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Nonlinear flight dynamics and stability of
hovering model insects

Bin Liang and Mao Sun

Ministry of Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics,
Beijing 100191, People’s Republic of China

Current analyses on insect dynamic flight stability are based on linear theory

and limited to small disturbance motions. However, insects’ aerial environ-

ment is filled with swirling eddies and wind gusts, and large disturbances

are common. Here, we numerically solve the equations of motion coupled

with the Navier–Stokes equations to simulate the large disturbance motions

and analyse the nonlinear flight dynamics of hovering model insects. We

consider two representative model insects, a model hawkmoth (large size,

low wingbeat frequency) and a model dronefly (small size, high wingbeat

frequency). For small and large initial disturbances, the disturbance

motion grows with time, and the insects tumble and never return to the

equilibrium state; the hovering flight is inherently (passively) unstable.

The instability is caused by a pitch moment produced by forward/backward

motion and/or a roll moment produced by side motion of the insect.
1. Introduction
Insect flight dynamics and dynamic flight stability are of great interest to

researchers who study the biomechanics of insect flight and to engineers who

try to make insect-like micro aerial vehicles.

In recent years, much work has been carried out in this area [1–9], using an

averaged model and the linear theory borrowed directly from the literature of

aircraft flight dynamics. In the averaged model, it is assumed that the wings

beat fast, so that the rigid-body modes of the central body are not excited,

and the insect can be treated as a rigid body of 6 degrees of freedom (the effects

of the flapping wings on the body being represented by the wingbeat-

cycle-average forces and moments that can vary with time over the timescale

of the central body). With the averaged model, the standard aircraft equations

of motion [10] can be used for flying insects. Recent numerical [11,12] and

theoretical [3,13] studies have shown that the averaged model works very

well for insects who have relatively high wingbeat frequency and small

wing-mass to body-mass ratio (hence very small amplitude of body oscillation);

for insects who have relatively low wingbeat frequency and large wing-mass to

body-mass ratio (hence relatively large amplitude of body oscillation), the aver-

aged model works less well, nevertheless, it can still correctly predict the trend

of variation of the dynamic properties. The linear theory assumes that the ani-

mal’s motion consists of small disturbances from the equilibrium flight; thus,

the equations of motion are linearized about the equilibrium point, and the

aerodynamic forces and moments are represented as analytical functions of

the motion variables (state variables) and the aerodynamic derivatives [10].

The resulting system of linear ordinary differential equations can be solved

by the techniques of eigenvalue and eigenvector analysis [10].

Using this framework, Taylor & Thomas [1] studied forward flight dynamic

stability in desert locusts, providing the first formal quantitative analysis of

dynamic stability in a flying animal. They obtained the aerodynamic deriva-

tives by measuring the aerodynamic forces and moments of tethered locusts

in wind tunnel at various wind speeds and body attitudes. Sun & Xiong [2]

studied the flight stability of a bumble-bee at hovering. They obtained the
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aerodynamic derivatives using the method of computational

fluid dynamics (CFD; the computational approach allows

simulation of the inherent stability of a flapping motion in

the absence of active control, which is difficult to achieve in

experiments using real insects). Sun et al. [3,4] further studied

the hovering stability in several insects with various sizes and

wingbeat frequencies (hoverfly, dronefly, cranefly and hawk-

moth). Faruque & Humbert [5,6] and Cheng & Deng [7]

studied the stability in several hovering model insects (fruit-

fly, stalk-eyed fly, bumble-bee and hawkmoth). They

estimated the aerodynamic derivatives using the blade-

element theory and the slopes of experimental lift and drag

curves of a sweeping model fruitfly wing. Schenato et al. [8]

and Deng et al. [9] developed stabilization control algorithms

for flapping flight of robotic insects.

Because of the linearization, the above-mentioned ana-

lyses are limited to small disturbance motions. The aerial

environment of flying insects is filled with swirling eddies,

sharp velocity gradients and wind gusts, and large disturb-

ances are common [14]. Therefore, it is important to study

the nonlinear flight dynamics and stability of insects in

large disturbance motions. Taylor & Zbikowski [15] made

an attempt to take the nonlinearities into account. They

used the nonlinear equations of motion; however, the aero-

dynamic forces and moments were represented by linearized

time-periodical functions based on measurements from teth-

ered locusts. Liu et al. [16] made a similar attempt; they also

used the nonlinear equations of motion with the aerodynamic

force and moment terms represented by linearized time-

periodical functions (their aerodynamic forces and moments

were computed by a CFD method). Because aerodynamic

forces and moments are linearized, these studies [15,16]

are also limited to small disturbance motions. One way to

study the nonlinear, large disturbance motions is to solve the

complete equations of motion and flow equations.

