analysis, the RFM

has three important properties. It is a monotone dynamical

system, it is almost a contractive system, i.e. it is contractive
with zero contraction rate, and the equations describing e
can be put in the form of a continued fraction (in the

HRFM, a periodic continued fraction).

For our choice of input and output, the RFMIO is a mono-
tone control system as defined by Angeli & Sontag [41]. There

are several interesting results on the behaviour of monotone

control systems with feedback [41–44]. An important tool in

the analysis of such systems is a reduced-order system that

depends on the input-state/output characteristic of the mono-

tone control system. For the RFMIO, it seems that obtaining an

explicit expression for this characteristic is non-trivial. Instead,

our analysis relies on combining the theory of monotone sys-

tems (and not monotone control systems) with the special

structure of the HRFM.
5. Proofs
An immediate yet important observation is that the closed-

loop system (2.3) is a monotone dynamical system. Indeed,

a calculation of the Jacobian J(x) of (2.3) appears below,

where u ¼ k1 þ k2lnxn. It may be seen that all the non-diag-

onal elements are non-negative for all x [ C, so the Kamke

condition holds.
JðxÞ ¼

�u� l1ð1� x2Þ l1x1 0 0 ð1� x1Þk2ln
l1ð1� x2Þ �l1x1 � l2ð1� x3Þ l2x2 0 0

0 l2ð1� x3Þ �l2x2 � l3ð1� x4Þ . . . ..
.

0

..

.

0 . . . 0 �ln�2xn�2 � ln�1ð1� xnÞ ln�1xn�1

0 . . . 0 ln�1ð1� xnÞ �ln�1xn�1 � ln

2
6666666664

3
7777777775
Proof of proposition 3.1. Seeking a contradiction, assume

that there exists a (first) time T . 0 such that xðTÞ �

IntðCÞ. Then xðTÞ [ @C, i.e. xkðTÞ [ f0; 1g for at least

one index k. This implies at least one of the following

two cases.

Case 1. There exists a (minimal) index i such that

xiðTÞ ¼ 0; ð5:1Þ

and xj(T ) . 0 for all j , i. If i ¼ 1 then

_x1ðTÞ ¼ ð1� x1ðTÞÞuðTÞ � l1x1ðTÞð1� x2ðTÞÞ
¼ k1 þ k2lnxnðTÞ
. 0:

Since x1ðtÞ [ ð0; 1Þ for t , T, this implies that x1(T ) . 0.

We conclude that the case i ¼ 1 is not possible, so i . 1.

Now (2.3) yields _xiðTÞ ¼ li�1xi�1ðTÞ. Since xj(T ) . 0 for all

j , i, this implies that _xiðTÞ . 0, so xi(T ) . 0. This contradicts

(5.1), so we conclude that case 1 is not possible.

Case 2. There exists a (maximal) index i such that

xiðTÞ ¼ 1;

and xj(T ) , 1 for all j . i. If i ¼ n, (2.3) yields _xnðTÞ ¼
�ln , 0. Since xnðtÞ [ ð0; 1Þ for t , T, this implies that

xn(T ) , 1. We conclude that the case i ¼ n is not possible,

so i , n. Using (2.3) again yields _xiðTÞ ¼ �lið1� xiþ1ðTÞÞ.
Since xj(T ) , 1 for all j . i, this implies that _xiðTÞ , 0,
so xi(T ) , 1. We conclude that case 2 is also not possible.

This contradiction implies that Int(C ) is an invariant set of

the RFM.

To complete the proof of the proposition, consider an

initial condition a [ @C. Then ak [ f0; 1g for at least one

index k. This implies at least one of the following two cases.

Case 1. There exists a (minimal) index i such that ai ¼ 0,

and aj . 0 for j , i. We will show that

xiðtÞ [ ð0; 1Þ for some t . 0: ð5:2Þ

If i ¼ 1, then (2.3) yields _x1ð0Þ ¼ uð0Þ . 0, so (5.2) indeed

holds. If i . 1, then

_xið0Þ ¼ li�1xi�1ð0Þ;

and since xi21(0) ¼ ai21 . 0, this implies that _xið0Þ . 0, so

again (5.2) holds. It follows from the proof above that, for

all j , i, xjðtÞ [ ð0; 1Þ for all t � 0. Thus, xkðtÞ [ ð0; 1Þ for all

k [ f1; . . . ; ig, and then xkðtÞ [ ð0; 1Þ for all k [ f1; . . . ; ig
and all t � t.

