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The study of social identity and crowd psychology looks at how and why indi-

vidual people change their behaviour in response to others. Within a group, a

new behaviour can emerge first in a few individuals before it spreads rapidly

to all other members. A number of mathematical models have been hypo-

thesized to describe these social contagion phenomena, but these models

remain largely untested against empirical data. We used Bayesian model selec-

tion to test between various hypotheses about the spread of a simple social

behaviour, applause after an academic presentation. Individuals’ probability

of starting clapping increased in proportion to the number of other audience

members already ‘infected’ by this social contagion, regardless of their spatial

proximity. The cessation of applause is similarly socially mediated, but is to a

lesser degree controlled by the reluctance of individuals to clap too many

times. We also found consistent differences between individuals in their will-

ingness to start and stop clapping. The social contagion model arising from

our analysis predicts that the time the audience spends clapping can vary con-

siderably, even in the absence of any differences in the quality of the

presentations they have heard.
1. Introduction
Mathematical models of social contagion have been suggested for everything

from pop songs and fashion to divorce and suicide [1–3]. Each social con-

tagion model has its own set of assumptions about how individuals are

‘infected’ by others [4]. In general, these assumptions have not been tested

experimentally, leaving several key empirical questions unanswered about

how humans respond to each other [5]. For example, does the probability of

social infection increase in proportion to the number already infected, as it

does in most models of disease epidemics? Or is there a tipping point at

which infection takes off? Do fashions die out because they have been

around for too long or is there a socially mediated ‘recovery’? Are local neigh-

bours or the proportion of the total population who are infected most important

in spreading ideas?

Recent work has begun to quantify social contagion in, for example, joining

of social networks [6] and gaze following [7]. However, human social dynamics

remain notoriously difficult to quantify [8–10] and new methods are required

to identify which cues people are responding to. One natural group setting,

where it is relatively easy to quantify collective behaviour of humans is in audi-

ence applause, where previous studies have empirically investigated the

emergence of self-organized rhythmical patterns [11,12]. Here, we quantify

the role of social contagion in the start and stopping of applause. In an applause

setting, each clap produced by an individual provides us with a time point at

which he or she remains ‘infected’ by appreciation, and cessation of clapping

denotes ‘recovery’. This type of datum allows us to apply a Bayesian model

selection approach to determine the dynamics of how social cues spread

through group members. Although, as with any other statistical method, we

cannot conclusively rule out the influence of unobserved confounding
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variables, our approach allows us to accurately select which

of the observed cues are the most probable cause of the

social contagion and avoid identifying spurious but statisti-

cally significant correlations to confounding variables when

multiple observed cues are correlated with each other.
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Figure 1. Experimental results. The plot shows the median proportion of
individuals in the audience who have started clapping (black line), stopped
clapping (red line) and are currently clapping (green line), aggregated over
the 12 experimental presentations. For the starting and stopping proportions,
the shaded area represents the interquartile range, illustrating the variation
across experiments.
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Figure 2. Model schematic. Individuals progress from an initially ‘susceptible’
state (S), before they have started clapping, to an ‘infected’ state (I ) while
clapping and eventually to a ‘recovered’ state (R) once they stop clapping.
The probability of moving from S to I is given by the starting probability
per second, Pstart. Once the individuals have started clapping, they either
stop or continue after each successive clap, stopping with probability Pstop

or continuing with probability 1 2 Pstart. These probabilities are determined
by the proportion of individuals and direct neighbours who have started and
stopped clapping and the number of claps each individual has already
performed according to the models described in the text.
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2. Results
We filmed the response of groups of 13–20 university students

to an oral presentation. Six different groups (consisting of a

total of 107 students) listened to two presentations each (see

§4 for details). A group’s clapping can be ordered in terms of

starting clapping (figure 1, black line) and stopping clapping

(figure 1, red line). After the presentation was completed, the

mean duration for the first person to begin clapping was

2.1 s (+s.e.: 0.62 s). The mean interval from the first person

to start clapping, to the last person to start was 2.93 s (+s.e.:

0.33 s). The mean applause length (from the first person to

start clapping to the last person to stop) was 6.1 s (+s.e.:

0.27 s). The mean duration for the first person to stop clapping

was 5.56 s (+s.e.: 0.74 s), and the mean duration from the first

person to stop clapping, to the last person to stop was 2.6 s

(+s.e.: 0.3 s).

