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3Departamento de Ciências da Natureza, Matemática e Educação, Federal University of São Carlos (UFSCar),
Araras, Brazil
4Department of Biology, 213 Leidy Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA

When mutation rates are low, natural selection remains effective, and increasing

the mutation rate can give rise to an increase in adaptation rate. When mutation

rates are high to begin with, however, increasing the mutation rate may have

a detrimental effect because of the overwhelming presence of deleterious

mutations. Indeed, if mutation rates are high enough: (i) adaptive evolution

may be neutralized, resulting in a zero (or negative) adaptation rate despite

the continued availability of adaptive and/or compensatory mutations, or

(ii) natural selection may be neutralized, because the fitness of lineages bearing

adaptive and/or compensatory mutations—whether established or newly

arising—is eroded byexcessive mutation, causing such lineages to decline in fre-

quency. We apply these two criteria to a standard model of asexual adaptive

evolution and derive mathematical expressions—some new, some old in new

guise—delineating the mutation rates under which either adaptive evolution

or natural selection is neutralized. The expressions are simple and require no

a priori knowledge of organism- and/or environment-specific parameters.

Our discussion connects these results to each other and to previous theory,

showing convergence or equivalence of the different results in most cases.
1. Introduction
Even the simplest of living organisms are highly complex. Mutations—

indiscriminate alterations of such complexity—are much more likely to be

harmful than beneficial [1–3]. For an individual organism, therefore, an increase

in the overall rate of mutation should be detrimental. In a population of organisms,

however, natural selection disproportionately favours beneficial mutations, and

the net effect of increasing the overall mutation rate is thus less clear.
1.1. Previous studies
Generally speaking, the population-level effects of increasing the mutation rate

have been studied separately under two artificial assumptions: the absence of

beneficial mutations, and infinite population size. Only a handful of studies

have relaxed both assumptions.
1.1.1. Absence of beneficial mutations
When beneficial mutations are assumed to be absent, and population size is finite,

fitness will undergo a slow but steady decline because of the sluggish but largely

irreversible accumulation of deleterious mutations. This process is especially pro-

nounced in asexual populations, and it was in this context that the process was

first described by Muller [4] and later dubbed ‘Muller’s ratchet’ [5] and formalized

by Haigh [6]. Under the relentless accumulation of deleterious mutations, fitness

will decline monotonically. Most of the subsequent work on Muller’s ratchet has

focused on the rate of the ratchet, different factors affecting this rate, and in par-

ticular factors or conditions that can cause this rate to become negligible (i.e. that
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halt the ratchet) [7–15]. Increasing the genomic mutation rate

can only accelerate Muller’s ratchet.
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Figure 1. Time-averaged fitness gradients from simulations of adapting
populations as a function of genomic mutation rate. Simulations are fully
stochastic and individual-based; populations are asexual. (See the electronic
supplementary material for details.) Each point represents the average of
eight independent simulation runs. The fraction of mutations that are dele-
terious is constant at 0.1, and the effects of all mutations are drawn at
random from an exponential distribution with mean 0.03. At high enough
mutation rates, the rate of fitness increase becomes negative (indicating per-
sistent fitness decline), from which inference of eventual extinction seems
reasonable. Filled circles plot simulation results in which population size is
10 000 and the fraction of mutations that are beneficial is 1025; filled
squares plot simulation results in which population size is 50 000 and the
fraction of mutations that are beneficial is 1025; filled triangles plot simu-
lation results in which population size is 10 000 and the fraction of
mutations that are beneficial is 1024; open circles plot simulation results
in which population size is 10 000 and the fraction of mutations that are
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1.1.2. Infinite population size
When population size is assumed to be infinite, populations

whose adaptation is constrained, i.e. populations in which

beneficial mutations can occur but that have a maximum

attainable fitness, will eventually achieve an equilibrium

fitness distribution shaped by the largely opposing forces of

mutation and natural selection. Above a critical mutation rate

dubbed the ‘error threshold’ [16,17], this distribution becomes

remarkably flat, indicating that a genotype’s equilibrium

frequency is essentially independent of its fitness. This conver-

sion to a state of random fitness dispersion is reminiscent of a

phase transition [17–21] and, in its simplest formulation, the

two are mathematically equivalent [22,23]. The simplest formu-

lation of the error threshold has been called into question

because of some unrealistic assumptions that are often per-

ceived as strong assumptions, the most notable of which is

the ‘single-peak’ fitness landscape assumption [24]. The error

threshold has since been studied extensively and shown to

exist under many different conditions that eliminate different

assumptions, for example, allowing for recombination and

departures from random mating [25–27], viral complementa-

tion [28], spatial structure and different modes of replication

[29–34] and more realistic static and dynamic fitness land-

scapes [26,27,35–40] (but see Wiehe [41]).
beneficial is zero (classical Muller’s ratchet). (Online version in colour.)
1.1.3. Extinction
The two classes of models described earlier—Muller’s ratchet

and the error threshold—encompass most previous charac-

terizations of mutational degradation processes. In their

original formulations, and in most subsequent work, neither

of these two classes of models explicitly accounts for demo-

graphic decline as a result of excess mutation. There has

been some work, however, that has superimposed demogra-

phy onto both Muller’s ratchet [42–44] and error threshold

[45,46] models, finding a positive feedback between these

processes and demographic decline towards extinction.

