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In cancer cells, the process of epithelial–mesenchymal transi-
tion (EMT) confers migratory and invasive capacity, resistance 
to apoptosis, drug resistance, evasion of host immune surveillance 
and tumor stem cell traits. Cells undergoing EMT may represent 
tumor cells with metastatic potential. Characterizing the EMT 
secretome may identify biomarkers to monitor EMT in tumor pro-
gression and provide a prognostic signature to predict patient sur-
vival. Utilizing a transforming growth factor-β-induced cell culture 
model of EMT, we quantitatively profiled differentially secreted 
proteins, by GeLC-tandem mass spectrometry. Integrating with 
the corresponding transcriptome, we derived an EMT-associated 
secretory phenotype (EASP) comprising of proteins that were dif-
ferentially upregulated both at protein and mRNA levels. Four 
independent primary tumor-derived gene expression data sets of 
lung cancers were used for survival analysis by the random sur-
vival forests (RSF) method. Analysis of 97-gene EASP expression in 
human lung adenocarcinoma tumors revealed strong positive cor-
relations with lymph node metastasis, advanced tumor stage and 
histological grade. RSF analysis built on a training set (n = 442), 
including age, sex and stage as variables, stratified three independ-
ent lung cancer data sets into low-, medium- and high-risk groups 
with significant differences in overall survival. We further refined 
EASP to a 20 gene signature (rEASP) based on variable impor-
tance scores from RSF analysis. Similar to EASP, rEASP pre-
dicted survival of both adenocarcinoma and squamous carcinoma 
patients. More importantly, it predicted survival in the early-stage 
cancers. These results demonstrate that integrative analysis of the 
critical biological process of EMT provides mechanism-based and 
clinically relevant biomarkers with significant prognostic value.

Introduction

Lung cancers are the leading cause of cancer-related deaths world-
wide. The advances made in the last decade in diagnosis and treat-
ment have not been translated into significant improvements in overall 
5 year survival rates. The tumor-node-metastasis (TNM) staging 

system combined with pathologic diagnosis has remained the major 
tool for medical decision making and predicting patient survival (1,2). 
However, accumulating evidence suggests that though patients with 
identical histology, differentiation, location and stage at diagnosis are 
treated by similar therapy, survival is most heterogeneous indicating 
that the current methods of tumor classification and staging are not 
sufficient for selecting the best treatment choices and defining prog-
nosis. About 30–55% of early-stage patients who are treated primarily 
by surgery will have recurrence within 3 years. Recent randomized 
clinical trails revealed a significant survival advantage in patients 
receiving chemotherapy after complete resection in the stage IB–IIIA 
categories (3–6). This trend indicates a need to explore alternative 
indicators to understand the underlying prognosis of a given patient, 
to identify the early-stage patients at greatest risk of relapse and 
decide on appropriate treatment strategy to increase patient survival.

Advances in microarray analysis and proteomics have stimulated 
research in molecular prognostics and provided alternatives to the tra-
ditional TNM-based system for more precise classification and prog-
nostication of human cancers. In different studies, the gene expression 
signatures derived from tumors at the time of diagnosis have shown 
promise in predicting long-term patient outcome and outperformed the 
standard pathologic TNM staging in stratifying breast cancer patients 
(7–11) and lung cancer patients (12) into high- and low-risk groups. 
These studies clearly established the fact that tumors contain informa-
tive signatures which can be highly valuable in prognosis and estimation 
of biological response of tumors to therapy over time (7–9). Based on 
this information, it is possible to identify the subsets of patients who are 
at high risk of mortality at the time of diagnosis. As a proof of this con-
cept, recently a 70-gene signature was approved for clinical application 
as a prognostic classifier of breast cancers (10,11). Efforts to identify an 
analogous gene expression-based prognostic signature of non-small-cell 
lung cancer have been promising but yet to reach the stage of clinical 
application (12,13). The predominant approach in all the prognostic sig-
natures to date has been identifying these signatures based on their dif-
ferential expression between good and poor prognosis groups.

In this study, we attempted an alternative approach to develop 
a prognostic gene signature based on the cellular process of epi-
thelial–mesenchymal transition (EMT), which plays a critical role 
in tumor progression. EMT is considered as an initiating event for 
distant dissemination of tumor cells; proteins secreted during this 
process may serve as potential biomarkers for patient prognosis. 
Utilizing a transforming growth factor (TGF)-β-induced EMT 
model, we quantitatively profiled differentially secreted proteins 
using label-free 1D gel electrophoresis followed by nanoliquid 
chromatography, coupled to tandem mass spectrometry (GeLC-MS/
MS) analysis of the conditioned media of A549 lung adenocarci-
noma cells cultured in the presence or absence of TGF-β. By inte-
grating the secretome with the transcriptome from our earlier study 
(14), we identified a 97-gene EMT-associated secretory phenotype 
(EASP) that showed strong correlation to differentiation and stage 
and predicted survival of lung adenocarcinoma patients in train-
ing and independent test sets. We further refined this to a 20-gene 
signature (rEASP), which performed equally well in predicting sur-
vival particularly, in early-stage (stages I and II) adenocarcinomas 
as well as in squamous cell carcinomas of lung and stratified the 
lung cancer patients into low-, medium- and high-risk groups with 
distinct survival times.