Both the onset and the cessation of clapping follow a

sigmoidal curve, with an initially slow uptake of the new be-

haviour followed by a phase of rapid change and eventual

saturation (figure 1). Such sigmoidal growth and decay

resemble the pattern of infection typically seen in the spread

of diseases, both empirically and in epidemiology models, sup-

porting the possibility of social contagion in clapping. We used

a Bayesian methodology to test models for starting and stop-

ping clapping [13–15]. We construct models that specify the

probability that an individual will start or stop clapping

(figure 2). These probabilities are conditioned on the state of

the group (see the listed group characteristics below). By iterat-

ing over all observed events (starting/not starting; stopping/

not stopping) and multiplying the probabilities of those

events specified by a given model, we determine the likelihood

of the data conditioned on any specific values of the model’s

adjustable parameters. Further summing over a range of

possible parameter values by integration, we fairly assess the

relative probabilities of the models (see §4).

For starting clapping, we tested five alternative models.

(M1) independent: the probability of starting clapping is a con-

stant rate, independent of the clapping of others; (M2) linear

response: the rate to start clapping depends on the proportion

of audience, rclapping, who are already clapping; (M3) quadratic

response: the rate to start clapping depends on r2
clapping;

providing a threshold above which the probability of clapping

significantly increases; (M4) nearest neighbours: the rate to start

clapping increases when your immediate neighbours start clap-

ping; (MG) first clap reaction: individuals wait for the first clap

then start clapping with a normally distributed response time.

The last four of these models are consistent with the sigmoidal

increase in clapping seen in the data. We combined the models

(1) to (4) into a single equation for the probability of starting,

with adjustable parameters li, such that

PðstartjM1;M2;M3;M4Þ ¼ l1 þ l2rclapping þ l3r
2
clapping

þ l4rNN clapping: ð2:1Þ

From this general equation, any combination of models (1) to

(4) can be constructed by definitively setting a subset of the l
parameters to be zero, while allowing others to vary and be

inferred from the data. For example, by setting l1 ¼ 0 and

l3 ¼ 0, we specify a model where each individual can respond

to the total proportion of clappers in the audience, and more

strongly to those who are their nearest neighbours:

PðstartjM2;M4Þ ¼ l2rclapping þ l4rNN clapping: ð2:2Þ

Thus, each potential model can be identified by specifying

which elements remain active, in this example (M2) and (M4).

Model (MG) specifies that the time to start clapping should

be Normally distributed. The probability of starting during

any specified time period is therefore given in terms of the

cumulative Normal probability distribution, F(x,m, s), where

m and s are the mean and standard deviation of the

distribution of starting times.
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Figure 3. Simulation results. The plot shows the median proportion of indi-
viduals in the audience who have started clapping (black line), stopped
clapping (red line) and are currently clapping (green line), aggregated
over 10 000 simulations. Results are shown for (a) the optimal linear conta-
gion model and (b) an alternative quadratic contagion model. For the starting
and stopping proportions, the shaded area represents the interquartile range,
illustrating the variation across simulations. The simulation has three behav-
ioural states: susceptible (S is the proportion of individuals in this state);
clapping (I ) and recovered (R). The time taken to go from susceptible to clap-
ping is exponentially distributed with rate constant l2(I þ R). After the nth
clap an individual will either recover (stop clapping) with probability g2R þ
g3n/nmax or wait a time distributed N(0.28 s, 0.09 s) (matched to observed
clap intervals). This process continues until all individuals have recovered.
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The marginal likelihood was highest for the model involving

a purely linear response (see the electronic supplementary

material, figure S1a), i.e. model (M2). The rate at which new

individuals begin clapping, after the first clap is made, is pro-

portional to how many are already clapping, with an inferred

value of l2 ¼ 2.15+0.15 per second. The addition of any effect

other than (M2) made the data less probable, indicating that

these other cues were not involved in the decision to begin clap-

ping. Further evidence for the importance of (M2) is

demonstrated by the fact that all top six models include this term.