In this study, we numerically solve the complete equations

of motion coupled with the Navier–Stokes equations to simu-

late the large disturbance motions and analyse the nonlinear

flight dynamics and stability of hovering model insects. We

consider two representative model insects: a model hawkmoth

and a model dronefly. The former may represent insects with

relatively large size and low wingbeat frequency (mass,

1578.6 mg; frequency, 26 Hz); the latter may represent insects

with relatively small size and high wingbeat frequency (mass,

88.9 mg; frequency, 164 Hz). First, we obtain the solution of

the equilibrium flight; then, we give various disturbances

to the equilibrium solution and study the stability of the

equilibrium flight.
2. Material and methods
2.1. Governing equations and the solution method
2.1.1. Equations of motion
Let frame (xE, yE, zE) be an earth-fixed, inertial frame; the xE and

yE axes are horizontal and, the zE axis is vertical, pointing down-

ward (figure 1a). Let (xb, yb, zb) be a frame fixed on the insect

body with its origin at the centre of mass of the wingless body;

xb and zb are in the longitudinal symmetrical plane of the body

and yb points to the right side of the insect (figure 1a). The orien-

tation of the insect’s body or the (xb, yb, zb) frame is given by the

three Euler angles [10] of the body, denoted by c, u, f (figure 1b);

in this study, they are called as yaw, pitch and roll angles,
respectively. The equations of motion of a flying insect are (see

the electronic supplemental material for the derivation of the

equations):

du
dt
¼ 1

m
ðXA� XIÞ � g sin uþ rv� qw; ð2:1aÞ

dv
dt
¼ 1

m
ðYA� YIÞ þ g cos u sinf� ruþ pw; ð2:1bÞ

dw
dt
¼ 1

m
ðZA� ZIÞ þ g cos u cosfþ qu� pv; ð2:1cÞ

Ix;bw
dp
dt
� Ixy;bw

dq
dt
� Ixz;bw

dr
dt
¼ LA� LI þMXGþ Iyz;bwðq2 � r2Þ

þ Ixz;bwpqþ ðIy;bw � Iz;bwÞqr� Ixy;bwrp; ð2:1dÞ

� Ixy;bw
dp
dt
þ Iy;bw

dq
dt
� Iyz;bw

dr
dt
¼MA�MI þMYG

� Ixz;bwð p2 � r2Þ � Iyz;bwpqþ Ixy;bwqr� ðIx;bw � Iz;bwÞrp;

ð2:1eÞ

� Ixz;bw
dp
dt
� Iyz;bw

dq
dt
þ Iz;bw

dr
dt
¼ NA�NI þMZG

þ Ixy;bwðp2 � q2Þ þ ðIx;bw � Iy;bwÞpq� Ixz;bwqrþ Iyz;bwrp;

ð2:1fÞ
df

dt
¼ pþ tan uðq sinfþ r cosfÞ; ð2:1gÞ

and

du

dt
¼ qcosf�rsinf; ð2:1hÞ

where u, v and w denote the xb, yb and zb components of the vel-

ocity of the insect body, respectively, and p, q and r denote the xb,

yb and zb components of the angular velocity of the body,

respectively; m is the total mass of the insect (body mass plus

wing mass); Ix,bw, Iy,bw, Iz,bw, Ixy,bw, Iyz,bw and Izx,bw are the

moments and products of inertial of the body and wings; XA,

YA and ZA denote the xb, yb and zb components of the total aero-

dynamic force, respectively, and LA, MA and NA denote the xb,

yb and zb components of the total aerodynamic moment about

the centre of mass of the body, respectively; XI, YI and ZI
denote the xb, yb and zb components of the inertial force owing

to the flapping wings, respectively, and LI, MI and NI denote

the xb, yb and zb components of the moment produced by the

inertial forces of the flapping wings, respectively; MXG, MYG
and MZG denote the xb, yb and zb components of the moment

about the centre of mass of the body produced by the weight

of the wings.

u, v, w, p, q, r, u and f, which determine the motion of

the flying system, are called state variables (the yaw angle c is

not independent and is determined by q, r, u and f; see the

electronic supplementary material).
2.1.2. The Navier – Stokes equations
The Navier–Stokes equations, which determine the aerodynamic

forces and moments in equation (2.1), are

r � u ¼ 0; ð2:2aÞ

and

@u

@t
þ u � ru ¼ � 1

r
rpþ nr2u; ð2:2bÞ

where u is the fluid velocity, p is the pressure, r is the density,

v is the kinematical viscosity, r is the gradient operator and

r2 is the Laplacian operator.