Materials and methods

Cell culture
The A549 human lung adenocarcinoma cell line was obtained from the American 
Type Culture Collection (Manassas, VA) and maintained in RPMI-1640 medium 
with glutamine, supplemented with 10% fetal bovine serum, penicillin and 
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streptomycin and tested for mycoplasma contamination. All tissue culture media 
and media supplements were purchased from Life Technologies (Gaithersburg, 
MD). The porcine TGF-β1 was purchased from PeproTech (Rocky Hill, NJ). 
In all experiments, cells at 40–50% confluency were serum starved for 24 h and 
treated with TGF-β (5 ng/ml) for 72 h. At the end, conditioned media collected 
was centrifuged at 2000g for 20 min and filtered through 0.2 µm filter to remove 
the intact cells and debris and stored at −80°C until further processing. Cells in 
the culture dishes were lysed in radioimmunoprecipitation assay buffer and pro-
cessed for western immunoblotting for assessing the expression of epithelial and 
mesenchymal markers. Protein concentrations were determined using the BCA 
Protein Assay Reagent from Pierce (Rockford, IL).

Sample preparation, sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis and in-gel digestion
Seven milliliters of conditioned media from control and TGF-β-treated cells 
from two independent biological replicates was buffer exchanged into 25 mM 
ammonium bicarbonate and the volume reduced to 100  µl using a 10 kDa 
molecular weight cutoff filter (Millipore). Half of each replicate (~20 µg pro-
tein from controls and 10 µg protein from TGF-β treatment) was solubilized in 
loading buffer and resolved using Novex 4–12% gradient gels (Invitrogen Life 
Technologies, Carlsbad, CA). Each lane was manually excised into 40 equal 
slices and each slice was transferred to a well of a 96-well plate. Proteins in 
each gel slice were robotically reduced with 10 mM dithiothreitol, alkylated 
with 50 mM iodoacetamide and digested with 160 ng trypsin (ProGest, 
Genomic Solutions, Ann Arbor, MI). Tryptic peptides were analyzed following 
acidification with 0.5% formic acid to a final pH 3.8. The volume of peptide 
mixture for each band was 40 µl.

Data-dependent LC/MS/MS
Thirty microliters of each digested gel slice was analyzed using nano-LC/MS/
MS on a LTQ Orbitrap XL tandem mass spectrometer (ThermoFisher, San 
Jose, CA). Sample was loaded onto an IntegraFrit (New Objective, Woburn, 
MA) 75 µm × 3 cm vented column packed with 0.5 mm Jupiter C12 material 
(Phenomenex, Torrance, CA) at 10 µl/min. Peptides were eluted with a 50 min 
gradient (0.1–30% B in 35 min, 30–50% B in 10 min and 50–80% B in 5 min 
where A = 99.9% H2O, 0.1% acetonitrile in 0.1% formic acid and B = 80% 
acetonitrile, 20% H2O in 0.1% formic acid) at 300 nl/min using a NanoAcquity 
HPLC pump (Waters, Beverley, MA) over a 75 µm × 15 cm IntegraFrit analyti-
cal column packed also with Jupiter C12 material. The column was coupled to 
a 30 µm ID × 3 cm stainless steel emitter (ThermoFisher). Mass spectrometry 
(MS) was performed in the Orbitrap at 60 000 full width at half maximum 
resolution and MS/MS was performed in the LTQ on the top six ions in each 
MS scan using the data-dependent acquisition mode. Normalized collision 
energy was set at 35% and 1 microscan was used with automatic gain control 
implementation. Automatic gain control enables the trap to fill with ions to the 
set ion target values. Target values for MS and MS/MS were 5 × 104 and 1.5 × 
103 counts, respectively. Dynamic exclusion and repeat settings ensured each 
ion was selected only once and excluded for 30 s thereafter.