Case 2. There exists a (maximal) index i such that ai ¼ 1

and aj , 1 for j . i. A similar argument shows that

xiðtÞ [ ð0; 1Þ for some t . 0.

Inductively, this implies that there exists a time h . 0

such that xiðtÞ [ ð0; 1Þ for all i [ f1; . . . ; ng and all t . h.

This completes the proof of proposition 3.1. B
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Proof of theorem 3.2. Since C is a convex and compact invariant

set of the dynamics, it must include an equilibrium point.

Assume that e, ~e are two different equilibrium points in C.

Since en determines e (see (2.8)), this means that en=~en, so

we may assume that

en , ~en: ð5:3Þ

Equation (2.6) yields

en�1 ¼
lnen

ln�1ð1� enÞ
,

ln~en

ln�1ð1� ~enÞ
¼ ~en�1;

and proceeding in this fashion yields e1 , ~e1, so (2.7) yields

1� lnen

k1 þ k2lnen
, 1� ln~en

k1 þ k2ln~en
:

Since k1 . 0 and k2 � 0, this implies that ~en , en. This contra-

dicts (5.3). We conclude that the equilibrium point in C is

unique. For cooperative systems, the existence of an invariant

set that contains a unique equilibrium implies that this equili-

brium is globally asymptotically stable [45] (see also [46]),

and this completes the proof. B

Proof of theorem 3.3. Let m1 : Rn
n ! Rþ denote the matrix

measure induced by the L1 norm. It is well known ([38],

ch. 3) that

m1ðAÞ ¼ max
1�j�n

fa jj þ
X

1�i�n
i=j

jaijjg; ð5:4Þ

i.e. the maximum of the column sums, with non-diagonal

elements taken in absolute values. Consider m1(J(x)). For

x [ C, the off-diagonal elements of J(x) are non-negative, so

we may ignore the absolute values in (5.4). Let si(x) denote

the sum of the elements in column i of J(x). Then

s1ðxÞ ¼ �k1 � k2lnxn;

snðxÞ ¼ ð1� x1Þk2ln � ln

and s2(x) ¼ s3(x) ¼ . . . ¼ sn21(x) ¼ 0 for all x. For k2 [ ½0; 1�,
we have m1ðJðxÞÞ ¼ maxifsiðxÞg ¼ 0 for all x [ C. Combining

this with theorem 4.4 proves (3.1). B

Proof of proposition 3.4. The proof is by induction. First, it

follows from (2.6) that gn21(z) ¼ lnz/(ln21(1 2 z)), so

@

@z
gn�1ðzÞ ¼

ln

ln�1

1

ðz� 1Þ2

. 0:

Now suppose that @/(@z)gn2i(z) . 0 for i ¼ 1, . . . , k 2 1.

Using (2.6) yields gn�kðzÞ ¼ lnz=ðln�kð1� gn�kþ1ðzÞÞ, so

@

@z
gn�kðzÞ ¼

ln

ln�k

1� gn�kþ1ðzÞ þ z ð@=@zÞgn�kþ1ðzÞ
ð1� gn�kþ1ðzÞÞ2

:

Using the induction hypothesis and the fact that

gn�kþ1ðzÞ [ ð0; 1Þ completes the proof. B

Proof of proposition 3.5. Consider the case en , ~en. We already

know that this happens if and only if e� ~e. In particular,

if and only if e1 , ~e1. By (2.7), this happens if and only if

en

k1 þ k2lnen
.

~en

~k1 þ ~k2ln~en
;

i.e. if and only if d . 0. The proof in the cases en ¼ ~en and

en . ~en is similar. B
Proof of corollary 3.6. Consider first the case where k1 ¼ ~k1.

Then (3.2) becomes

d ¼ k1ðen � ~enÞ þ en~enlnð~k2 � k2Þ: ð5:5Þ

We consider three subcases.

