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A snake crawling on horizontal surfaces between two parallel walls exhibits a

unique wave-like shape, which is different from the normal shape of a snake

crawling without constraints. We propose that this intriguing system is analo-

gous to a buckled beam under two lateral constraints. A new theoretical model

of beam buckling, which is verified by numerical simulation, is firstly developed

to account for the special boundary conditions. Under this theoretical model, the

effect of geometrical parameters on the deformation shape, such as the distance

between walls, length of the snake and radius of the snake, is examined. The

buckling beam model is then applied to explain qualitatively the wave-like

shape of the snake.
1. Introduction
An elastic beam under axial compression becomes unstable when the compres-

sive stress exceeds the critical threshold for buckling. While buckling beams

without lateral constraints have been analysed systematically [1], Adan et al.
[2] have shown numerically and experimentally that buckling beams under a

lateral constraint exhibit bifurcation modes that are distinct from that without

lateral constraints. Under two parallel lateral constraints, Chai [3,4] has

shown that the buckling of a simple supported beam exhibits new categories

of buckling modes, as well as different transition behaviours between these

modes, compared with the one-side constraint.

While beam buckling under lateral constraint appears to be a pure mechanics

problem, it could also provide interesting insights for morphogenesis in natural

and engineered systems [5]. Recently, Marvi & Hu [6] showed that when a snake

crawls between two parallel walls, its body takes a unique rectangular wave-like

shape which also depends on the wall spacing. In general, a snake usually moves

forward in four ways: slithering by lateral undulation of the body, rectilinear pro-

gression by unilateral contraction/extension of their belly, concertina-like motion

by folding the body similar to the pleats of an accordion and sidewinding motion

by throwing the body into a series of helices [7,8]. Lateral undulation is the most

common way for snakes to move forward, in which the sinusoidal-like lateral bend-

ing of body is propagated from head to tail. If a snake is forced to crawl through

crevices between rocks, then its body may be required to conform to the shape of

the narrow curvy ‘valley’. However, when the snake crawls through two parallel

constraints, the rectangular wave-like profile, such as the morphology shown in

figure 1, has not yet received a theoretical explanation although it has been docu-

mented for a long time.

Inspired by the fact that the sinusoidal morphology of a constrained crawling

snake is analogous to a buckled beam, insights may be obtained by studying

elastic beam buckling under two parallel lateral constraints, in particular, the for-

mation of a rectangular wave upon contact. A theoretical framework is

established in this paper, and the transition between different modes is obtained
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Figure 1. Wave-like shape of a snake under parallel lateral constraints on a horizontal plane. The length of the snakes is 61+ 4 cm; the radius of the snake is
1 cm; the width between constraints is respectively 2, 3, 4, 5, 6 cm from (a – e) [6]. (Online version in colour.)
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as a function of axial strain and wall spacing. The theory is com-

pared with finite-element simulation. The buckling profiles from

theory and simulation are then qualitatively related to the charac-

teristics of the crawling snake.
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Figure 2. Schematic of the theoretical model and the first few buckling modes. (a)
Shape of the undeformed beam; (b) buckling mode 1 of the deformed beam;
(c) buckling mode 2 of the deformed beam; (d ) buckling mode 3 of the deformed
beam and (d ) buckling mode 5 of the deformed beam. (Online version in colour.)
2. Model and method
2.1. Theoretical model
The schematic of a two-dimensional model with linear elastic

response is shown in figure 2, which is inspired by the results

of Chai [3,4] and is used to represent the axial skeleton of a

snake [9,10]. An elastic beam of length L0 and radius r is initially

placed in the middle of two parallel walls. The beam and walls

are placed on the same horizontal plane. Both ends are allowed

to move freely in the y-direction, yet their rotational degree of

freedom is constrained, which resembles the snake crawling be-

haviour. To apply axial compression, the left end of the beam is

fixed in the x-direction, and the right end is pushed inwards by

a displacement of DL. The wall is assumed rigid and kept fixed

throughout, and contact friction is neglected in this model.

When the compressive strain exceeds critical strain, the beam

buckles, and the buckling amplitude increases with DL, until the

deformed beam makes contact with the wall. The deformed pro-

file is assumed symmetric. This becomes the bifurcation mode 1

(figure 2b). The shape of mode 1 consists of three parts [3,4]:

straight section L1, curved section (with projected length L2)

and straight section L1. With the further increase of DL, the

straight sections elongate, and their length will be determined

in the following section through strain energy minimization.