For the cessation of clapping we tested four models. (M1)

independent (as above); (M2) linear response: the rate to stop

clapping depends on the proportion of audience, rstopped,

who have stopped clapping (not including those who have

not started yet); (M3) increasing with clap number: the rate

to stop clapping increases with the number of claps, nclaps,

already performed by the individual (in proportion to the

maximum number of claps observed in experiments); (M4)

nearest neighbours: the rate to stop clapping increases in

proportion to the number of your immediate neighbours

that stop clapping; (MG) preferred clap duration: individuals

clap a normally distributed number of times independent of

others in the group. Again, we also compared combinations

of models M1 2 M4, which can be combined to a single form:

PðstopjM1;M2;M3;M4Þ ¼ g1 þ g2rstopped

þ g3nclaps=max½nclaps�
þ g4rNN stopped: ð2:3Þ

Similar to the case of the starting models, we can set any

subset of the g parameters to be zero to define a range of

mixed cue models to test. Model (MG) has a form equivalent

to the respective starting model, with mean number of claps

m and standard deviation s.

The four models which fit the data best all involve a term

g2 . 0 for linear response, similar to the models for starting

clapping. However, the best model combines (M2) with an

increased cessation with clap number, i.e. g3 . 0 (see the elec-

tronic supplementary material, figure S1c). The relative size

of the parameters (the best fit g2 ¼ 0.63 is over 10 times as

large as g3 ¼ 0.05) suggests that social contagion is a more

important factor in stopping than the number of claps per-

formed. Note that in this analysis a model with only (M2)

is not possible, since at least one individual must stop clap-

ping when no others have done so. Performing a similar

analysis on a restricted subset of the data, after at least one

audience member has stopped clapping, identifies a purely

social model as the most probable (see the electronic

supplementary material, figure S1e). This suggests that the

non-social element relating to the number of claps performed

serves to regulate the initiation of stopping, which is then

mediated through a social process. It was not possible to

identify precisely when each presentation was completed,

so our analysis of starting behaviour begins after the first

clap is performed.

Rules of interaction between individuals in groups that are

inferred from fine scale measurements of individual behaviour

should be confirmed by demonstrating their ability to repro-

duce group level effects [15–17]. To further investigate the

dynamics of applause, we implemented a simulation model

based on the combination of the most probable starting

and most probable stopping models (see §4). This model

reproduces the type of dynamics seen in the experiment
(figure 3a). In particular, the model accurately reproduces

the form of the sigmoidal starting and stopping patterns

seen in the data and the approximately symmetric growth of

decay of the infection. To test our hypothesis that clapping

contagion is a linear process, we also performed simulations

of a model with a quadratic infection term (M3 in the starting

models), using the best-fit parameters for that model (l3 ¼ 4.0

per second). The results of these simulations (figure 3b) show

that such a model is inconsistent with the large-scale pattern of

infection seen in the data (figure 1). In particular, infection

occurs too rapidly, and there is a sustained period where all

individuals are clapping, whereas in the data and in the

linear simulations some individuals typically stop clapping

before the whole audience is infected.

An intriguing model prediction is that the length of time

the audience spends clapping varies considerably (figure 4).
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Figure 4. Distribution over 10 000 simulation runs of average number of claps
performed per individual, shown with grey bars. All parameter values are the
same as in figure 3a. The simulation is run 10 000 times and the average
number of claps performed is recorded for each run. The figure is then a pro-
portional distribution over all outcomes. Black stars indicate the mean number of
claps performed per individual in each experimental presentation. The dashed
line shows a Poisson distribution matched to the same mean as the simulated
distribution, showing that shorter and longer bouts are more common in the
simulation than expected under a Poisson model. (Online version in colour.)
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Running the simulation multiple times, we see a large varia-

bility in the average number of claps across trials. While the

majority of clapping bouts involve only 9–15 claps per

person, some bouts can last over 30 claps. Compared with

a Poisson distribution, the distribution arising from the simu-

lation is more skewed towards both short and long bouts.

This variability does not arise from any difference in the

stimulus (i.e. the parameter values are the same for each

simulation) but is rather a property of the social interaction

involved in clapping and the variability in when stopping

is initiated by through the non-social aspect of the model.

The mean number of claps performed in each experimental

presentation, indicated by black stars, all lie within the central

95 per cent of the simulated distribution.