Data processing
Data were processed using the MaxQuant v1.0.13.8 software (15), which pro-
vides protein identifications at a target false discovery rate. This version of 
MaxQuant utilizes a locally stored copy of the Mascot search engine (ver-
sion 2.2; Matrix Science, London, UK) and data were searched against the 
International Protein Index (IPI) Human v3.53 protein database. Search param-
eters were: product ion mass tolerance 0.5 Da, two missed cleavages allowed, 
fully tryptic peptides only, fixed modification of carbamidomethyl cysteine, 
variable modifications of oxidized methionine, N-terminal acetylation and 
pyroglutamic acid on N-terminal glutamine. Selected MaxQuant parameters 
were: ‘singlets’ mode, peptide, protein and site false discovery rate 1%, mini-
mum peptide length of five amino acids, minimum of one unique peptide per 
protein. Proteins identified by this analysis are summarized in Supplementary 
Table S1, available at Carcinogenesis Online. In MaxQuant, the quantitative 
measure of each protein is based on the sum of the chromatographic peak area 
of each peptide matched, termed ‘intensity’. For each protein, a log2 ratio of 
expression is determined by comparing the average intensity for that protein 
between the replicates of TGF-β-treated and controls. A protein is determined 
as differentially expressed if it has >2-fold change in either direction. Log2 
ratio >1 is considered as upregulation and <1 is considered as downregulation.

Annotation of secreted proteins and mapping to gene expression
Proteins were annotated as secreted using multiple different bioinformatic 
tools including SecretomeP (16) for non-classical and leaderless secreted 
proteins, TMHMM, an HMM-based method for prediction of transmembrane 
domains (17), SignalP package that detects signal peptides and predicts classi-
cal secreted proteins (18), PSORT II that predicts the protein subcellular local-
ization (19) and Secreted Protein Database (SPD) (20). All these predictions 

are incorporated into Supplementary Table S2, available at Carcinogenesis 
Online. Others were annotated as secreted proteins based on reported empiri-
cal evidence and Gene Ontology (GO) analysis.

Entrez gene identifiers corresponding to the IPI accession numbers of iden-
tified proteins were obtained using human IPI cross reference data (‘IPI.genes.
HUMAN’ for IPI human release 3.65 from ftp://ftp.ebi.ac.uk/pub/databases/IPI/
current). Entrez gene identifiers were used to obtain the corresponding probe set 
identifiers for the associated arrays from the Affymetrix annotation. Following 
the above protocol, all the annotated secreted proteins were mapped to our pre-
viously published TGF-β-induced EMT time course gene expression data set 
(GSE 17708) from the same cell line at identical conditions (14). To match the 
secretome, differentially expressed genes only at 72 h time point (5057 probes 
corresponding to 3397 genes) were used for mapping. Some probes that are iden-
tified as differentially expressed but with no assigned gene symbol were excluded.

Gene set enrichment and hierarchical clustering analysis
ConceptGen (http://conceptgen.ncibi.org) is a concept and gene set enrich-
ment analysis tool (14). It will test a given list of genes for overlap and its 
significance with a specified concept or gene set, which includes GO, direct 
protein interactions, transcriptional regulation, miRNA targets and gene 
expression data sets. Using this tool, we performed GO cellular component, 
cellular process and KEGG pathways enrichment analysis for the 97-gene 
EASP. Statistically significant (P < 0.001) concepts are presented as network 
graphs with nodes representing concepts or gene sets and edges representing 
statistical significance of enrichment.

For clustering, the lists of oncogenic pathways included in the analysis were 
compiled from the KEGG database, except for embryonic stem cell (ESC) list, 
which was based on Ben-Porath et al. and Hassan et al. studies (21,22). The 
expression value for each pathway, including EASP, is the arithmetic mean of 
all genes in that pathway, giving a single value for each pathway in a given 
sample. Hierarchical clustering of the Shedden et  al. 442 lung adenocarci-
noma tumors (23) was performed for indicated oncogenic pathways along with 
EASP using TreeView (http://www.eisenlab.org/eisen/?page_id=42), and cor-
relations are presented as a heat map with columns representing individual 
tumors and rows representing the arithmetic mean of a pathway.

Primary tumor-derived gene expression data sets and patient characteristics
Four published Affymetrix microarray data sets representing 908 lung tumors 
were used in the EASP survival analysis. The CEL files of microarray data 
were normalized using Robust Multi-array Average method (24). Shedden 
et  al. 442 lung adenocarcinomas (Shedden) were used as training set (23). 
The other three data sets were used as test sets which included Bild et al. 111 
adenocarcinomas and squamous cell carcinoma data set (Bild) (25), Okayama 
et al. 226 early-stage (stages 1 and 2) adenocarcinoma data set (Okayama) (26) 
and Raponi’s 129 squamous cell carcinoma data set (Raponi) (27). The patient 
characteristics and clinical information for these four data sets are provided in 
Table II. The primary end point was 5 year survival.