Equation (2.2) is numerically solved over moving overset

grids, because there is relative motion between the left and right

wings. The solution method is the same as that used by Sun

et al. in several previous studies [17–19] and, a description of it
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Figure 1. (a) Definition of the state variables and sketches of the reference frames. (b) The orientation of the insect is given by a series of three consecutive
rotations, the Euler angles [10].
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is given in the electronic supplementary material (the

computational grids and grid resolution tests are also given there).

2.1.3. Integration method of coupling equations of motion with
the Navier – Stokes equations

The equations of motion (equation (2.1)) and the Navier–Stokes

equations (equation (2.2)) must be coupled in the solution process,

because the aerodynamic forces and moments in the equations of

motion must be obtained from the solution of the Navier–Stokes

equations, and the boundary condition of Navier–Stokes

equations must be obtained from the insect’s motion governed

by the equations of motion. The integration process is as follows.

Suppose that at time tn the motion of the insect body (u, v w, p, q, r,

c, u and f) are known (the wing motion with respect to the body

is prescribed); hence, the boundary conditions of the Navier–

Stokes equations are known, and also suppose that the flow

before tn is known. Then, the Navier–Stokes equations are

solved to provide the aerodynamic forces and moments at tn.

Next, equation (2.1) is marched to the next time station tn þ 1,

using the Euler predictor–corrector method (which has second-

order time accuracy). The process is repeated in the next step,

and so on (see the electronic supplementary material for a more

detailed description of the integration method).

2.2. Wings, flapping motion and flight data
The platforms of the model wings of the dronefly and the hawk-

moth were obtained from the measured data of Liu & Sun [20]

and Ellington [21], respectively, and the wing section was a flat

plate of 3 per cent thickness with rounded leading and trailing

edges. The model wings were assumed to be rigid.

On the basis of experimental data [20,22–24], the flapping

motion of a wing was assumed as follows. The motion consisted

of two parts: the translation (azimuthal rotation) and the rotation
(flip rotation; the out-of-plane motion of the wing (deviation) is

neglected). The time variation of the positional angle (f ) of the

wing was approximated by the simple harmonic function:

f ¼ �fþ 0:5F cosð2pntÞ; ð2:3Þ

where n is the wingbeat frequency, �f is the mean stroke angle and

F is the stroke amplitude. The angle of attack of the wing (a)

took a constant value during the down- or upstroke translation

(the constant value was denoted by ad for the downstroke trans-

lation and au for the upstroke translation); around stroke

reversal, the wing flipped, and a changed with time according

to the simple harmonic function. The function representing the

time variation of a during the supination at mth cycle was

a ¼ ad þ afðt� t1Þ �
Dtr

2p
sin½2pðt� t1Þ�=Dtrg;

t1 � t � t1 þ Dtr;

ð2:4Þ

where Dtr is the time duration of wing rotation during the stroke

reversal, and a is a constant:

a ¼ ð1808� au � adÞ
Dtr

ð2:5aÞ

where t1 is the time when the wing-rotation started:

t1 ¼
mT � 0:5T � Dtr

2
; ð2:5bÞ

where T is the wingbeat cycle. The expression of the pronation

could be written in the same way. From equations (2.3)–(2.5),

we see that to prescribe the flapping motion, F, n, Dtr, ad, au

and �f must be given.

Morphological and wing motion parameters for the dronefly

were taken from the data by Liu & Sun [20] and those for the

hawkmoth from the data by Willmott & Ellington [23,24]. It

should be noted that moments and products of inertia of wing

and roll and yaw moments and products of inertia of body



Table 1. Morphological data of body (DF, model dronefly; HM, model hawkmoth). mbd, mass of body; Ix,b, Iy,b, Iz,b, Ixy,b and Iyz,b, moments and products of
inertia of body; lb, body length; l1, distance between the wing-base axis and the centre of mass of the body; x0, free body angle (with x0 and l1 known, the
relative position of the wing-base axis and the centre of mass of the body can be determined).