These models, however, are typically sensitive to organism-,

environment- and time-dependent parameters. In particular,

they require an assumption about the mapping between rela-

tive and absolute fitness—an assumption that is loaded with

requisite assumptions about the organism and environment,

both of which can change with time.
1.1.4. Finite populations with beneficial mutations
A few studies have addressed the effect of increasing the

mutation rate when the two foregoing assumptions are

relaxed, i.e. when beneficial mutations are accounted for and

populations are finite. Under these more realistic conditions,

the fitness decline due to Muller’s ratchet can be cancelled

out or even reversed by beneficial mutations, resulting in

unchanging or increasing fitness. The effect of beneficial

mutations on Muller’s ratchet has been explored previously

[47–49]; these studies focused on how the effects and relative

fractions of beneficial versus deleterious mutations would

affect the adaptation rate and whether that rate was positive

or negative. In this study, we focus on how the genomic

mutation rate affects the progress of adaptive evolution and

the effectiveness of natural selection.
1.2. Present study
1.2.1. Neutralizing adaptive evolution
When genomic mutation rate is low to begin with, an increase

in this rate may be advantageous: the increased production

of deleterious mutations can be of disproportionately small

consequence, because natural selection tends to eliminate

deleterious mutations from the population, whereas the

increased production of rare beneficial mutations can be of

disproportionately large consequence, because natural selec-

tion can cause the fixation of beneficial mutations from

which the entire population benefits. Thus, if a population’s

overall mutation rate is low to begin with, then an increase

in the mutation rate can increase the rate at which beneficial

mutations are fixed, thereby increasing the adaptation rate,

where adaptation is defined as increase in mean fitness. In

other words, a positive correlation can exist between genomic

mutation rate and adaptation rate.

When genomic mutation rate is high to begin with, how-

ever, an increase in this rate may be disadvantageous because

of excess deleterious mutations. While the consequence of

deleterious mutations is still disproportionately small, it is

less so at high mutation rates, because deleterious mutations

can be produced faster than natural selection can remove

them. At high mutation rates, therefore, a negative correlation

can exist between genomic mutation rate and adaptation rate.

The foregoing considerations indicate a non-monotonic

relationship between mutation rate and adaptation rate, a

relationship confirmed by simulation (figures 1 and 2). In

this paper, we are interested in finding critical genomic

mutation rates above which adaptation rate becomes negative.

It seems reasonable to speculate that a negative adaptation rate,

if sustained, would ultimately result in extinction.
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Figure 2. (a) Time-averaged adaptation rate as a function of genomic
mutation rate. The point at which adaptation rate becomes negative
marks the threshold mutation rate, indicated by the blue vertical line.
(b) Predictions for the threshold mutation rate. Green triangles plot the var-
iance threshold given by equation (2.1); blue diamonds plot the error
threshold given by equation (2.4); red line plots genomic mutation rate U.
Where threshold predictions intersect with the red line marks the predicted
threshold mutation rate for these simulations, and coincides exactly with the
observed threshold mutation rate in (a). Each point represents an average
taken over the full time course of eight fully stochastic, individual-based
simulations of evolving asexual populations. Population size was 10 000, frac-
tions of mutations that were beneficial and deleterious were 0.001 and 0.5,
respectively. Ten per cent of deleterious mutations were lethal; otherwise,
beneficial and deleterious mutations were drawn from an exponential distribution
with mean 0.03. Epistasis among deleterious mutations is synergistic with epis-
tasis parameter 0.1 and epistasis exponent 5 (see the electronic supplementary
material for epistasis function). Several similar plots with different sets of
biological complexities are posted in the electronic supplementary material.
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1.2.2. Neutralizing natural selection
Evolution by natural selection proceeds through the appearance

and subsequent fixation of adaptive and/or compensatory

mutations. When mutation rate is low, virtually all adaptive

and/or compensatory mutations produced have fixation poten-
tial: all of them have the possibility, at least, of enduring the

first few generations of random sampling (surviving genetic

drift [50]), outcompeting other adaptive and/or compensatory

mutations (surviving the Hill–Robertson effect [51] or clonal

interference [52]) and spreading to fixation. This is because,

with low mutation rates, progress to fixation is relatively

unhindered by deleterious mutations.

As mutation rate increases, however, the fixation potential of

adaptive and/or compensatory mutations is reduced: each

such mutation founds a lineage whose growth is increasingly

eroded by the accumulation of deleterious mutations. As

mutation rate continues to increase, a point may be reached
at which adaptive and/or compensatory mutations lose their

fixation potential altogether, thereby neutralizing natural

selection. We explore three particularly telling indicators that

this point has been reached: (i) the fittest genotype in the popu-

lation (e.g. an adaptive mutant) decreases in frequency, (ii) the

fittest genotype in the population has an equilibrium frequency

(i.e. a mutation–selection balance frequency) very close to zero,

and (iii) a newly arising fittest genotype is ultimately doomed

to extinction with probability one.

1.2.3. A key innovation: dynamical insufficiency
In many of the previous investigations of mutational degra-

dation processes, analogies are drawn to physical processes

not least of which is the phase transition analogy. However,

the analogous physical processes typically occur on short

time scales during which the relevant parameters remain con-

stant and convergence to equilibria occurs rapidly. This

context affords the luxury of dynamically sufficient models

and applicability of their steady-state analyses. In evolu-

tionary biology, however, time scales are longer, relevant

parameters cannot reliably be assumed to remain constant,

and equilibria may rarely, if ever, be achieved. In the face

of such long-term uncertainty, predictive accuracy seems

unlikely; nevertheless, dynamically insufficient models may

provide short-term predictive accuracy. Fisher’s ‘funda-

mental theorem of natural selection’ accurately predicts the

evolution of fitness over the course of a single generation;

by sacrificing dynamical sufficiency, this theorem achieves

short-term predictive accuracy. Some of the conditions that

we derive here (the more useful conditions) use variations

of this approach; they depend on statistical properties of

the population that, by virtue of their intermediate dynamical

sufficiency, absorb contingencies and other surprises that are

so characteristic of the biological world (see §3) and thereby

may subsume many previous results that individually treat

an array of different complexities and were derived under

the purview of dynamical sufficiency.