We did not observe any difference in the type of response

made to talk 1 and talk 2 (see the electronic supplementary

material, figure S2 and the text therein for test details). We

did, however, find a significant correlation between the order

that particular individuals started clapping (Nindividuals ¼ 104;

Ngroup ¼ 6; median r¼ 0.53; p , 0.0001, randomized-ordering

bootstrap on Spearman rank correlation coefficient) and

stopped clapping (Nindividuals¼ 104; Ngroup¼ 6; median r¼

0.37; p , 0.0008) between the first and second presentations

they listened to. This result indicates that the willingness to

clap is characteristic of individuals.
3. Discussion
Unlike studies focused on visual information, where local

transmission of information is between local neighbours

[18–20], we find in our experiments that spatial proximity

is not important. This is probably the result of attention to
a less localized acoustic cue (i.e. the volume of clapping)

instead of the behaviour of local neighbours. While the indi-

viduals were found to be increasingly likely to stop clapping

as their clapping duration increased, we find that overall,

global social influences appear to be more important than

internal information in the decision to stop clapping. Because

of the relatively weak but necessary effect of the individual

duration of clapping upon probability of stopping, we

suggest that this serves to regulate when stopping is initiated

at the group level, with the stronger social effect subsequently

mediating the rate of stopping after initiation. This interpret-

ation is supported by the superior performance of a purely

social model when considering the stopping process after

the first person stops clapping.

While an analogy to disease spread is the starting point

for describing social contagion, our study reveals important

differences between biological and social processes. As in the

standard Susceptible, Infected and Recovered (SIR) model

for the spread of a disease [21], and in contrast to models

based on tipping points or quorums [22,23], clapping increases

linearly with the proportion of individuals already involved in

it. This linear response is similar to that seen in movement

decisions in monkeys [24] and in gaze-following by humans

[7]. However, unlike the SIR model, ‘recovered’ individuals

(those who have stopped clapping) increase the recovery rate

of those who are clapping. This is consistent with an early

model by Daley & Kendall [25] of fads and fashions.

Figure 5 shows a phase plane for a differential equation ver-

sion of our clapping model, in which the effect of number of

claps on the probability of stopping is ignored. Unlike the

SIR model, clapping always spreads even when the starting

rate l2 is small. The point at which most people are infected

with clapping is near to the point at which there remain

very few susceptibles, similar to both the experimental results

(figure 1) and the stochastic simulations (figure 3). As seen in

the experimental results (figure 1), the model predicts that

even before everyone has started clapping, some individuals

will usually have recovered and stopped.

Here, we have established a particular empirical form for

social contagion in clapping. While we expect other social

activities may have different functional forms, it is striking

how well a simple model fits the data. The dynamic nature

of clapping data and the model comparison method we

have adopted here has allowed us to further determine the

relative weights of internal cues (how long I have clapped)

and external cues (how many others are still clapping) in

the cessation of an activity. We believe that our methodology

can be equally applied to other social contagion data. In

psychological, economical and sociological phenomena, the

confounding of many potential causes for given effect gives

rise to statistical difficulties in inferring what proportion of

the observed behaviour can be attributed to a given cue

[26–29]. For example, the rate at which individuals leave

social networks or online groups is likely to be a function

of both how long a focal individual has been a member

and the engagement of other members [2,30]. The methods

presented here could be used to find the relative weighting

of these internal and external cues and predict how long par-

ticular online fads will last. Under the Bayesian method, for

any set of potential cues, the relative model likelihoods

show which cue or combinations of cues best explain the

data. Multiple cues must be sufficiently strong and indepen-

dent to warrant their inclusion in the model [31, ch. 4 and 20].
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Figure 5. Ignoring the effect of number of claps on the probability of stop-
ping, the clapping model can be expressed in terms of mean-field differential
equations (4.4) and (4.5). The model parameters are set from the best model
fit when ignoring clap number-dependent stopping (i.e. g3 ¼ 0), with stop-
ping parameters adjusted from per clap values to per second values using the
average clap interval of 0.28 s, yielding g2 ¼ 2.15 per second, g1 ¼ 0.0011
per second and g2 ¼ 0.094 per second. (a) Change of susceptible and
infected individuals through time when S(0) ¼ 0.95 and I(0) ¼ 0.05.
(b) Phase plane of susceptible versus infected. When _I ¼ 0 (indicated by
the blue dotted line) clapping reaches a maximum. The red arrowed line
shows the time integration from figure 5a.
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Sociological phenomena that appear well understood on the