ID mbd (mg) lb (mg) l1/lb x0(88888) Ix,b (kg m2) Iy,b (kg m2) Iz,b (kg m2) Ixz,b (kg m2)

HM 1485 42.49 0.26 82.9 1.01 � 1027 1.42 � 1027 5.24 � 1028 25.96 � 1028

DF 87.76 14.11 0.13 52 5.60 � 10210 1.18 � 1029 7.17 � 10210 25.00 � 10210

Table 2. Morphological data of wing (DF, model dronefly; HM, model hawkmoth). mwg, mass of one wing; R, wing length; c, mean chord length of wing; S,
area of one wing; r2, radius of second moment of wing area; Ix,w, Iy,w and Iz,w, moments of inertia of wing about xw, yw and zw axes, respectively; Ixy,w, product
of inertia of wing.

ID
mwg

(mg)
R
(mm)

c
(mm)

S
(mm2) r2/R Ix,w (kg m2) Iy,w (kg m2) Iz,w (kg m2) Ixz,w (kg m2)

HM 46.82 48.5 18.37 890.9 0.51 1.59 � 1029 1.94 � 1028 1.78 � 1028 3.86 � 10210

DF 0.56 11.2 2.98 33.34 0.55 5.23 � 10213 1.25 � 10211 1.20 � 10211 8.04 � 10213

Table 3. Kinematic data of wing and body (DF, model dronefly; HM,
model hawkmoth). F, n, Dtr, stroke plane angle b, mean body angle x,
Reynolds number of wing Re (Re ¼ cU/n, where n is the kinematical
viscosity of the air and U the mean flapping velocity, U ¼ 2Fnr2).

ID
F
(88888)

n
(Hz)

Dtr

(T)
b
(88888)

x
(88888) Re

HM 114.4 26.1 0.3 0 54.8 3315

DF 107.1 164 0.3 0 42 782
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were not given in these references. Moments and products of

inertia of wing were estimated using the data on density distri-

bution of a dronefly wing [25]. Roll and yaw moments and

products of inertia of body were estimated using pictures show-

ing the lateral and dorsal–ventral views of the wingless body [4],

assuming constant density.

Morphological data for the bodies are listed in table 1, and

those for the wings are listed in table 2. Wing and body kinema-

tical data are listed in table 3. From table 3, we see that all needed

wing-kinematical parameters are given, except ad, au and �f.

These three parameters are determined in the process of obtain-

ing the periodical solution of hovering. The reasons for not

using experimental data for the three parameters are as follows.

There are necessarily small errors in the measurement. When

there are small errors in the wing kinematical parameters, a per-

iodic solution not representing a hover flight, but a flight with

some small speed is obtained [25]; for example, if the measured

angle of attack is a little larger than the real one, then the com-

puted periodic solution gives an upward flight of small speed.

To overcome this problem, we do not use experimental data to

prescribe ad, au and �f, but determine them in the solution pro-

cess, by requiring that they take values such that hovering

flight is ensured. The reason for only three parameters being

determined in this way is that there are three conditions to be

met in hovering flight: zero mean horizontal velocity, zero

mean vertical velocity and zero mean pitch rate. The reason for

choosing ad, au and �f to be determined in the solution process

is that experimental data for ad and au have relatively large

error [20] and aerodynamic forces, and moments are very

sensitive to the variations in ad, au and �f.
2.3. The equilibrium flight
To study the stability of hover flight, we need to first obtain the

solution to equations (2.1) and (2.2) that represents the equili-

brium flight. Because of the periodically varying aerodynamic

and inertial forces of the flapping wings, a hovering or constant-

speed flying insect is a cyclically forcing system, and generally,

the flight is in a cyclic-motion equilibrium. The equilibrium

flight, here hovering, is represented by a periodical solution of

equations (2.1) and (2.2). A method of obtaining the periodic sol-

ution of hover flight has been developed by Wu et al. [25]. A brief

description of the method and the solution process is given in the

electronic supplementary material.
2.4. Solution of the disturbance motion and
flight stability

With the periodic solution of the equilibrium flight known, its stab-

ility is investigated by giving the equilibrium solution a perturbation

at initial time and then marching equation (2.1) and (2.2) in time.