Statistical analysis method
The random survival forests (RSF) developed in R package by Ishwaran et al. 
(28,29) was employed for the EASP survival analysis of the four microar-
ray data sets of lung cancer, as described before (12). Briefly, The RSF is an 
ensemble tree method for analysis of right-censored survival data. Each deci-
sion tree of forests was grown by splitting patients by comparing survival dif-
ferences via log-rank test based on a randomly selected subset of variables at 
each node. The 1000 trees were grown for each RSF. Once trees were built, 
test sets were dropped down to the trees for prediction. The cumulative haz-
ard function was derived from each tree, and an ensemble cumulative haz-
ard function, an average over 1000 survival trees, was determined. Mortality 
was obtained as a weighted sum over ensemble cumulative hazard function, 
weighted by the number of individuals at risk at the different time points. 
Higher mortality values imply the higher risk. We used mortality as risk index 
to separate patients into three risk groups (high, medium and low risk, one-
third each group) and presented Kaplan–Meier survival curves for each group. 
Each tree provides a measure of its predictive error as described by Ishwaran 
et al. (28,29), with smaller number indicating a better tree. The prediction error 
is calculated by C-index (i.e. the Harrell’s concordance index) in the out-of-
bag data which were not used for building a tree each time.

Variable importance scores (VIMPS) for all the variables used to grow 
trees were also generated. Large VIMPS indicate variables as good predictors 
for outcome, whereas zero or negative values identify non-predictive. These 
scores were used to refine the 97-gene EASP to the 20-gene rEASP.

Cox proportional hazards regression model, Kaplan–Meier survival curve 
and log-rank test were used for survival analysis of individual genes or mor-
tality index derived from RSF. The t-test was used to assess the difference of 
mean expression of EASP signature in clinical and pathological groups includ-
ing stage, differentiation and nodal status.
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Data reporting guidelines
In preparing this manuscript, we followed Molecular & Cellular Proteomics 
Journal-recommended guidelines for reporting proteomics data (http://www.
mcponline.org/site/misc/PhialdelphiaGuidelinesFINALDRAFT.pdf), the 
Journal of Clinical Oncology-recommended REMARK guidelines for report-
ing tumor marker prognostic studies (30,31) and lock-down of the fully speci-
fied classifier before application to the first of the four tests of specimens, as 
mandated by the Institute of Medicine (IOM) (32) and by Hayes et al. (33).

Results

Quantitative identification of differentially secreted proteins 
during EMT
A549 lung adenocarcinoma cells were cultured in the serum-free 
media, stimulated with TGF-β for 72 h to induce EMT and the con-
ditioned media were collected from control and TGF-β-treated cells 
for the analysis of differentially secreted proteins. Induction of EMT 
was confirmed by assessing E-cadherin, N-cadherin and vimen-
tin expression in the cells by western immunoblotting as described 
before (34,35) (data not shown). Proteins in the conditioned media 
from two different biological replicates were fractionated by sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis. Each lane on the 
gel was cut into 40 slices. Proteins in each gel slice were subjected 
to trypsin digestion and analyzed by LC-MS/MS on a LTQ Orbitrap 
mass spectrometer. The resulting MS/MS spectra were analyzed 
for protein identification and quantitation using MAXQUANT as 
described under Materials and methods. We identified a total of 2410 

proteins, of which 1647 (70%) proteins were annotated as secreted 
using the multiple data bases and strategies described in Materials 
and methods (Supplementary Table S2, available at Carcinogenesis 
Online). With the criteria of at least 2-fold change, we identified 136 
proteins as increased in secretion (log2 ratio >1) and 94 proteins as 
decreased in secretion (log2 ratio < −1) during EMT.

Among the differentially secreted proteins, we observed various 
categories of proteins including increased secretion of proteases 
(MMP2, MMP9, BMP1), extracellular matrix components (collagens, 
fibronectin, versican and SPARC), cytokines (CTGF) and cell surface 
receptors (mucins, CD59) that are consistent with the migratory, inva-
sive and immune evasive abilities conferred by EMT and their regula-
tion by TGF-β.

EMT-associated secretory phenotype
To identify a gene signature that is representative of EMT and may 
serve as a reliable biomarker for patient prognosis, we integrated the 
differentially secreted protein profile with the corresponding gene 
expression profile we published earlier (14), from the same cell line 
and under identical conditions. To match with the secretome, differen-
tially expressed genes only at 72 h time point were used for integration 
from the time course data set. Because the goal is to derive a measur-
able signature, only proteins whose secretion is induced during EMT 
were considered. By integrating gene and protein expression, we iden-
tified 97 genes that are upregulated at mRNA level by at least 2-fold (P 
> 0.01) and increased in secretion at the protein level by at least 2-fold, 
irrespective of P value, and defined them as EASP (Table I).