level of the individual can be highly sensitive to stochasticity in

individual responses, producing different patterns at the group

level [32]. Similar phenomena are observed in collective animal

behaviour, where fitting a model at the level of the individual

does not immediately imply an understanding of global

dynamics [15–17]. To address these potential problems, we

tested the group level implications of the ‘rules of interaction’

we had inferred between individuals by simulation, and

found that these gave rise to bouts of applause with a similar

mean duration to the real talks, with a similar sigmoidal profile

for both the initiation and cessation of clapping. Stochasticity in

the individual responses led to variation in the total applause

duration which mirrors the results of our experiments.

In our experiment, different talks did not cause differences

in the length of clapping bouts. Our model suggests that vari-

ation in the length of applause can arise even for talks which
are equally appreciated by the audience (figure 4). Random-

ness in the audience interactions can sometimes result in

unusually strong or weak levels of appreciation, independent

of the quality of the presentation. Groups must coordinate

the cessation of clapping and on different occasions this can

take longer or shorter periods of time to achieve. The social

problem an audience must solve after an academic presen-

tation is not how and when to start a round of applause, but

it is rather how to coordinate its end.
4. Methods and material
4.1. Experiment
Experiments took place at the University of Leeds during

March 2009. We observed the behaviour of participants in

an audience in response to an oral presentation. We used

107 participants. The participants were university students

and prior to the experiment we requested permission to

video their behaviour. We also used six presenters who

were undergraduate (but not in the same year as the audience

participants) or postgraduate students. Participants and

presenters were naive as to the purpose of the investigation.

Experiments took place in a small seminar room (10 �
12 m). A presenter stood at one end of the room in front of

a large screen, and the audience was instructed to sit,

facing the presenter, in three rows.

Participants were organized into six groups (three groups

comprised 20 individuals, and a further three groups com-

prised 18, 16 and 13 individuals). Each group was assigned

(at random) to attend two presentations by different presen-

ters. The participants were told to observe and record the

body language of the presenter, so that their attention was

on the presenter and therefore they were less likely to con-

sider that their clapping behaviour was under investigation.

They were also told that they should applaud the presenter

at the end of the presentation because the presenters were

performing the presentation voluntarily.

For each of 12 presentations (two by each presenter),

the presenter performed a 7 min oral Powerpoint presen-

tation on a biological study. The end of the presentation

was defined as when the speaker completed their final

statement, such as ‘thank you’ or ‘any questions?’.

We observed the time at which participants in the audience

started and stopped clapping from video footage. Clapping

was defined as when an individual struck a part of their

body with one of their hands in a repetitive manner (this

was usually their other hand but in some cases it was their

arm or their shoulder). An individual was considered to have

started to clap at the point where their hands met for the

first time during a clapping bout, and was considered to

have stopped clapping when their hands met for the final time.

One hundred and four out of the 107 participants started

to clap after the presentation.

4.2. Model comparison
We take a Bayesian model comparison approach to identifying

the causes of both starting and stopping clapping, following

the methodology of Mann et al. [15]. This means that we pro-

pose various hypotheses about how clapping starts and stops

in the form of models. These specify the probability of an indi-

vidual either starting and stopping clapping, as a function of
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the potential cues of interest such as the number of other clap-

pers, number of clappers who have stopped and the length of

time the individual has been clapping. Since the effect of those

cues is unknown, the influence of each upon the starting or

stopping probability is modulated by a set of free parameters,

f. By multiplying over the sets of all events X (either time

steps or claps), all individuals I, and all experiments E, each

of these hypotheses, or models, Mi thus specifies the prob-

ability of the complete data, D, conditional on the model

and the parameter values,

PðDjf;MiÞ ¼
Y
E[E

Y
I[I

Y
X[X

PðDE;I;Xjf;MiÞ: ð4:1Þ

Different hypotheses use a different set and number of terms

to represent different cues, and the sensitivity to the exact par-

ameter values varies between models. To account for this, we

integrate over the unknown parameters, using a reasonable

(see below) prior probability distribution, P(fjMi), to find

the probability of the data conditioned only on the model.