Let the periodic solution be given between t ¼ 2T and t¼ 0

(where T is the wingbeat period or the period of the periodic sol-

ution). If we simply add initial disturbances to the periodical

solution at t ¼ 0, then there would be an abrupt change in flow

field, which could make the flow solution difficult to converge. We

avoid this problem by adding the initial disturbances in a finite but

short time interval: from t¼ 20.1T to t¼ 0; in this short interval,

initial disturbances quickly but smoothly change from zero to the

desired values. Then, we continue to solve equation (2.1) and (2.2)

to see whether the disturbance motion will die out or not.

As defined earlier, u, v and w are the xb, yb and zb com-

ponents of the velocity of the body centre of mass, respectively.

In hover flight, the xb axis is approximately horizontal and zb

axis approximately vertical, and u and w can approximate the

horizontal and vertical velocities, respectively, of the insect. In

disturbance motions, the body, hence the xb, yb and zb axes,

may rotate by large angles, and u and w can no longer approxi-

mate the horizontal and vertical velocities of the insect. In the

following, we use uE and vE to denote the forward (or backward)

and lateral horizontal velocities, respectively, and wE to denote

the vertical velocity (they are the xE, yE and zE components of

the velocity of the body centre of mass, respectively). uE, vE
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and wE are related to u, v and w as follows:

uE ¼ u cos u coscþ vðsin u sinf cosc� cosf sincÞ
þ wðsin u cosf coscþ sinf sincÞ; ð2:6aÞ

vE ¼ u cos u sincþ vðsin u sinf sincþ cosf sincÞ
þ wðsin u cosf sinc� sinf coscÞ; ð2:6bÞ

and

wE ¼ �u sin uþ v sinf cos uþ w cosf cos u: ð2:6cÞ
3. Results
When presenting the results, non-dimensional quantities are

used. In the non-dimensionalization, U, c and c/U are taken

as reference velocity, length and time, respectively (here, U
is the mean flapping velocity, defined as U ¼ 2Fnr2 and c
is the mean chord length of wing).

First, the equations of motion coupled with the Navier–

Stokes equations were solved to obtain the periodic solutions

that represent the hovering flight. The solutions for the two

model insects are given in the electronic supplementary material.

Then, various initial disturbances were added to the peri-

odic solution and equations (2.1) and (2.2) were solved to

obtain the disturbance motions. Eight types of initial conditions

were considered: (i) a horizontal velocity in xE direction, which

simulated a horizontal gust in 2xE direction or a head-on gust;

(ii) a horizontal velocity in yE direction, which simulated a lat-

eral gust from the right; (iii) a horizontal velocity in the

direction 458 from the xE axis (or horizontal velocities in both
xE and yE axes), which simulated a oblique gust; (iv) a vertical

velocity in zE direction, which simulated a gust in 2zE direction

or an upward gust; (v) a vertical velocity in 2zE direction,

which simulated a gust in zE direction or a downward gust;

(vi) an initial rotation about the yb-axis or an initial pitch;

(vii) an initial rotation about the xb-axis or an initial roll; and

(viii) an initial rotation about a line 458 from the xb-axis

(rotations about both the xb- and yb-axes). For each of the

types of initial conditions, initial disturbance with various

magnitudes (two to five magnitudes) was considered.

The disturbance motions are described by uE, vE and wE

(velocity of the centre of mass) and c, u and f (body attitude)

of insects. For the model hawkmoth, results of the eight types

of initial conditions are shown in figures 2–4. For the model

dronefly, only the results of four types of initial conditions

are given here (figure 5).
4. Discussion
4.1. Hovering flight is inherently ( passively) unstable
As an example, we examine the result of the model hawk-

moth in figures 2–4.