Table I. List of genes that constitute EASP with corresponding fold change for gene and protein expression

Gene symbol Entrez ID Protein 
accession ID

Gene title Fold change (TGF-β/control)

Microarray Secretome

ADAM19 8728 IPI00011901 A disintegrin and metalloproteinase domain 19 (meltrin beta) 17.47 26.78
ANGPTL4 51129 IPI00153060 Angiopoietin-like 4 19.67 2.33
AP1S2 8905 IPI00909244 Adaptor-related protein complex 1, sigma 2 subunit 2.15 3.23
ARPC4 10093 IPI00925052 Actin-related protein 2/3 complex, subunit 4, 20 kda 2.03 1.41
BMP1 649 IPI00014021 Bone morphogenetic protein 1 4.68 17.90
BPGM 669 IPI00215979 2,3-bisphosphoglycerate mutase 3.85 4.23
CD151 977 IPI00298851 Cd151 antigen 1.81 2.09
CD59 966 IPI00011302 Cd59 antigen 3.99 2.53
CHST11 50515 IPI00099831 Carbohydrate (chondroitin 4) sulfotransferase 11 4.62 4.00
CHST3 9469 IPI00306853 Carbohydrate (chondroitin 6) sulfotransferase 3 4.30 3.61
COL1A1 1277 IPI00297646 Collagen, type i, alpha 1 10.11 3.44
COL4A1 1282 IPI00743696 Collagen, type iv, alpha 1 62.47 5.41
COL4A2 1284 IPI00306322 Collagen, type iv, alpha 2 15.99 5.24
COL4A3 1285 IPI00010360 Collagen, type iv, alpha 3 (good pasture antigen) 3.18 4.57
COL7A1 1294 IPI00025418 Collagen, type vii, alpha 1 3.42 1.35
CRIP2 1397 IPI00921911 Cysteine-rich protein 2 2.86 19.22
VCAN 1462 IPI00215628 Chondroitin sulfate proteoglycan 2 (versican) 2.97 1.89
CTGF 1490 IPI00020977 Connective tissue growth factor 4.96 4.37
CXCL12 6387 IPI00719836 Chemokine (c-x-c motif) ligand 12 (stromal cell- 

derived factor 1)
5.56 17.71

CYR61 3491 IPI00299219 Cysteine-rich, angiogenic inducer, 61 5.66 2.16
DSC2 1824 IPI00025846 Desmocollin 2 4.12 3.15
ECM1 1893 IPI00645849 Extracellular matrix protein 1 2.09 3.64
EFNA1 1942 IPI00025840 Ephrin-a1 1.72 1.14
EIF4EBP1 1978 IPI00002569 Eukaryotic translation initiation factor 4e-binding protein 1 1.94 20.54
EPHB2 2048 IPI00021275 Eph receptor b2 8.07 1.76
FHL2 2274 IPI00396967 Four and a half lim domains 2 3.15 3.31
FN1 2335 IPI00845263 Fibronectin 1 5.14 3.15
FST 10468 IPI00021081 Follistatin 6.45 1.30
FSTL1 11167 IPI00029723 Follistatin-like 1 5.14 2.18
FSTL3 10272 IPI00025155 Follistatin-like 3 (secreted glycoprotein) 3.98 2.21
C11orf41 25758 IPI00852979 G2 protein 3.98 20.18
GALNT2 2590 IPI00004669 Udp-n-acetyl-alpha-d-galactosamine:polypeptide n-acetylgalac-

tosaminyltransferase 2 (galnac-t2)
2.78 1.69

GSN 2934 IPI00646773 Gelsolin (amyloidosis, finnish type) 3.99 2.70
HMGA2 8091 IPI00005996 High mobility group at-hook 2 /// high mobility group at-hook 2 4.20 3.13
HMOX1 3162 IPI00215893 Heme oxygenase (decycling) 1 3.41 17.36
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Gene symbol Entrez ID Protein 
accession ID

Gene title Fold change (TGF-β/control)

Microarray Secretome

HSPB1 3315 IPI00025512 Heat shock 27 kda protein 1 2.28 2.42
IGF1 3479 IPI00433029 Insulin-like growth factor 1 (somatomedin c) 4.65 1.11
IGF2 3481 IPI00215977 Insulin-like growth factor 2 (somatomedin a) 1.03 1.87
IGFBP5 3488 IPI00029236 Insulin-like growth factor-binding protein 5 21.60 7.17
IGFBP7 3490 IPI00016915 Insulin-like growth factor-binding protein 7 63.94 5.33
IL11 3589 IPI00025820 Interleukin 11 39.43 5.57
INHBA 3624 IPI00028670 Inhibin, beta a (activin a, activin ab alpha polypeptide) 24.32 25.47
ITGA2 3673 IPI00013744 Integrin, alpha 2 (cd49b, alpha 2 subunit of vla-2 receptor) 5.13 1.15
ITGA3 3675 IPI00290043 Integrin, alpha 3 (antigen cd49c, alpha 3 subunit of vla-3 