1.2.4. Extinction
We stress that the work we present here only delineates con-

ditions under which adaptive evolution or natural selection is

neutralized. Demographic decline is not explicitly accounted

for in our modelling here, and the few references we make

to extinction (one of which is in §1.2.5) are therefore based

on reasonable but nonetheless speculative inference. (We

note that reference is made in §2.3.2 (criterion 2) to the extinc-

tion of individual beneficial lineages owing to differential or

‘relative’ fitness. This is very different from, and should not

be confused with, whole-population extinction.)

1.2.5. Our default application
The discovery and development of the error threshold sparked

the imagination of virologists, whose efforts to clear viral infec-

tions using antiviral drugs are bedevilled by the high mutation

rates of many viruses. If mutation rate could be elevated even

further through mutagenesis, then error threshold theory

suggested that viral populations should undergo ‘informa-

tional collapse’, which has a dire ring to it, and suggested

that populations might be driven extinct, thereby in a sense

beating the virus at its own game [53–57]. As in our models,

extinction in these earlier models is not explicit but may be con-

sidered a reasonable, if speculative, prediction (see §1.2.4).
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Partly because of this historical context, we have adopted this

particular application as our ‘default’ application: unless other-

wise stated, we have in mind the general aim of neutralizing

adaptive evolution and/or natural selection in an unwanted

population (and by extrapolation, eradicating the unwanted

population) through mutagenesis, and the inequalities we

derive reflect this aim.

1.2.6. Outline of this study
In this study, we independently apply the two earlier-

described criteria to a standard, general model of fitness evol-

ution in order to derive the conditions under which adaptive

evolution and natural selection are neutralized. (To guide the

reader, we would point out that our main results are thus

indicated by the word ‘condition’.) The conditions that we

derive from criterion 1 range from sufficient to sufficient

and necessary; however, it is the intermediate condition—

called ‘sufficient and somewhat necessary’—that we believe

is the most novel and perhaps the most practical. We apply

criterion 2 both to a population in which the fittest genotype

is resident (recovering the classical error threshold results in a

new guise that lends itself to an alternative and perhaps more

useful interpretation) and to one in which the fittest genotype

is a newly arising beneficial mutant.
2. Results
2.1. The model
We use a standard model of adaptive evolution of an asexual

population in which a genotype or class increases in log-

frequency as the fitness of that genotype or class minus the

mean fitness of the population. Mutation occurs among geno-

types or classes as a diffusion process that is strongly biased in

favour of deleterious mutations. Mathematical formulations of

this model are given in appendix A.

In what follows, we use the bracket notation in addition

to the overbar notation to denote averaging. Overbar notation

is used to denote averaging over individuals in a population.

(Because our analyses implicitly assume infinite population

size, such averaging is equivalent to expectation.) Some

examples are: x denotes fitness, and �x denotes the mean fit-

ness of a population; dx denotes the effect of mutation on

fitness, and �dx denotes its average taken over all possible

mutated offspring (here, the ‘population’ is really a potential
population). Bracket notation is used to denote averaging

over time; for example, k�xl denotes the mean fitness of a

population averaged over time. The models we use are conti-

nuous in time and thus our measure of fitness x corresponds

to the log of fitness w used in classical population genetics

(discrete-time) models.

2.2. Criterion 1: adaptive evolution is neutralized
Here, we use a formulation of our model that is continuous in

both time and fitness. We ask under what conditions adap-

tation will move backwards, i.e. under what conditions

population mean fitness will decrease in spite of an inexhaus-

tible supply of beneficial mutations.

Assumptions of our model under this criterion are minimal:

(i) no assumptions are made about the fitness landscape (except

for the very weak assumption of ‘compact support’ of the

mutation kernel; see appendix A), (ii) no equilibrium
assumptions are made, and (iii) our results here share the tauto-

logical flavour of Fisher’s theorem [58–60] (and the Price

equation [61,62]) and in this sense are more akin to the theory

of natural selection than to any particular model of evolution.
2.2.1. Sufficient and sufficient/necessary conditions
Adaptive evolution is neutralized when the long-term

tendency of absolute fitness is to decrease, despite the

availability of adaptive and/or compensatory mutations.

A sufficient but not necessary version of this condition

imposes d�x=dt , 0 at all times, where �x is population mean

fitness. The necessary and sufficient version of this condition

is kd�x=dtl , 0. These conditions imply (appendix A) that

adaptive evolution will be neutralized and fitness will in

fact decline if the relation

�U�dx . s2
x ð2:1Þ

holds persistently (sufficient) or at least on average (sufficient

and necessary), where sx
2 is variance in fitness, U is genomic

mutation rate and �dx is the average effect of mutation on fit-

ness. (While this expression is given in terms of fitness, an

equivalent expression is derived in terms of a fitness-related

phenotype in the electronic supplementary material.) If the

effects of beneficial and deleterious mutations are considered

separately, then �dx ¼ fBmB � fDmD, where fD and fB are the

fractions of all mutations that are deleterious and beneficial,

respectively; mD and mB are the mean effects of deleterious

and beneficial mutations on fitness, respectively. Biological

considerations overwhelmingly support fDmD� fBmB, so the

left-hand side of (2.1) will most likely be positive. By some

estimates [63–68], fB can be surprisingly high; however

(i) this does not necessarily imply high values of fBmB [65]

and (ii) it seems unlikely that fBmB would ever exceed

fDmD, simply because the ways to damage a highly com-

plex entity (such as a living organism) far outnumber

the ways to improve it. In the very unlikely case that

fBmB . fDmD, condition (2.1) would present a contradiction,

and fitness decline would be impossible regardless of U.

The accuracy of (2.1) and its robustness to several factors

such as epistasis are illustrated by figure 2 and in the

electronic supplementary material.