When the initial disturbance is a head-on gust (figure 2a),

for relatively small initial disturbance (u(0)/U ¼ 0.1; see the

black lines in figure 2a), there are oscillations in uE and u, i.e.

the insect moves forward and backward while pitching up

and down, and after approximately one oscillation, the insect

tumbles and never returns to the equilibrium state, which is

illustrated in figure 6a. For relatively large initial disturbance
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(e.g. u(0)/U ¼ 0.5; see the blue dotted lines in figure 2a), the

insect moves forward while pitching up, and tumbles after a

short time, which is illustrated in figure 6b. When the initial dis-

turbance is a pitch angle (figure 4a), for small and large initial

disturbances (u(0) ¼ 0.4 (238) and 0.8 (468)), there are oscil-

lations in u and uE, i.e. the insect pitches up and down while

moving backward and forward, and after less than one oscil-

lation, the insect tumbles. We call the above-mentioned

instabilities ‘pitch instability’. For the cases of small longitudinal

initial disturbances (u(0)/U ¼ 0.1 in figure 2a; u(0) ¼ 0.4 in

figure 4a), the disturbance motions are similar to those

predicted by linear theory in previous studies [2,5,7].
When the initial disturbance is a lateral velocity to the right

(figure 2b), for small and large initial disturbances (v(0)/U ¼
0.1–1), the insect moves to the right while rolling to the same

direction, and tumbles in about 5.5 wingbeat cycles for v(0)/

U ¼ 0.1 and in about three wingbeat cycles for v(0)/U ¼ 0.5;

this is illustrated in figure 6c,d. When the initial disturbance is

a roll angle (figure 4b), for small and large initial disturbances

(f(0) ¼ 0.4 and 0.8), the insect rolls to the right while moving

to the same direction, and tumbles in about 5.5 wingbeat

cycles for f(0)¼ 0.4 and in about four wingbeat cycles for

f(0) ¼ 0.8. We call the above-mentioned instabilities ‘roll

instability’. For the cases of small lateral initial disturbances
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(v(0)/U ¼ 0.1 in figure 2b; f(0) ¼ 0.4 in figure 4b), again, the

disturbance motions are similar to those predicted by linear

theory in previous studies [4,26].

When the initial disturbance is a oblique gust (figure 2c), the

longitudinal motion is similar to that of the case of a head-on

gust (comparing uE, wE and u in figure 2c with those in figure

2a), and the lateral motion is similar to that of the case of lateral

gust (comparing vE,f andc in figure 2c with those in figure 2b).

The motion has both ‘pitch instability’ and ‘roll instability’, but

the stabilities grow a little slower than those in the cases of head-

on gust and lateral gust (e.g. f in figure 2c grows to 2 at t/T ¼
7.5, but f in figure 2b grows to 2 at t/T ¼ 6). When the initial

disturbance has pitch and roll rotations (figure 4c), uE and u

are similar to those of the case in which the initial disturbance

is a pitch rotation (comparing uE and u in figure 4c with those

in figure 4a), and vE and f are similar to those of the case in

which the initial disturbance is a roll rotation (comparing vE

and f in figure 4c with those in figure 4b). Again, the motion

has both ‘pitch instability’ and ‘roll instability’.

When the initial condition is an upward gust, or the insect

has an initial downward velocity, wE(0) . 0 (figure 3a),

the downward velocity decreases at first (for wE(0)¼ 1,

wE decreases with time until t/T¼ 4.5; for w(0)/U¼ 0.1, wE

decreases with time until t/T¼ 8), and the vertical motion

seems to be stable. But at later times, u (and uE) and f (and

vE) grows quickly with time, i.e. the ‘pitch instability’ and

‘roll instability’ have developed. When the initial condition is

a downward gust, or insect having an initial upward velocity,

w(0)/U , 0 (figure 3b), the magnitude of wE also decreases

with time, and the vertical motion seems to be stable, but at

longer times, ‘pitch instability’ develops. The larger the initial

upward velocity, the earlier the instability develops.

Similar observations can be made from the disturbance

motions of the model dronefly (figure 5). We see that for

the initial conditions considered, the disturbance motion

grows with time and the insect tumbles and never returns

to the equilibrium state. We thus conclude that hovering

flight of the model insects is inherently (passively) unstable.
4.2. Physical mechanisms of instability
We still take the model hawkmoth (figures 2–4) as an

example. Let F0 denote the wingbeat-cycle-averaged vertical
aerodynamics force during hovering (F0 ¼ mg); let MA and

LA denote the wingbeat-cycle-averaged vertical aerodynamic

pitch and roll moments in the disturbance motion; let S
denote the area of the wing pair (in figure below, the super-

script asterisk denotes a non-dimensional quantity; a force is

non-dimensionalized by 0.5rU2S and a moment by

0.5rU2Sc).