receptor)
1.90 1.80

JAG1 182 IPI00099650 Jagged 1 (Alagille syndrome) 3.10 1.87
MGC17330 113791 IPI00298388 Phosphoinositide-3-kinase interacting protein 1 2.53 20.35
KIAA1797 54914 IPI00748360 Kiaa1797 1.70 19.36
LAMC2 3918 IPI00015117 Laminin, gamma 2 20.02 7.45
LEFTY2 7044 IPI00010893 Left-right determination factor 2 2.23 23.89
LIF 3976 IPI00009720 Leukemia inhibitory factor (cholinergic differentiation factor) 2.71 2.22
XYLT1 64131 IPI00183487 Hypothetical protein loc283824 12.13 23.61
LTBP1 4052 IPI00784258 Latent transforming growth factor beta-binding protein 1 2.86 2.25
LTBP2 4053 IPI00292150 Latent transforming growth factor beta-binding protein 2 9.42 4.66
LTBP3 4054 IPI00073196 Latent transforming growth factor beta-binding protein 3 3.87 1.55
LTBP4 8425 IPI00873371 Latent transforming growth factor beta-binding protein 4 3.01 2.14
PIK3IP1 113791 IPI00298388 Hgfl gene /// hgfl gene 2.53 20.35
MMP1 4312 IPI00008561 Matrix metalloproteinase 1 (interstitial collagenase) 5.81 6.27
MMP10 4319 IPI00013405 Matrix metalloproteinase 10 20.03 25.23
MMP2 4313 IPI00027780 Matrix metalloproteinase 2 10.86 8.36
MMP9 4318 IPI00027509 Matrix metalloproteinase 9 1.34 22.00
MRC2 9902 IPI00005707 Mannose receptor, c type 2 4.97 1.47
NPC2 10577 IPI00301579 Niemann-pick disease, type c2 2.88 3.33
NPTX1 4884 IPI00220562 Neuronal pentraxin i 7.29 7.41
NRG1 3084 IPI00221375 Neuregulin 1 3.27 2.19
PAWR 5074 IPI00001871 Prkc, apoptosis, wt1, regulator 2.34 20.17
PCDH1 5097 IPI00872579 Protocadherin 1 (cadherin-like 1) 4.48 22.09
PDGFB 5155 IPI00000044 Platelet-derived growth factor beta polypeptide 4.86 18.85
PDLIM2 64236 IPI00007983 Pdz and lim domain 2 (mystique) 2.74 16.79
PGRMC2 10424 IPI00005202 Progesterone receptor membrane component 2 1.85 2.20
PLAT 5327 IPI00019590 Plasminogen activator, tissue 4.41 19.85
PLAUR 5329 IPI00010676 Plasminogen activator, urokinase receptor 3.07 2.22
PLOD2 5352 IPI00337495 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 2.81 2.03
PLSCR3 57048 IPI00216127 Phospholipid scramblase 3 2.25 3.22
PPP1R14B 26472 IPI00398922 Protein phosphatase 1, regulatory (inhibitor) subunit 14b 2.11 1.55
HTRA1 5654 IPI00003176 Protease, serine, 11 (igf binding) 2.63 3.00
PTPRK 5796 IPI00470937 Protein tyrosine phosphatase, receptor type, k 6.19 1.64
RSU1 6251 IPI00847168 Ras suppressor protein 1 2.00 1.41
SCG2 7857 IPI00009362 Secretogranin ii (chromogranin c) 31.96 7.63
SEMA3C 10512 IPI00019209 Sema domain, immunoglobulin domain (ig), short basic domain, 

secreted, (semaphorin) 3c
4.87 3.70

SERPINE1 5054 IPI00007118 Serine (or cysteine) proteinase inhibitor, clade e (nexin, plasmi-
nogen activator inhibitor type 1), member 1

41.73 4.13

SERPINE2 5270 IPI00009890 Serine (or cysteine) proteinase inhibitor, clade e (nexin, plasmi-
nogen activator inhibitor type 1), member 2

17.90 4.36

SPOCK1 6695 IPI00005292 Sparc/osteonectin, cwcv and kazal-like domains proteoglycan 
(testican)

70.53 5.84

STC1 6781 IPI00005564 Stanniocalcin 1 10.09 3.99
TAGLN 6876 IPI00216138 Transgelin 13.35 6.44
TAGLN2 8407 IPI00647915 Transgelin 2 2.24 1.17
TAX1BP3 30851 IPI00005585 Tax1 (human t-cell leukemia virus type i)-binding protein 3 1.83 3.54
TGFB1 7040 IPI00000075 Transforming growth factor, beta 1 2.57 2.22
TGFBR1 7046 IPI00005733 Transforming growth factor, beta receptor i 5.72 2.72
THBS1 7057 IPI00296099 Thrombospondin 1 16.73 4.71
TIMP2 7077 IPI00027166 Tissue inhibitor of metalloproteinase 2 4.72 2.54
TLL2 7093 IPI00465231 Tolloid-like 2 2.59 2.15
TNFAIP6 7130 IPI00303341 Tumor necrosis factor, alpha-induced protein 6 5.03 7.48
TNFRSF12A 51330 IPI00010277 Tumor necrosis factor receptor superfamily, member 12a 5.10 1.83
TP53I3 9540 IPI00384643 Tumor protein p53 inducible protein 3 3.35 2.47
TUBA4B 80086 IPI00017454 Tubulin, alpha 4 2.24 2.20
ULBP2 80328 IPI00018860 Ul16-binding protein 2 5.18 3.51
VEGFA 7422 IPI00012567 Vascular endothelial growth factor 4.66 2.86

Twenty genes that are part of rEASP are in bold.