Case 1. Suppose that d , 0. Then proposition 3.5 implies

that ~e� e, so in particular ~en , en. Combining this with

(5.5) yields ~k2 , k2.

Case 2. Suppose that d ¼ 0. Proposition 3.5 implies that

~en ¼ en. Combining this with (5.5) yields ~k2 ¼ k2.

Case 3. Suppose that d . 0. Proposition 3.5 implies that

~en . en, and combining this with (5.5) yields ~k2 . k2.

This completes the proof for the case k1 ¼ ~k1. The proof

for the case k2 ¼ ~k2 is similar. B

Proof of proposition 3.7. Combining (3.3) and (2.6) yields

en�i ¼ en �
1

1� en

1� en

. .
.

1� en

; ð5:6Þ

where the term en appears a total i þ 1 times. The right-hand

side of this equation is a periodic continued fraction, and, by

lemma 4.3,

en�i ¼
ffiffiffiffi
en
p Uið1=ð2

ffiffiffiffi
en
p ÞÞ

Uiþ1ð1=ð2
ffiffiffiffi
en
p ÞÞ :

If en , 1/4, then 1=ð2 ffiffiffiffi
en
p Þ . 1. Let u be such that

coshðuÞ ¼ 1=ð2 ffiffiffiffi
en
p Þ. Using (4.6) yields

en�i ¼
ffiffiffiffi
en
p sinhððiþ 1ÞuÞ

sinhððiþ 2ÞuÞ :

If en ¼ 1/4, then 1=ð2 ffiffiffiffi
en
p Þ ¼ 1. It follows from (4.4) that

Uk(1) ¼ k þ 1, so

en�i ¼
ffiffiffiffi
en
p iþ 1

iþ 2
:

If en . 1/4, then 1=ð2 ffiffiffiffi
en
p Þ , 1. Letting u [ ½0;p=2Þ be the

angle such that cosðuÞ ¼ 1=ð2 ffiffiffiffi
en
p Þ, and using (4.5), yields

en�i ¼
ffiffiffiffi
en
p sinððiþ 1ÞuÞ

sinððiþ 2ÞuÞ :

This completes the proof of (3.4). B

Proof of theorem 3.9. Combining (2.6), (2.7) and (3.3) yields

f ¼ 1� en �
1

1� en

1� en

. .
.

1� en

; ð5:7Þ

where f ¼ lcen/(k1 þ k2lcen), and on the right-hand side the

term en appears a total of n times. Applying lemma 4.3 yields

f ¼ 1� enUn�1ðsÞ=ð
ffiffiffiffi
en
p

UnðsÞÞ; where s ¼ 1=ð2 ffiffiffiffi
en
p

). Thus,

f ¼ 2sUnðsÞ �Un�1ðsÞ
2sUnðsÞ

¼ Unþ1ðsÞ
2sUnðsÞ

;

where the last equation follows from (4.4). Suppose for the

moment that s ¼ 1=ð2 ffiffiffiffi
en
p Þ , 1, and let u [ ½0;p=2Þ be the
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angle such that cos(u) ¼ s. Then (4.5) yields

2sf ¼ Unþ1ðcosðuÞÞ
UnðcosðuÞÞ

¼ sinððnþ 2ÞuÞ
sinððnþ 1ÞuÞ :

This proves (3.5) when s , 1. The proof in the cases s ¼ 1

and s . 1 is similar. B

Proof of proposition 3.14. Since e [ IntðCÞ, we have in particu-

lar en , 1. Combining this with (2.6) and (3.3) yields

en�1 ¼
en

1� en

. en: ð5:8Þ

Using (2.6) again yields

en�2 ¼
en

1� en�1

¼ en�1ð1� enÞ
1� en�1

;

and (5.8) implies that en22 . en21. Proceeding in this fashion

proves (3.10). B
6. Discussion
In this paper, we analysed for the first time the RFM with posi-

tive linear feedback. Our results show that several nice properties

of the RFM/HRFM remain true for the closed-loop system. In

particular, it admits a unique globally attractive equilibrium

point e in C, and, in the case of equal translation rates, it is poss-

ible to derive expressions relating e to the model parameters.