Critical mutation rate can be a moving target. As evidenced

by (2.1), the critical mutation rate required to neutralize adap-

tive evolution is a function of the fitness variance. Increasing

the mutation rate, however, will often cause a subsequent

increase in fitness variance, in turn increasing the mutation

rate required to satisfy (2.1). In fact, classical population gen-

etics (accounting for deleterious mutations only), and work

by Rouzine et al. [69,70] and Goyal et al. [49] (accounting

for beneficial and deleterious mutations) all indicate that,

for low to moderate mutation rates, the fitness variance

should tend towards �U�dx following a perturbation in fitness

and/or mutation rate. This suggests that an adjustment in the

mutation rate (perhaps through increasing the dose of a

mutagen, for example) to satisfy the condition �U�dx . s2
x

will be followed by an increase in fitness variance such that

s2
x ! �U�dx, thus necessitating a further increase in U in

order to maintain the relation �U�dx . s2
x. Frank & Slatkin

[71] have pointed out that the tendency s2
x ! �U�dx rep-

resents mutation–selection balance (in fact, they mention

this in the context of phenotypic evolution but the same

notion applies). Figuratively, the condition �U �dx . s2
x may
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be thought of as a mutation rate that persistently tips the bal-

ance in favour of mutation; alternatively, it may be thought of

as a mutation rate persistently high enough to prevent con-

vergence to mutation–selection balance. As U is increased

to maintain �U �dx . s2
x in a continually adapting population,

sx
2 will eventually reach a maximal value (owing to finite

population size) and, at this point, the value of U need not

increase further to satisfy �U�dx . s2
max. In figure 3b, the gen-

etic variance in fitness is measured in simulated populations

every 100 generations, and �U�dx is set at 10 per cent above

sx
2, thereby maintaining �U �dx . s2

x. For a long time, the posi-

tive feedback between mutation rate and fitness variance

results in escalating adjustments to the mutation rate; after

some time, however, the variance appears to achieve a maxi-

mum, so that the mutation rate required for continued fitness

decline levels off.
 10:20130329
2.2.2. Sufficient and somewhat necessary condition
So far, we have derived conditions that lie at opposite ends of

the spectrum from sufficiency to sufficiency-and-necessity.

From a practical standpoint, however, both are of limited

utility. Condition (2.1) ensures declining fitness only for the

current generation. The sufficient condition is that this

relation hold persistently, but this condition may be frus-

tratingly elusive because it fails to anticipate the change in

fitness variance that typically follows an adjustment to the

mutation rate. For this condition to be enforced in practice,

therefore, frequent measurements of sx
2 would be required,

followed by adjustments in U (e.g. by increasing the dose

of a mutagen), if needed, to maintain the relation (2.1) (as

in figure 3a,b). In practice, therefore, the sufficient condition

amounts to a rather inconvenient protocol. The sufficient-

and-necessary condition, that (2.1) holds on average, requires

long-term future knowledge of population fitness that is gen-

erally not attainable in practice. Here, we derive conditions

that lie somewhere in the middle of the spectrum from suffi-

ciency to sufficiency-and-necessity and that have increased

practical applicability.

To this end, we temper our sufficient and necessary

condition: instead of requiring that the long-term average

gradient oppose selection, we now require only that the

medium-term average gradient oppose selection. We will

denote this intermediate condition as kd�x=dtlr , 0, where r
denotes the number of future generations over which to take

the average. In order to enforce this condition, however, one

needs a way to predict the near-future course of evolution;

an algorithm for doing this is outlined in Gerrish & Sniegowski

[72]. There, it is shown that prediction of the near-future course

of evolution can be achieved by a time-discretization of a

hierarchy of cumulant equations.

Using the equations for fitness evolution derived in

Gerrish & Sniegowski [72] and imposing kd�x=dtlr , 0, the

condition under which adaptive evolution is neutralized

may be written as

�U �dx .
1

r

Xr�1

t¼0

k2ðtÞ; ð2:2Þ

where the future fitness variances (or second cumulants),k2(t) ¼

sx
2(t), are computed from the set of recursionski(t þ 1)¼ ki(t) þ

kiþ1(t) þ Umi as outlined in Gerrish & Sniegowski [72] (also, see

appendix A);ki(t) denotes the ith cumulant at generation t; t¼ 0

denotes the present generation (called ‘now’), t ¼ 1 denotes
one generation from now, t ¼ 2 denotes two generations

from now, etc.; and r is the ‘predictive reach’, i.e. r is how

many generations into the future the algorithm in Gerrish &

Sniegowski [72] can be trusted to predict. In ongoing work,

we have shown that this algorithm can be trusted to predict

d�x=dt over at least r ¼ 20 generations in laboratory Escherichia
coli populations, and roughly r ¼ 45 generations in simulations

[72]. An alternative condition that errs conservatively is:

�U �dx . maxðk2ð0Þ; k2ð1Þ; :::; k2ðrÞÞ. (See the electronic supple-

mentary material for equivalent phenotypic expressions.) The

appearance of these equations is deceptively simple because

as U is changed, the predictions for k2(t) will change, i.e. the

equations look explicit when in fact they are implicit for U.

(They are implicit for U because a certain degree of circularity

is required by their intermediate dynamical sufficiency, which

anticipates future changes in sx
2 without requiring knowledge

of organismal and environmental parameters; in practice, this

fact only imposes the slight inconvenience of having to use

an iterative procedure in the calculations.)

2.3. Criterion 2: natural selection is neutralized
The approach that derives from this criterion takes its lead from

statistical physics, where an ‘order parameter’ quantifies the

degree of order present in the system at hand. Order in an evol-

ving population is brought about through the action of natural

selection on genetic variation. In evolution, a natural choice for

an order parameter is the frequency of the fittest genotype. If

natural selection is operational, the fittest genotype should per-

sist at reasonable frequency despite recurrent mutation away

from this genotype, and this frequency is thus indicative of

the amount of order present in the population. As mutation

rate increases, the frequency of the fittest genotype will

decrease, indicating a decrease in the overall order present.

At a sufficiently high mutation rate, the amount of order will

approach zero.