First, we discuss the ‘pitch instability’ in figure 2a (or in

figure 6a,b), i.e. the disturbance motion owing to an initial for-

ward velocity or a head-on gust. In this case, as seen in figure

2a, the disturbance motion mainly has variations in the horizon-

tal velocity (uE) and pitch angle (u). In figure 7, we plot uE and u,

together with the pitch moment (MA�) and the horizontal force

owing to tilting the weight-supporting vertical force, F0sin(–u).

At the beginning (t/T¼ 021), the insect moves forward at the

initial velocity (figure 7a), and a positive MA� (pitch-up

moment) is produced (figure 7c). The pitch-up moment

makes u increase (figure 7b), resulting in a negative horizontal

force, F0sin(–u) (figure 7d). The negative F0sin(–u) will decrease

the forward-motion velocity. In the cases of large initial forward

velocities (u(0)¼ 0.3, 0.5 and 1), because the pitch moment is

very large, u grows very fast and before the forward-motion

velocity decreases to zero, the insect tumbles. In the cases of

relatively small initial forward velocities, the pitch moment is

not very large, u grows relatively slowly. For example, for the

case of u(0)¼ 0.1, uE decreases to zero at t/T � 3 and continues

to decreases to a negative value (figure 7a), and a negative MA�

(pitch-down moment) is produced (figure 7c). The negative

MA� would decrease u; however, because there is a time lag

between moment and angular change, u keeps increasing to a

large value (about 508) and remains positive until t/T � 7.5

(figure 7b). During this period (t/T � 327.5), the large and

negative F0
*sin(2u) accelerates the insect and increases the nega-

tive uE to large magnitudes at t/T� 7.5, which produces a

large, negative pitch moment (figure 7c, t/T � 7.5). Now, the

situation is similar to the cases of large initial forward velocities

discussed earlier: a large pitch moment makes u grow very fast

and the insect tumbles. We thus see that for the case of large

initial velocity, the large velocity at the first few wingbeats pro-

duces a large pitch moment that causes the insect to tumble. For

the case of small initial velocity, pitching motion and forward

(or backward) motion enhance each other, driving the forward

(or backward) velocity to a large value, and the large velocity
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produces a large pitch moment that causes the insect to tumble.

That is, in both cases, it is the large pitch moment produced by

forward (or backward) velocity that causes the insect to tumble,

causing the instability. How the forward (or backward) velocity

produces pitch moment can be readily explained: when the

insect moves forward, in the downstroke, the wings would

see a larger relative velocity than that in hovering flight and

the drag of a wing is larger than that in hovering flight, whereas

in the upstroke, the wings would see a smaller relative velocity

than that in hovering flight and the drag is smaller than that in

hovering flight. This will result in a wingbeat-cycle mean force

in the negative xb-direction. Because the stroke plane is above

the centre of mass, this force will produce a positive pitch

moment. Similarly, when the insect moves backward a negative

pitch moment will be produced.

Next, we look at the ‘pitch instability’ in figure 4a, i.e. the

disturbance motion owing to an initial pitch angle. Analysis

similar to the above has shown that the pitch angle gives a

horizontal force, F0sin(2u), resulting in backward motion
and pitching motion; the horizontal motion and pitching

motion enhance each other, driving the backward velocity

to a large value; the large velocity produces a large pitch

moment that causes the insect to tumble.

Third, we discuss ‘roll instability’ in figure 2b (or in

figure 6c,d), i.e. the disturbance motion owing to an initial lat-

eral velocity or a lateral gust. In this case, the disturbance

motion mainly has variations in the horizontal velocity (vE)

and roll angle (f; figure 2b). In figure 8a, we plot vE and f,

together with the roll moment ðLA�Þ and the lateral horizontal

force owing to tilting the weight-supporting vertical force,

F0
*sin(f). As seen in figure 8a, the insect moves to the right

(vE(t) . 0) at the initial velocity in the beginning (figure 8a(i),

t/T¼ 022) and then vE(t) increases (figure 8a(ii), t/T¼
223); a positive roll moment, LA�, is produced during the

side-translational motion (figure 8a(iii), t/T¼ 023); at t/T¼
122, the insect starts to roll to the right (f . 0) (figure 8a(ii),

t/T¼ 1.524). From these data, the development of the instabil-

ity can be clearly seen (as illustrated in figure 8b): the insect

moves to the right and a right-side rolling moment LA� (.0)