Any good mathematical model must encapsulate the com-

plexity of the real system, yet remain tractable. This is true for

the RFMIO as well. However, even the particular case of the

HRFMIO model is not sequence independent. For example, the

value of the parameter lc depends on features of the coding

sequence and their effect on translation elongation; genes with

sequence features that promote a higher elongation rate (e.g.

higher adaptation to the tRNA pool [47] and/or weaker folding

of the mRNA sequence [18]) correspond to a higher value of lc.

Similarly, the variables k1 and k2, related to the closed-loop

initiation rate, depend among other on features of the 50 UTR

such as the Kozak sequence [17], the strength of the folding at

the 50 end of the ORF [47,48], and the length and nucleotide con-

tent of the ORF and UTRs [49]. Thus, the results reported in this

study encapsulate a wide range of sequence features related to

translation initiation and elongation efficiency.

As noted earlier, some of the model predictions can be

compared with biological experiments; for example, the

monotonic decrease of the ribosomal density (ei) along the

coding sequence is in agreement with previously reported

results [21,50]. It may be interesting to try and validate

other predictions of the model. For example,

— The convergence rate of the translation process to steady

state (see theorem 3.3) can be experimentally studied

via real-time observation of translation of genes with

high-enough mRNA half-lives [51].

— The relations between (k1, k2) and the ribosomal density

and translation rate (see proposition 3.5 and corollary

3.6) can be validated experimentally by the synthesis
and analysis of heterologous gene libraries based on the

manipulations of the UTRs (which should affect these

parameters) [3], but not the ORFs, and the measuring of

the ribosomal density [1] and protein levels (for example,

with green fluorescent protein [3]). Other formulae

reported in this paper (see proposition 3.4 and theorem

3.9) can also be validated via the same procedure.

It is interesting to compare our results with those obtained

for the TASEP model with feedback connections. Recall that

the one-dimensional open-boundaries TASEP includes L sites

numbered 1, . . . , L. The configuration of the particles is

defined by n1, . . . , nL, where ni ¼ 0 [ni ¼ 1] indicates that site

i is vacant [occupied by a particle]. The total number of par-

ticles on the lattice is N ¼
PL

i¼1 ni. The dynamics is random

and sequential: at each time step a particle is chosen in

random and moves to the consecutive site with unit rate, pro-

vided that this site is not occupied. Particles enter site 1 with

rate a and exit from site L with rate b. At steady state, the aver-

age overall density r ¼ kNl=L is constant, and the system

settles into one of three different phases:

— maximal current (MC), here a and b are large, and the

internal hopping rate is the limiting factor;

— low density (LD), where the entry rate a is the limiting

factor; and

— high density (HD), where the exit rate b is the limiting

factor, resulting in a ‘traffic jam’ at the end of the lattice.

A summary of the behaviour of the model is given by

r ¼

1
2; a;b � 1

2 ðMCÞ;

a; a � minðb; 1
2ÞðLDÞ;

1� b; b � minða; 1
2ÞðHDÞ:

8>><
>>:

ð6:1Þ

The average current of particles in all these cases is J ¼ r(1 2 r),

i.e. the product of the density r and the ‘hole density’

(1 2 r). Note that these results are mean-field solutions, i.e.

they are approximations that become exact when L!1.

The LD and HD regions coexist on the line a ¼ b , 1/2.

Domain wall theory [52] assumes that the system admits two

regions separated by a zero-width wall. In other words, an

LD r2 ¼ a on sites [1, k], and an HD rþ ¼ 1 2 b for sites

[k þ 1, L]. The well-defined boundary between these domains

is called shock, and this scenario is known as a shock phase.

Intuitively, this corresponds to a road with a high-speed,

low-density region ending with a traffic jam.

Note that (3.5) suggests that the HRFMIO with feedback

admits two different phases. The transition between these

phases takes place when s ¼ 1, i.e. when en ¼ 1/4. For lc ¼ 1,

this corresponds to the steady-state translation rate R ¼ lcen ¼

1/4. This is reminiscent of the phase transitions in the TASEP

that take place along lines in the (a, b) plane corresponding to

J ¼ 1/4 (see (6.1)).