Assumptions implicit under this condition again are

minimal: (i) no assumptions are made about the fitness

landscape (e.g. the ‘single-peak’ landscape used by many

error-threshold models is not required here; curiously,

Eigen’s original paper on the error threshold had a formu-

lation similar to ours—as shown in §3—and also did not

require a ‘single-peak’ landscape) and (ii) equilibrium is not

assumed, although some of the results are obtained by sol-

ving for the equilibrium state.

2.3.1. Sufficient condition
Here, we have in mind a population that is heterogeneous

and that is predominated by a fittest genotype whose fre-

quency is u0. Our sufficient condition is derived by finding

the mutation rate that causes the frequency of the fittest

genotype to decrease relative to its mutational neighbours:

du0/dt , 0, persistently. Solving for the mutation rate that

ensures this inequality gives rise to the condition

UfD . ðx0 � ~xÞ 1

1� u0
� 1

Lu0

� ��1

; ð2:3Þ

where L is the size of the deleterious genome, x0 is the fitness

of the fittest genotype; ~x ¼
PL

j¼1 xjûj, and �x ¼
PL

j¼0 xjûj, from

which we have the useful relation ð1� u0Þðx0 � ~xÞ ¼ x0 � �x.

In a finite population, x0 is the maximum fitness found in

the population, and ~x is the average fitness of everybody

else: ~x ¼ ð1=#SÞ
P

i[S xi, where S is the subset of the
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Table 1. Summary of neutralizing conditions.

conditions adaptive evolution (criterion 1) natural selection (criterion 2)

sufficient �U �dx . s2
x persistently UfD � x0 � �x persistentlya

sufficient and somewhat necessary �U �dx .
1
r

Xr�1

i¼0
k2ðiÞ intermittently

sufficient and necessary �U �dx . s2
x long-term average UfD � x0 � ~x long-term steady state

aThis condition holds when L� N.
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population that has fitness less than the maximum and #S is

the number of individuals in that subset. If it is the case that

the population is finite and L�N, then the

term 1=Lu0 � N=L � 0, giving rise to the condition:

UfD � ð1� u0Þðx0 � ~xÞ ¼ x0 � �x (reported in table 1). In our

simulations, we assume an infinite genome (L!1) and

finite population size; under these conditions, UfD . x0 � �x
is exact. In a continually adapting population, u0 will be

small most of the time, in which case this expression may

be used interchangeably with: UfD � x0 � ~x (used in figure 3).
2.3.2. Sufficient and necessary conditions
(1) Mutational degradation of an established fittest genotype. Here,

we have in mind a population that is heterogeneous but that

has been predominated by a fittest lineage for some time. To

determine the amount of order in this population, we com-

pute its order parameter, û0: the equilibrium frequency of

this fittest lineage relative to its mutational neighbours (gen-

otypes that differ from the fittest lineage by mutation). We are

especially interested in what happens to the order parameter

as mutation rate increases.

Analysis of the evolutionary model at equilibrium reveals

that, indeed, the order parameter û0 decreases with increasing

mutation rate (appendix A). The approach of û0 towards zero

as U increases is characterized by an inflection point that

becomes increasingly sharp as deleterious genome size L
increases. The mutation rate at which the inflection point

occurs is found by solving for the critical mutation rate Uc that

satisfies @3û0=@U3 ¼ 0. As L increases, UcfD ¼ mcL! x0 � ~x,

where fD is again the fraction of mutations that are deleterious,

andmc is the critical point mutation rate. From this result, natural

selection may reasonably be expected to be neutralized when

mutation exceeds the critical rate:

UfD � x0 � ~x: ð2:4Þ

This is the classical ‘error threshold’ result in new guise. It is

an equilibrium result and its practical use would therefore

require knowledge of long-term future states of the population.

When long-term data are available this condition is very accu-

rate and is robust to many factors (figure 2 and electronic

supplementary material).

The equilibrium frequency of the fittest class or genotype

at the ‘error threshold’, while greatly reduced, is still greater

than the frequencies of neighbouring genotypes: at m ¼ mc,

the fittest genotype has frequency û0 � 1=Lþ
ffiffiffiffiffiffiffiffi
1=L

p
, whereas

mutational neighbours have frequency ûi , 1=L. This stands

in contrast to common notions about the error threshold as

creating a competitive reversal that leads to the subordination
and/or loss of the fittest genotype. In a finite population, the

fittest genotype will be deterministically lost from the popu-

lation at the error threshold only if N �
ffiffiffi
L
p

. To put this

condition in perspective, we consider a strain of Escherichia
coli that has a genome of length L � 4:6� 106 base pairs; if

we make the very conservative assumption that mutation at

any position on the genome will affect fitness, then any popu-

lation larger than
ffiffiffi
L
p
� 2145 will deterministically retain the

fittest genotype at the error threshold.

Despite the persistence and continued dominance of the fit-

test genotype, the error threshold nevertheless marks a point at

which the frequencies of the different genotypes are so severely

eroded by mutation that their frequencies are clearly not

indicative of their fitness. This neutralizing of natural selection

is apparent in the relation: covðu; xÞjm¼mc
� �s=L, where �s � ��dx.

For large genomes, therefore, the covariance between fitness

and frequency—an indicator of the efficacy of natural selec-

tion—is very small at the error threshold (but still positive).

Additionally, the extent to which natural selection has

become ineffective is reflected by the amount of disorder pre-

sent in the equilibrium population; a standard index of

disorder is the Shannon entropy (measured, for example, for

RNA viral quasi-species [34]) which, at the error threshold, is

approximately equal to log2L.