When the straight section becomes too long, it loses stability

and then the entire beam bifurcates into the next mode, illustrated

as mode 2 in figure 2c. Mode 2 consists of two curved sections

with straight sections in between (length 2L1) and at the ends

(length L1 each). With continued compression, the straight sec-

tion of mode 2 may become unstable, and mode 2 bifurcates to

mode 3, figure 2d, and so on to higher modes, figure 2e and

beyond, with subsequent compression. Note that as the modes

shift, the beam ends may jump up or down, and such a boundary

condition was not explored in previous studies.

2.2. Theoretical analysis
The shape of the beam conforms to the Euler beam theory

[1,3,4]:

y0000 þ k2y00 ¼ 0; ð2:1Þ
where k2 ¼ P/EI with P as the axial load, E is the elastic mod-

ulus and I is the moment of inertia. A is denoted as the wave

amplitude, and 2A ¼ d is the wall spacing. Taking mode 1 as

an example, the contour shape of the curved section between

x ¼ L1 and x ¼ L1 þ L2 is

y ¼ 2A
x� L1

L2
� A

p
sin

2p

L2
ðx� L1Þ

� �
; ð2:2Þ
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Figure 3. L2 for different displacement DL, all data are normalized by orig-
inal length L0. Geometrical parameters are L0/d ¼ 10 and d/r ¼ 10. (Online
version in colour.)
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which is consistent with finite-element simulation results.

The constraint of coefficient k in equation (2.1) satisfies

kL2

2p
¼ 1: ð2:3Þ

The shape of the curved sections of other modes can be

described in a similar way as equation (2.2), except that the

value of L2 is different in each mode. In other words, once

L1 and L2 are determined (see below), the shape function of

the deformed beam is obtained.

The strain energy of the beam consists of two parts in this

model: bending energy which is assumed to exist only in the

curved sections and compressing energy which is assumed

to be uniform along the beam, and consistent with finite-

element simulation. Based on equation (2.2), the bending

energy of the curved segment is calculated as:

Ebending ¼
EI
2

ð
L

jy00j2

ð1þ y02Þ3
dx: ð2:4Þ

Denoting the total length of the deformed beam as Ldeformed

(which can be readily calculated using equation (2.2)), the

axial strain 1 is

1 ¼ Ldeformed � L0

L0
: ð2:5Þ

And hence the compressing energy along the beam is

Ecompression ¼ 1
21

2EaLdeformed; ð2:6Þ

where a is the area of cross section for the beam.

With increasing load DL, beam morphology varies. Within a

particular buckling mode, the beam deforms according to

minimization of the total strain energy (Ebending þ Ecompression).

This principle, along with the geometrical constraint

Lprojection þ DL ¼ L0; ð2:7Þ

can be used to deduce L1 and L2 for a givenDL and known mode.

The beam stays at the current buckling mode until one of the

straight sections gets buckled according to [3]:

kS
2p
¼ 1; ð2:8Þ

where S in equation (2.8) is the length of a straight section. This

determines the transition point (critical DL) from one bifurcation

mode to the next.

2.3. Finite-element simulation
In order to verify the key assumptions used in the theoretical

analysis as well as validate the model, a two-dimensional

finite-element method (FEM) model is established to simulate

the beam buckling process under parallel constraints, using

the commercial finite-element package ABAQUS. Boundary

conditions of the walls and the beam are stated previously.

We started this research with a three-dimensional FEM

model, which was found to be consistent with the two-

dimensional model with these specific geometrical con-

straints. So two-dimensional models were used throughout

the paper. The beam is meshed by 100 two-dimensional

linear beam elements, and the wall is modelled by two-

dimensional linear discrete rigid elements. The mesh density

is validated by mesh convergence studies.

According to the contact theory, when there is a line con-

tact between the beam and wall, normal contact forces do not

distribute uniformly throughout the contact section, but
rather concentrate on both ends of the contact section. This

phenomenon is used to differentiate the line contact section

from the curved section in the simulation results, and thus

the values of L1 and L2 can be determined in the simulation

results, and compared with the theoretical predictions (see

the electronic supplementary material, figure S1).
3. Results and discussion
3.1. Comparison between simulation and

theoretical model
According to our model, the projected length of the curved

section, L2, is an important parameter determining not only

the shape of the buckled beam, but also the bending energy

of the system. We did not calculate L1, because once L2 is

determined, the total length of L1 is L0 2 DL 2 nL2, where n
indicates the buckling mode, whereas values for individual

L1 vary along the beam because of the asymmetries described

in §3.2. Values of L2 from theoretical analysis and simulation

are compared at different nominal strain values (DL/L0) in

figure 3, with representative geometrical values L0/d ¼ 10,

d/r ¼ 10. As illustrated in figure 2, the beam undergoes

different buckling modes as the compression proceeds (the

modes are separated by vertical dot lines in figure 3, accord-

ing to our theoretical model). Within a given buckling mode,

L2 decreases as DL/L0 increases, implying that the strain

energy of the beam increases with compression. Although

when the mode transition occurs, L2 suddenly increases as

a result of relieving compressive energy.