Table I. Continued

1295



A.K.Reka et al.

For functional interpretation, EASP was subjected to gene set 
enrichment analysis using ConceptGen (14). Analysis for cellular com-
ponents has associated EASP with extracellular matrix, proteinaceous 
extracellular, collagen, basement membrane, matrix space, matrix 
part and matrix region part (Figure 1A), consistent with their annota-
tion as secretory proteins. More importantly, enrichment analysis for 
biological processes has associated EASP with the cellular processes 
including cell adhesion, motility, actin cytoskeleton reorganization, 
coagulation, acute inflammatory response, proteolysis and response to 
wounding and external stimuli (Figure 1A), consistent with the biol-
ogy of EMT. Moreover, this also demonstrates that EASP is a true rep-
resentation of EMT and may serve as reliable biomarker to track EMT.

To assess the correlation of EASP with other known oncogenic 
pathways, we performed hierarchical clustering of 442 lung adenocar-
cinomas based on their mean gene expression of the indicated path-
way. Clustering analysis yielded two distinct lung adenocarcinoma 
tumor groups with 50% tumors demonstrating higher expression of 
all pathways. Mean EASP expression pattern correlated with mean 
gene expression of all the oncogenic pathways tested. These include 
NF-κβ, antiapoptosis, JAK-STAT, Notch, AKT, WNT pathways and 
ESC signature (Figure 1B). All these pathways are known to be dereg-
ulated in lung adenocarcinomas and were implicated in the regulation 
of EMT.

Correlation of EASP with clinical variables
We determined the ability of the EASP signature to stratify the patients 
based on tumor stage, differentiation and nodal status using the gene 
expression data derived from the Shedden et al. 442 lung adenocar-
cinoma patients (23) (Figure 2A). The EASP signature was able to 
identify the patients with well-differentiated tumors from moderately 

and poorly differentiated tumors (P  <  0.001). Similarly, the EASP 
signature was able to separate patients with stage I tumors from stage 
II and III (P ≤ 0.01). Furthermore, the EASP signature expression 
is high in patients with positive nodal status (N1–2) compared with 
patients with negative nodal status (N0). Together, these results indi-
cate the potential clinical utility of EASP in predicting aggressive 
tumor behavior.

EASP stratifies lung cancer patients into low-, medium- and high-
risk groups with distinct survival
In order to investigate whether the 97-gene EASP signature could 
predict the overall survival in non-small-cell lung cancer patients, 
the Shedden data set (n = 442) was used as training set. As detailed 
in Materials and methods, a mathematical model based on an RSF 
algorithm was built in the training set to predict the prognostic signifi-
cance of EASP with stage, age and sex included. After locking down 
the model, it was tested in three independent publicly available lung 
cancer data sets, Bild et al. (n = 111) (25), Okayama et al. (n =226) 
(26) and Raponi et  al. (n = 129) (27). These cohorts include lung 
adenocarcinoma and squamous cell carcinoma patients. The predic-
tion error rates were 33.6, 30.0 and 36.7%, respectively, for the Bild, 
Okayama and Raponi data sets (Supplementary Table S3, available 
at Carcinogenesis Online). We tested the usefulness of RSF predic-
tors using a univariate Cox model with the mortality index as a con-
tinuous measure. The RSF prediction was significant for the Bild test 
set (likelihood ratio test [LRT] P = 0.00008), Okayama test set (LRT 
P = 0.005) and Raponi test set (LRT P = 0.02). In all three test sets, 
low-, medium- and high-risk groups were clearly separated by mor-
tality index (Figure 2B). The hazard ratios (HRs) were 1.00, 2.17 and 
3.16 for the Bild data set (log-rank test, P = 0.003); 1.00, 2.60 and 

Fig. 1. (A) Analysis of EMT secretome for enriched biological processes and cellular components. All the genes listed in EASP signature (Table I) were 
uploaded to ConceptGen (http://conceptgen.ncibi.org) tool. The enriched GO cellular components (P < 0.0001) and biological processes (P < 0.0001) are shown. 
Each node size is proportional to the number of genes in the enriched process or pathway and each edge represents a statistically significant enrichment with 
defined P value. (B) Cluster analysis of EASP signature and other cancer-related pathways in 442 lung adenocarcinomas. Column represents individual cancer 
sample, row represents different pathway (mean value was used for each specific pathway). Ccpos, positive cell cycle gene; ESC1_380, embryonic stem cell 380 
genes. Red indicated higher expression and green is lower expression.
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5.37 for Okayama data set (log-rank test, P = 0.002) and 1.00, 0.96 
and 2.61 for the Raponi data set (log-rank test, P = 0.002), for low-,  
medium- and high-risk groups, respectively (Supplementary Table 
S3, available at Carcinogenesis Online).