(2) Mutational degradation of a newly arising fittest genotype.
Here, we have in mind an asexual population that is hetero-

geneous and in which a beneficial mutation emerges. This

mutation creates a newly arising ‘fittest genotype’ whose sub-

sequent growth depends on the persistence of that genotype

within the growing lineage, despite recurrent mutation away

from that genotype. The newly arising fittest genotype has

fitness x0, and the rest of the population has average fitness

~x, as before. In a single generation, the new lineage grows

by a factor R ¼ ex0��x ¼ eðx0�~xÞð1�u0Þ. Accumulation of deleter-

ious mutations occurs most rapidly early in the growth of a

lineage [9], when u0 � 0, suggesting the approximation

R � ex0�~x. Previous studies show that genomic mutation

rates that cause the degradation of the newly arising fittest

genotype must satisfy UfD � logR [9,73,74]. The extinction

of a newly arising fittest genotype is therefore predicted to

occur when

UfD � x0 � ~x: ð2:5Þ

Compare with (2.4). This result was originally derived for an

independent asexual population growing without bound at

discrete-time rate R [9] and was later re-derived in a way that

more explicitly allowed for purifying selection and dubbed

the ‘lethal mutagenesis’ threshold [73,74] for unboundedly

growing viral and bacterial populations. This result should
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also apply, however, to lineages growing within a population

as a consequence of positive relative fitness ðx0 � ~x . 0Þ.
Finite population size restricts applicability to lineages that

begin to decline in frequency before being affected by popu-

lation size constraints, which seems likely to account for

many such lineages when at or near the critical mutation rate

(but see Gerrish et al. [75]). Those lineages that do achieve

higher frequencies are likely to become fixed in the population,

in which case the relevant condition was derived in the pre-

vious subsection: UfD � x0 � ~x (condition (2.4)). It thus seems

reasonable to conjecture that whatever the maximum fre-

quency achieved by the new lineage, the condition is well

approximated by (2.5).

Figure 4. Schematic of how adaptive evolution and/or natural selection may
be neutralized not as a result of increasing the mutation rate but as a result
of a decreasing threshold mutation rate. The red line indicates the mutation
rate of the population; the black line plots the threshold mutation rate as a
function of the fraction of mutations that are beneficial (horizontal axis). The
big blue arrow indicates that as a population adapts in a static environment,
its supply of beneficial mutations is used up, resulting in a decreasing fraction
of mutations that are beneficial. As this fraction decreases, the threshold
mutation rate decreases, until eventually the threshold mutation rate is
below the mutation rate of the population.

Interface
10:20130329
3. Discussion
3.1. Practical use of the equations
3.1.1. Why are accurate predictions desirable?
On the surface, it seems that if one has the ability to increase

mutation rate, perhaps through the use of a chemical muta-

gen, then to drive a population extinct, one needs only to

increase the mutation rate by a large amount, perhaps by

administering a high dose of mutagen. The problem with

this approach is that, in real populations, variation in

mutation rate is inevitable, and resistance to a mutagen can

appear. A large increase in the mutation rate can create

strong selection pressure for a lowered mutation rate, and a

reduction in the mutation rate may thus evolve in short

order. Our own work with a mutator strain of Escherichia
coli and a nucleoside analogue mutagen, together with

several previous mutagenesis studies using different viral

systems, shows that resistance to mutagens at high doses

can evolve rapidly and through a number of different mech-

anisms [76–82]. If one could increase the mutation rate to a

level that is high enough to cause extinction, but not too

high, selection for resistance could, in principle, be reduced

considerably and the evolution of resistance might be pre-

vented. Accurate predictions for the critical mutation rate

required for extinction may therefore aid in the practical

implementation of chemical mutagenesis, and the evolution

of resistance might be prevented. Indeed, our equations and

simulations would suggest an improved protocol in which

a mutagen is administered in incrementally increasing dose

(reflected in figure 3).

3.1.2. Timeframe of applicability
The equations derived here are similar in their generality and

robustness; however, they differ among themselves in one

aspect of practical relevance, namely, their timeframe of

applicability. Under criterion 1, this timeframe ranges from

short-term (sufficient) to medium-term (sufficient and some-

what necessary) to long-term (sufficient and necessary).

Under criterion 2, the timeframe is short-term (sufficient) or

long-term (sufficient and necessary). The long-term results

might potentially be applied approximately using a running-

average approach that is necessarily somewhat arbitrary, but

technically correct application of these results requires infor-

mation about long-term future states of the population that

would not be obtainable in practice. When the mutation rate

is adjusted according to fitness measurements from a popu-

lation taken in real time, the correct equations to use are the
short-term and medium-term conditions. These conditions

are applied in simulation studies of which representative

runs are presented in figure 3; there, adjustments to the

mutation rate are made in real time, and the short-term and

medium-term conditions derived under criterion 1 (labelled

‘variance’ and ‘variance-projection’ thresholds, respectively)

perform well, whereas the conditions derived under cri-

terion 2 (error threshold) appear to be less well suited to such

real-time application.
3.1.3. Adaptation in a static environment
A population adapting in a static environment typically has a

limited, non-renewable supply of available beneficial muta-

tions (barring intransitive interactions). As the population

adapts, therefore, the supply of available beneficial mutations

is slowly depleted; as a consequence, mean fitness may

increase and subsequently decrease, and fitness variance

may also change over time, thereby changing the minimal

mutation rate prescribed by criterion 1. In particular, as a

population adapts to a static environment, fitness variance

should decrease, thereby decreasing the predicted threshold

mutation rate. Eventually, the threshold mutation rate may

decrease to a value that is below the population mutation

rate such that further adaptive evolution is neutralized. This

is shown schematically in figure 4: in static environments

and, generally speaking, in environments where the supply

of beneficial mutations can change over time, adaptive evol-

ution or natural selection may be neutralized not as a result of

changes in the mutation rate (i.e. changes in U) but as a result

of changes in the requirements on the mutation rate (i.e.