Ha & den Nijs [53] introduced the constrained TASEP to

model the effects of finite resources. In their model particles

enter the lattice from a finite pool. The pool models a parking

garage, and the lattice models a closed road that starts and ter-

minates at the garage. Let Np denote the number of particles in

the pool. The total number of particles, Ntot ¼ N þ Np, is a fixed

constant, and the effective entry rate, denoted aeff, depends on

the size of the pool, i.e.

aeff ¼ af ðNpÞ:
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Thus, the total occupation on the lattice feeds back into

its filling process. In the study of Ha & den Nijs [53], f(0)¼ 0

(a car cannot emerge from an empty garage) and f(k)¼ 1, for

all k . 0.

Adams et al. [54] considered the constrained TASEP in the

context of modelling translation, and thus suggested using

a function f (x) that is linear in x for small x. Specifically,

they used

f ðNpÞ ¼ tanh
Np

N�

� �
; ð6:2Þ

where N* is the average number of particles in the standard

TASEP. The main interest in these studies is to determine

how N varies as Ntot is increased, while the exit rate remains

fixed at b.

Note that these models correspond to negative feedback,

as when the number of particles on the lattice N increases,

Np ¼ Ntot 2 N decreases, and thus the entry rate decreases.

A comparison between the constrained TASEP and the

RFMIO with feedback is not straightforward. Indeed, a

coherent theory of constrained TASEP is still a challenge,

and also the physical point of view, which focuses on

phase transitions, domain wall theory, etc., is different from

the control-theoretic approach used here.

Two important differences are that in constrained TASEP the

feedback is defined in a somewhat implicit way via f(Np).

Indeed, the emphasis is on modelling finite resources, rather

than the feedback itself. In the model studied here, u¼ k1 þ
k2y is an explicit function of the translation rate y. In most natu-

rally expressed genes (i.e. endogenous genes), the number of

mRNA molecules of each gene is relatively low (e.g. less than

1% of the total mRNA molecules in the cells). Therefore, the

effect of the number of ribosomes on the mRNA related to one

specific gene on the total ribosomal pool is negligible; thus,

changes in the ribosomal densities and mRNA levels of one

such gene are not expected to significantly affect the total riboso-

mal pool. (There is a rare exception; namely, highly expressed

heterologous genes in which the mRNA molecules related to

one gene may be a significant part of the total cellular mRNA

levels [16].)
Also, analysis of the TASEP always provides approximate

results (which become accurate as the number of sites goes to

infinity) while the analysis of the deterministic RFMIO pro-

vides results that are valid for every n. Summarizing, we

believe that the RFMIO is a more appropriate model than

TASEP both for studying gene translation and for applications

in synthetic biology.

Topics for further research include the following. The

TASEP (or its variants) have been used to model not only

protein synthesis, but several other real systems as well,

including biomolecular motors [55,56], collective motion of

ants [57], traffic flow [58–60] and surface growth [61]. In

many of these systems, it is reasonable to consider feedback

connections, so modelling such systems using the RFMIO

with feedback may be of interest.

Several researchers studied the scenario in which several

TASEP models compete for a joint pool of resources (see

[19,62] and the references therein). This may model several trans-

lation processes taking part in parallel in a cell, while competing

for the finite pool of ribosomal units. The competition effectively

couples all the lattices and leads to interesting new phenomena.

In particular, a phase transition in one lattice affects the others. It

may be interesting to develop a similar model using a set of

coupled RFMIOs (or HRFMIOs).

Finally, another study [63] has demonstrated selection

for coding sequence features that optimize tRNA molecule

recycling during translation elongation (e.g. pairs of consecu-

tive codons of the same amino acid tend to be identical).

Thus, from the functional genomic and evolutionary points

of view, it may be interesting to study whether there is selec-

tion for transcript features that contribute to ribosomal

recycling re-initiation. In addition, a study by Kondrashov

et al. [64] has suggested a new layer of specificity in the con-

trol of gene expression and mammalian development that

requires additional modelling and analysis.
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