is produced by the side-translational velocity (how the roll

moment is produced will be discussed below); the moment

ðLA�Þ rolls the insect to the right (f . 0), tilting the vertical

force (F0 ¼ mg) to the right; the horizontal component of F0

would enhance the side-translational motion and the roll

moment produced by the side-translational motion would

enhance the roll, resulting in the instability. Now let us explain

how the side-translational velocity could produce a roll

moment. When using linear analysis to study the lateral stab-

ility of hovering insects, Zhang & Sun [4] and Xu & Sun [26]

found that right-side (or left-side) translational velocity will

produce a positive (or negative) roll moment, the reasons for

which are as follows. When the insect conducts a side-

translational motion to the right side, the left wing sees a

relative velocity that is approximately directed from wing-

root to wing-tip, whereas the right wing sees a relative velocity

that is approximately directed from wing-tip to wing-root.

Flow velocity from wing-root to wing-tip of the left wing

would increase the axial velocity of its leading-edge vortex

(LEV) and make the LEV more concentrated than that of the

equilibrium flight (hovering flight), whereas flow velocity

from wing-tip to wing-root of the right wing would decrease

the axial velocity of its LEV and make the LEV more diffused

than that of the equilibrium flight. This will result in a larger

lift on the left wing and a smaller lift on the right wing, produ-

cing the positive roll moment. Similarly, a left-side-translational

motion will produce a negative roll moment. In the above-

mentioned studies [4,26], only small disturbance motions

were considered. But, it is obvious that this mechanism

would exist also when side-translational velocity is large. This

is confirmed by our data. As an example, figure 9 shows a com-

parison between the LEVs of the left and right wings at v(0)/

U ¼ 0.5. It is seen that the LEV on the right wing is much

more diffused than that on the left wing.

Finally, let us look at the ‘roll instability’ in figure 4b,

i.e. the disturbance motion owing to an initial roll angle.

Analysis similar to the previous paragraph has shown that

the roll angle gives a horizontal force, F0sin(f ), resulting in

a right-side horizontal motion and roll motion; the horizontal

motion and roll motion enhance each other, resulting in

instability. The instabilities in other disturbance motions con-

sidered in the previous section are either a ‘pitch instability’

or a ‘roll instability’ and can be similarly explained.
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4.3. Comparison with linear theory
When a nonlinear problem is linearized about an equilibrium

point, the linearized equation of small perturbation about the

equilibrium point can be solved analytically. When the full

nonlinear equation is solved numerically for disturbance

motions about the equilibrium point, in the case of the

perturbation is small, the numerical solution should be
approximately the same as the analytical solution. In fact,

this can serve as a test of the numerical solution.

Here, we compare the present nonlinear solution with the

analytical solution. It is expected that for small disturbance

motion, the numerical solution is close to the analytical one.

For the hovering hawkmoth and dronefly, the analytical solution

of small disturbance motion was obtained by our group [11–13]:

uE

wE

q
u

2
664

3
775 ¼

X4

i¼1

aixie
li t ð4:1aÞ

and

vE

p
r
f

2
664

3
775 ¼

X8

i¼5

aixie
lit ð4:1bÞ

where li and xi(i¼ 1–4) are the longitudinal eigenvalues and

eigenvectors, respectively, and li and xi(i¼ 5–8) are the lateral

eigenvalues and eigenvectors, respectively; ai(i¼ 1–8) is con-

stants. li and xi(i¼ 1–8) are given in references [11,12], ai is

determined by given initial conditions.

Electronic supplementary material, figure S6 compares

the numerical and analytical results of the model hawkmoth

when the initial disturbances are u(0)/U ¼ 0.1 and v(0)/U ¼
0.1, respectively. The initial disturbances are small. As is

expected, in the early time (t/T � 0–2), before the disturbance

motion grows large, the numerical solution is close to the

analytical solution; however, when the disturbance motion

grows large (t/T . 2), discrepancies between the nonlinear



rsif.r

11
and linear solutions become large. Electronic supplementary

material, figure S7 shows the corresponding results for the

dronefly; the comparison is similar.
oyalsocietypublishing.org
5. Conclusions
— For small and large initial disturbances, the disturbance

motion grows with time and the insects tumble and

never return to the equilibrium state; hovering flight of

the model insects is inherently (passively) unstable.
— The instability is mainly caused by a large positive (and/

or negative) pitch moment produced by the forward

(and/or backward) velocity, and/or a large positive (or

negative) roll moment produced by the right (or left)

side-velocity of the insect.
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