changes in �dx and in s2
x).
3.2. Connections to previous theory
3.2.1. Fisher and Kimura
Fisher’s ‘fundamental theorem of natural selection’ states that,

when x is defined as additive genetic fitness, d�x=dt ¼ s2
x quite
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generally [59,83]. Fisher’s theorem shows that this particular

component of fitness can only increase (variance is a non-

negative quantity); consequently, this component of fitness

has accurately been called the ‘adaptive engine’ of natural

selection [60]. This component of fitness, however, must be

conserved over time, for example, in the transmission from

parent to offspring for Fisher’s theorem to apply. If there is a

component of fitness that is not conserved, then to find

the change in total mean fitness of the population (con-

served and non-conserved), one must use the product and

chain rules: d�x=dt ¼
Ð

dx
dt

uðx; tÞ þ x
d

dt
uðx; tÞ

� �
dx which,

together with
d

dt
uðx; tÞ ¼ ðx� �xÞuðx; tÞ þ dx

dt
@

@x
uðx; tÞ, yields

d�x=dt ¼ s2
x þ dx=dt—a fact pointed out by Kimura [84]. (We

note that dx=dt ¼
Ð
ðd=dtÞxuðx; tÞdx denotes the mean change

in ‘individual’ fitness, where the mean is taken over individ-

uals in the population.) As a general rule, dx=dt will be

negative, because random alterations in the organism or its

environment are more likely to decrease the organism’s fitness

than to increase it. This simple calculation illustrates the fact

that Fisher’s fundamental theorem applies only to that subset

of the population whose additive genic fitness is conserved

over the period of time in question: only for this particular

subset of the population are we guaranteed that mean fitness

will not decrease.

Applying our criterion 1 to Kimura’s equation yields a more

general condition for the neutralizing of adaptive evolution:

� dx=dt . s2
x ð3:1Þ

must hold persistently or at least on average. Here, the mech-

anism of change in individual fitness over time is not

specified. If we specify that the mechanism of change is

mutation, then dx=dt ¼ U
Ð
dx
dxgðdx; tÞ ¼ U�dx; where gðdx; tÞ

is the distribution of mutational effects on fitness, and we

recover equation (2.1).

3.2.2. The error threshold
As previously stated, equations (2.4) and (2.5) are the error

threshold in new guise. The original work on the error

threshold due to Eigen [16] derives a minimum value for

the ‘quality factor’—the probability of complete fidelity of

replication—that is needed to maintain the efficacy of natural

selection and thus to support life. This minimum value is

given by Qmin ¼ ð �Ak=m þDm � �Dk=mÞ=Am (equation II-45 in

Eigen [16]), where Am and Dm are the birth and death rates

of the fittest genotype (the ‘master sequence’), respectively,
�Ak=m and �Dk=m are the mean birth and death rates of the

rest of the population (individuals that do not carry the

‘master sequence’). The quantity Amð1�QminÞ is the

expected number of deleterious mutants produced by a

single replication event of the fittest genotype. This quantity,

in our notation, is UfD; furthermore, Am �Dm is equivalent to

our x0 and �Ak=m � �Dk=m is equivalent to our ~x. Eigen’s result

may thus be rewritten in our notation as requiring

UfD , x0 � ~x for the effectiveness of natural selection to be

maintained, or conversely, UfD � x0 � ~x for natural selection

to be neutralized.

In work subsequent to Eigen’s original publication,

the varied presentations of his error threshold result

are usually rearrangements of this simple expression:

qmin
L ¼ s21, where qmin is the minimum per-nucleotide
replication fidelity required for survival (qmin¼ 12mc), L is

the length of the deleterious genome, and s is the ‘superiority

parameter’, defined as s ¼ 1=Qmin. Rewriting reveals an

interesting biological requirement: log qL
min � �mcL gives

rise to the relation

mc � ðsomethingÞ=L: ð3:2Þ

This inverse relation between mc and L intrigued its disco-

verers to the extent that the ‘something’ was all but

ignored. It was since discovered, however, that observations

of mL are surprisingly constant across microbial taxa [85,86]

(indeed, it has been conjectured that this is the case precisely

because of the inverse relation between mc and L). The relative

constancy of mL across taxa suggests that the ‘something’ may

in fact be quite relevant to the fate of a population; further-

more, L will probably not change on time scales pertinent

to extinction-by-mutation. These considerations shift the

focus to s. Its name together with its traditional presentation

obfuscates the fact that s is a population-dependent quantity
and not an organism-dependent parameter. Our new presen-

tation of this old result shifts the emphasis from critical

point mutation rate mc versus genome length L to critical

genomic mutation rate mcL versus the myriad biological, eco-

logical and environmental factors that are not explicitly part

of the equation but that are absorbed by the quantity s or,

in our formulation, x0 � ~x.

3.3. Connections among results presented here
Our first criterion is the sustained decline of absolute fitness,

whereas our second criterion is the inefficacy of natural selec-

tion. We now show that, despite these perhaps disparate

criteria, the resulting conditions for extinction connect

through classical population genetics. Criterion 1 gives rise

to the condition �U �dx . s2
x, and criterion 2 gives rise to the

condition UfD � x0 � ~x. Our comparison of these two results

proceeds by multiplying both sides of the second condition

by mD to obtain UfDmD � ðx0 � ~xÞmD. First, we note that

the left-hand side is UfDmD � �U�dx because most mutations

are deleterious. Next, we focus on the right-hand side of

the inequality. As a population approaches the error

threshold (i.e. as this inequality approaches equality),

the size of the fittest class approaches zero and it is the case

that ð1=#SÞ
P

i[S xi ! ð1=NÞ
PN

i¼1 xi, or ~x! �x. The quantity

x0 � �x is known in classical population genetics as the genetic

load, and it is known to converge to the deleterious mutation

rate UfD. Furthermore, it is known that if mutations are

assumed to have a fixed deleterious effect, mD, then the

number of accumulated mutations becomes Poisson dis-

tributed with mean UfD/mD [6]. The variance in number of

accumulated mutations is the same as the mean, and the var-

iance in fitness is therefore s2
x ¼ (UfD=mD)m2

D ¼ UfDmD. As

the error threshold is approached, therefore, the right-hand

side becomes ðx0 � ~xÞmD ! ðx0 � �xÞmD ¼ UfDmD ¼ s2
x.