It should be remarked that mode 4 is not sketched in

figure 2, and this mode is rarely observed in reality, because,

when mode 3 reaches critical, it is more natural for its two

straight sections to buckle simultaneously and become mode

5. This is confirmed by the FEM simulation results in figure 3.

The comparison between the theoretical model and the

simulation in figure 3 shows that, whereas for most parts,

the variation trend of L2 predicted by the model agrees well

with the FEM simulation, the modal transition points are

not consistent, especially for mode 2 and the beginning part

of mode 5. In the FEM simulation, mode transition (higher-

order bifurcation) occurs sooner than that in the model, the

reasons for which are analysed in the following sections.
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3.2. Symmetric versus non-symmetric models:
upper and lower limits

Examination of the FEM simulation results reveals that the

deformed profiles are often not symmetric, in particular for

mode 2 and the beginning part of mode 5. As mentioned ear-

lier, the theoretical model is based on the assumption that the

buckled beam shape is symmetric (figure 2). However, when

the straight section is redistributed along the beam (while keep-

ing its length fixed), the total strain energy would remain the

same. Using mode 2 as an illustrative example, the relocation

of straight sections is illustrated in figure 4, where the various

sibling morphologies share identical bending and compressive

strain energies.

The reshuffle of the straight sections, however, does affect the

modal transition point which dictates the instability of the

straight section. Such an effect of asymmetry on buckling mode

transition was first noted by Chai [3] and then Pocheau &

Roman [11], who provided the upper and lower limits for

modal transition. In this study, figure 4 illustrates the upper

limit and lower limit for the transition from mode 2 to mode

3. At a given nominal strain DL, the total length of the beam

in the projection of the x-direction is L0 2 DL, which means

that a þ b þ c þ d þ 2L2 ¼ e þ f þ g þ 2L2 ¼ L0 2 DL for all

cases in figure 4. In the symmetric case, a ¼ b ¼ c ¼ d. For the

upper limit case, e ¼ f ¼ g, so every straight section is as short

as possible which makes its instability the most difficult. For

the lower limit, all straight sections merge into a single straight

section (there are three possible shapes for lower limit at

mode 2), which becomes the easiest to buckle. Although prior

theoretical analysis is based on the symmetric model, similar

analyses can be carried out for the upper and lower limit cases

to obtain the bounds of modal transitions. One expects that

the real solution (e.g. FEM simulation, which may be sensitive

to defects) is within the upper and lower bounds.

Analogous to Chai [3], a buckling mode map (figure 5) is

established to predict the modal status at different DL/L0,

which includes that from the upper and lower limits, as

well as that based on the symmetric assumption. The data

points for the upper limit and lower limit are slightly shifted
vertically in order to differentiate themselves from the data

points for the symmetric case. In general, the FEM simulation

results are indeed bounded by the upper limits.
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3.3. Effect of wall spacing and implication for the
crawling snake

For a flexible beam with a given nominal strain DL/L0, its

morphological profile is determined by the geometrical par-

ameters. For the crawling snake in figure 1, its morphology

is rather distinct when the wall spacing is changed. Assume

that the snake uses the same nominal strain to crawl forward,

figure 6 illustrates the buckling shapes of beams with differ-

ent L0/d at the same DL/L0 ¼ 0.2. The data points are non-

dimensionalized by amplitude d in the y-direction, and L0

in the x-direction.

In general, as the wall spacing d becomes tighter, the

number of curved section increases for beams with the same

length at the same nominal strain. This trend is exemplified

by five curved sections in figure 6a and nine curved sections

in figure 6b, and it is qualitatively consistent with the shape

of snake in figure 1. Meanwhile, even with a larger d/r, the

beam in figure 6c shows more curved sections than figure 6b
does, because, in this case, the length of the snake increases

from L0/r ¼ 100 to L0/r ¼ 200. Therefore, the primary dimen-

sionless geometry parameter governing the number of curved

section (at a certain nominal strain) is L0/d. For beams with

the same L0/d, a larger d/r postpones the transition between

buckling modes.