PðDjMiÞ ¼
ð

PðDjf;MiÞPðfjMiÞdf: ð4:2Þ

By a ‘reasonable’ prior distribution, we mean one that has sig-

nificant probability mass across a broad range of possible

parameter values and which does not either specify strong

knowledge about any specific parameter value or favour one

model over another by design. See the electronic supplemen-

tary material for details of the precise prior distributions

used for each parameter.

We select among possible hypotheses by asking which is

most probable in the light of the data. Assuming all models to

be equally probable a priori this means that we select the

model with the greatest marginal likelihood, argmaxiP(DjMi).

To evaluate the integral in equation (4.2), we use importance

sampling Monte Carlo (see standard texts [33]). We draw N
random samples, f1;f2; . . . ;fN , from the prior distribution

of the parameters. The integral is then approximated as

PðDjMiÞ ≃
1

N

XN

j¼1

PðDjfj;HiÞ ;fi � prior. ð4:3Þ

The uncertainty in this estimate scales as 1=
ffiffiffiffi
N
p

; and we

repeat the calculation eight times (for an eight processor

computer), finding the mean and standard error and then

increasing the number of parameter samples if the

uncertainty is too great to distinguish between models.

4.3. The simulation model
In the simulation model each of N ¼ 20 individuals are

assumed to be in one of three states: susceptible (S is the pro-

portion of individuals in this state); clapping (I) and recovered

(R). Susceptibles have not started clapping yet, while recovered

means that the individual has already clapped. The simulation

is made in two stages: starting and stopping.
At time t(1) ¼ 0, one randomly selected individual starts

clapping. We then generate an exponentially distributed

random variable, T, with rate constant l2S(t)(I(t) þ R(t)).
T is the time at which the next individual will start clapping.

At t(1) ¼ 0, I(0) þ R(0) ¼ 1/N, S(0) ¼ 1 2 1/N and the rate

constant is l2(1/N 2 1/N2). We then set t(1) ¼ t(0) þ T, let

I(t) þ R(t) ¼ 2/N, S(t) ¼ 1 2 2/N and generate a new

exponentially distributed random variable, T. This process

continues until S(t(N )) ¼ 0. The values t(i) give the times of

the first clap of each of the individuals, i ¼ 1 , . . ., N.

To calculate stopping clapping we start at time t(1) when

the first individual clapped. This individual has performed

one clap and will stop clapping with probability

g2Rþ g31

nmax

or wait a time T � N(0.28, 0.09) seconds until the next clap.

We update t(1) ¼ t(1) þ T to be the time of the next clap by

individual 1 and set claps n(1) ¼ 2. For all subsequent simu-

lation steps, we find the individual i with the next clap, i.e. i
for which t(i) is minimized. Individual i will then stop

clapping with probability

g2Rþ g3nðiÞ
nmax

or continue to clap again at a time T � N(0.28, 0.09) seconds.

If she continues clapping we update t(i) ¼ t(i) þ T to be the

time of the next clap by individual 1 and set claps n(i) ¼
n(i) þ 1. The simulation stops when all individuals have

stopped clapping.

Ignoring the effect of number of claps on the probability

of stopping, the above clapping model can be expressed in

terms of mean-field differential equations

_S ¼ �l2SðI þ RÞ ð4:4Þ

and

_I ¼ l2SðI þ RÞ � g1I � g2IR: ð4:5Þ

Here, we assume that the per individual rate of starting clap-

ping is proportional to the proportion of those who are either

infected or recovered. This is the same as in the simulation

model. The main adjustment in the differential equation

model is that, since we cannot account directly for the

number of claps each individual has done, we instead use

the rate g1 2 g2R per individual of stopping clapping. The

fitted parameters g1 ¼ 0.008 per clap and g2 ¼ 0.66 per clap

are the best model fit when ignoring clap number dependent

stopping, i.e. models (1 and 2).

This work was funded by the European Research Council grant
IDCAB 220/104702003, The Swedish Riksbankens Jubileumsfond
and UK National Environment Research Council grant NE/D01
1035/1.
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