3.4. Borrowed robustness
Fisher’s fundamental theorem of natural selection is known

to be extraordinarily accurate in spite of numerous complex-

ities that are characteristic of real populations. Because (2.1) is

implicit in the results of Fisher and Kimura, therefore, we

expect these results to be quite robust to numerous biological

complexities. Furthermore, the convergence we have demon-

strated between (2.1), (2.3) and (2.5) leads us to believe that
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the classical error threshold result is similarly robust,

although it does not appear to perform as well in real time

(figure 3). Figure 2 together with the plots we have posted

in the electronic supplementary material—and many others

not posted—demonstrate the robustness of (2.1) (and by

inference (2.2)) to a wide range of complexities, including

finite genome effects, the effects of finite population size

(including Muller’s ratchet), epistatic interactions among

mutations, environmental noise (random changes in fitness

caused by unspecified factors), an evolving mutational

robustness modifier, compensatory mutations whose rate

increases with decreasing fitness, an evolving mutation rate

modifier and a fraction of mutations that are lethal.
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Appendix A
The results we describe in the main text derive from two

manifestations of a standard model of evolution described

verbally in §2.1. Here, we give the mathematical details of

those manifestations.
A.1. Model in continuous fitness for criterion 1
We let u(x,t) denote the density of individuals in the popu-

lation with log-fitness x at time t. Mutation can create

‘jumps’ in log-fitness whose size has probability density

g(f, t) at time t. Under selection and mutation, a population’s

evolution is described by:

@

@t
uðx; tÞ ¼ ðx� �xÞuðx; tÞ

þU
ðþ1

�1

uðx� f; tÞgðf; tÞdf� uðx; tÞ
� �

; ðA 1Þ

where �x ¼
Ðþ1

�1
xuðx; tÞdx. If we apply the standard diffusion

approximation to the mutation term, then this equation becomes

@

@t
uðx; tÞ ¼ ðx� �xÞuðx; tÞ þUMuðx; tÞ: ðA 2Þ

Mutation operator, M ¼ Dx
@2

@x2
� dx

@

@x
, where Dx ¼ 1

2 fB

ðm2
B þ s2

BÞ þ 1
2 fDðm2

D þ s2
DÞ and dx ¼ fBmB � fDmD; fB is

the fraction of all mutations that are beneficial (‘beneficial

fraction’), fD is the deleterious fraction; mB and mD are the

mean effects of beneficial and deleterious mutations on fitness,

respectively; sB
2 and sD

2 are the variances in those effects. We

multiply both sides of (A 2) by x and integrate over all x to
obtain _�x ¼ s2
x þU

Ðþ1

�1
Mxuðx; tÞdx. Under the reasonable

assumption that u(x,t) has compact support in x, integration

by parts gives _�x ¼ s2
x þU�dx, where �dx ¼ fBmB � fDmD. The con-

dition _�x , 0 reflects the neutralizing of adaptive evolution and is

met when �U�dx . s2
x.

A.2. Model in discrete fitness for criterion 2
As an indication of the amount of order in the system at

hand, we would like to know the frequency of the fittest gen-

otype relative to its mutational neighbours. The dynamics of

this genotype and its mutational neighbours (genotypes that

differ from the fittest genotype by mutation) are given by this

set of equations:

_ui ¼ xi �
XL

j¼0

xjuj

0
@

1
Aui � Lmui þ m

X
j=i

uj; ðA 3Þ

where u0 is the frequency of the fittest genotype (the order

parameter), ui is the frequency of mutational neighbour,

i ¼ 1, 2, 3, ..., L, xi is fitness of genotype i, and m is point

mutation rate.

The equation for the fittest genotype u0 may be written as

_u0 ¼ ðx0 � ~xÞð1� u0Þu0 � mLu0 þ mð1� u0Þ; ðA 4Þ

where x0 is the fitness of the fittest genotype and ~x is the aver-

age fitness of everybody else: ~x ¼
PL

j¼1 xjuj=ð1� u0Þ. We note

that x0 � ~x is not relative fitness; a possible interpretation of the

value x0 � ~x is that it is the reproductive ‘pay-off’ in a game

played by the fittest genotype against everybody else.

A.3. Calculating the ‘sufficient and somewhat necessary’
conditions under criterion 1

To compute the ‘sufficient and somewhat necessary’ con-

ditions requires projection of cumulants ki(t) over a period

of r generations into the future. Recurrence relations that do

this are developed in Gerrish & Sniegowski [72].

The terms of the sum in (2.2) are computed from the

recurrence relation: kiðtÞ ¼ kiðt� 1Þ þ kiþ1ðt� 1Þ þUmi for

all i � 1, where ki(t) is the ith cumulant in fitness at a time

t generations from now, U is genomic mutation rate and mi

is the ith raw moment of the distribution of mutational effects

on fitness.

The practical implementation of condition (2.2) requires

some care. The procedure outlined in Gerrish & Sniegowski

[72] provides methods for estimating the mj. These par-

ameters cannot be estimated separately from U; only their

products Umj can be estimated, if the equations are left in

non-parametric form. The obvious remedy is to make the

equations parametric by writing the known expressions for

the moments of an assumed distribution in place of mj.

Then, the parameters to be estimated are U and the limited

number of parameters of the assumed distribution, and U
can then be estimated separately. If one’s objective is to moni-

tor a population’s risk of extinction, or to drive a population

extinct through mutagenesis, however, a less obvious remedy

may apply. In such cases, absolute mutation rates may be

irrelevant, and the effects of an increased (or decreased)

mutation rate can be predicted by simply multiplying the

estimates of Umj by the factor by which mutation rate is

increased (or decreased). In such cases, therefore, the

equations may be left in non-parametric form.
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