By observing the snake between parallel walls producing a

channel width of 2 cm, i.e. snake shown in figure 1a, the

number of curved sections of the snake was consistently

found to be 12 during the crawling process (evidence can be

seen in the electronic supplementary material, video S1). The

snake in a 2 cm channel is characterized by L0/d ¼ 30.5,

and it corresponds to the simulation case L0/r ¼ 200, d/r ¼ 7,

L0/d ¼ 28.6 in figure 7a. The head part of snake is not counted

because it is much stiffer than its body, so we may take a smal-

ler L0/d in the simulation. The deformation shape of the snake

is not uniform because its movement (compressive strain) is

not uniform throughout the snake’s body and the radius of

the snake varies from head to tail. Nevertheless, the overall

number of curved sections is consistent with our theoretical

analysis. In figure 7b, we also compare our model with the

snake in a channel with a width of 3 cm, i.e. the snake

shown in figure 1b. The snake under this circumstance is

characterized by L0/d ¼ 20.3, which is analogous to the present

model with L0/r¼ 200, d/r ¼ 10 and L0/d ¼ 20. The number
of curved sections of the snake is consistently 10 during the

crawling process, and the present simulation results show 11

curved sections. This small discrepancy comes from the fact

that the snake does not follow the concertina pattern strictly

during the procession, because the snake has more lateral

room to use their normal lateral undulation mode. Moreover,

the body of the snake is not uniform. Therefore, a large part

of snake does not touch the sidewall, as shown in figure 7b.
4. Conclusions
This paper describes the buckling shape of a linear elastic

beam under two lateral constraints. Owing to the unique

boundary conditions of the beam ends, intriguing buckling

shapes are observed which are different from that reported

previously [3,4]. Our results elucidate the effects of geo-

metrical parameters, DL/L0, L0/d and d/r, on the buckling

shape of the beam. This study could also be of interest to

the study of microtubules of the cell cytoskeleton and related

systems, whose buckling behaviours are constrained by

surrounding structures [12,13].

We then apply our theory to explain why crawling snakes

confined in channels adapt the unique wave-like shape, and we

explain qualitatively the effect of width between two constraints

on the shape of snakes. Previous research has documented the

shape of crawling snakes in concertina mode, and they detected

alternative activation of axial muscle on two sides of the snake’s

body during the concertina motion [9,10]. Unlike the smooth

progression of a snake in lateral undulation mode, the snake in

concertina mode progresses in a two-stage approach (see the elec-

tronic supplementary material, video S1): the snake compresses

the posterior of its body into several bends while keeping the

anterior fixed, then the snake use the areas of contact in the pos-

terior as an anchor and extends its anterior part in the forward

direction. The snake extends its anterior part in a mode similar

to lateral undulation, while our theory may effectively apply to

the compression stage. For narrow channels such as figure 1a,b,

the contracting snake body has to undertake the wave-like buck-

ling shape owing to instabilities under lateral constraints as

discussed in previous sections. For the wider channels such as

figure 1d,e, snakes have more freedom to use their normal lateral

undulation mode to crawl, even though the amplitude of undu-

lation is confined by parallel walls [6]. So the shape of crawling
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snakes between lateral constraints producing a large width is

actually a variation of the lateral undulation mode.

Our analysis is based on the assumption that the body of

the snake is under compressive stress, which in reality is due

to the muscle contraction along the snake’s body. The snake

contracts its axial muscles on two sides of its body alternately

in the concertina progression [10], so we take the distributive

contractile muscle stress as the effective compressive stress in

the snake’s body, which is consistent with our theoretical and

numerical model. Our theory focuses on the linear elastic

response of beam/snake, but the snake occasionally exhibits

interesting shapes shown in figure 1c, which is a spiral-type

buckling mode in the plastic regime [14]. We also observed

this large deformation pattern in our simulation results,

which requires future modelling effort. Furthermore, friction

is essential in the lateral undulation mode as well as in the

concertina mode, which adds another complexity to our
model. We hope to encompass the friction between the

snake and the walls, as well the friction between the snake

and the horizontal ground in the future studies. The model

needs to be refined toward real snake behaviours.

Our results can contribute to the belief that some intriguing

behaviours in nature, be it the morphology of plants [15,16] or

morphology of animals, can be explained from the perspec-

tive of solid mechanics, especially buckling phenomena. As a

possible extension in future, understanding this could also

lead to advancements in the design of snake robots [17] or

mechanical self-assembly [18].
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supported by the National Natural Science Foundation of China
(11172231), DARPA (W91CRB-11-C-0112) and the National Science
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