Refining the 97-gene EASP to the 20-gene rEASP
In order to refine the EASP into a smaller gene subset that remains as 
effective in predicting survival of lung cancer patients, the 97-gene 
EASP was filtered based on the VIMPS generated by RSF analysis of 
the Shedden et al. 442 data set. Higher VIMP values indicate variables 
with predictive ability, whereas zero or negative values identify non-
predictive variables. This resulted in a refined EASP (rEASP) com-
prising of top 20 genes with higher VIMPS (Supplementary Figure S1, 
available at Carcinogenesis Online). To assess whether the 20-gene 
rEASP performs as well as the 97-gene EASP signature in predicting 
patient survival, another model based on RSF algorithm was built to 
predict the prognostic significance of rEASP with stage, age and sex 
included, using Shedden data set (n = 442) as training set. Next, we 
tested the predictive power of this 20-gene rEASP model in all three 
independent test sets described above (Bild, Raponi and Okayama) 
with clinical information in Table II. The prediction error rates were 
35.6, 29.9 and 36.4%, respectively for the Bild, Okayama and Raponi 

data sets (Table III). We tested the usefulness of RSF predictors using 
a univariate Cox model with the mortality index as a continuous meas-
ure. The RSF prediction was significant for the Bild test set (LRT P = 
0.002), Okayama test set (LRT P = 0.0004) and Raponi test set (LRT 
P = 0.007). In all three test sets, low-, medium- and high-risk groups 
were clearly separated by mortality index (Figure 3). The HRs were 
1.00, 1.54 and 2.34 for the Bild data set (log-rank test, P = 0.03); 1.00, 
2.37 and 3.75 for Okayama data set (log-rank test, P = 0.002) and 
1.00, 2.38 and 2.79 for the Raponi data set (log-rank test, P = 0.02), 
for low-, medium- and high-risk groups, respectively (Table III).

Discussion

Contrary to the perception that tumor metastasis progresses in a lin-
ear and step-wise fashion, recent evidence suggests that a subset of 
tumors harbor molecular alterations at an early stage that are indica-
tive of bad prognosis and poor patient survival (36). This demon-
strates the importance of identifying molecular changes at an early 
stage that dictate clinical behavior. The current system of TNM stag-
ing cannot identify such changes. There is an urgent need to develop 
prognostic tests that can predict recurrence and identify high-risk 
patients at an early stage when they would benefit from adjuvant 

Fig. 2. (A) Correlation of EASP expression with differentiation, stage and nodal status. All the patients in Shedden data set (n = 442) were classified into 
different subgroups based on tumor differentiation, tumor stage or lymph node status recorded at the time of diagnosis. The mean expression of EASP signature 
(mean centered value) in tumors is significantly different in differentiation (well vs poor), tumor stage (stage 1 vs stage 3) and lymph node status (N0 vs N1–2). 
(B) Testing of 97-gene EASP signature as a predictor of patient survival in lung cancer: lung cancer patients from Bild, Okayama and Raponi data sets were 
stratified using 97-gene EASP signature into low-, medium- and high-risk groups (one-third in each group) based on survival analysis by RSF model built 
on Shedden 442 training set. Shown are the Kaplan–Meir survival curves based on mortality. The log-rank P values compare the groups stratified by EASP 
signature.
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therapy (5,37–44). Demonstrating the utility of such a prognostic test, 
a 70-gene signature (10) (MammaPrint; Agendia, The Netherlands) 
has been approved by the Food and Drug Administration for breast 
cancer patients (32). A  21-gene signature (45) (Oncotype DX; 
Genome Health, CA) is approved for breast cancers, with analogous 
signatures under development for prostate and colon cancers. Even 
though multiple gene, protein, autoantibodies and miRNA-based pro-
files have been proposed for lung cancer prognosis, none to date has 
been approved for clinical use.

The predominant approach in deriving most of the prognostic sig-
natures has been profiling differentially occurring molecular changes 
between good versus bad outcome groups, without any consideration 
to the underlying tumor biology. Here, we adopted a new, mecha-
nism-based approach to identify predictive biomarkers by profiling 
the complex cellular process of EMT, which is implicated in the ini-
tiation of tumor metastasis. The rationale behind this approach is that 
identifying proteins secreted during the course of a critical biological 

process that promotes a metastatic phenotype would provide relevant, 
reliable and robust prognostic biomarkers. The other novel aspect of 
this approach is that one can measure EASP at the mRNA level and 
also at the protein level, because the biomarkers of EASP are based on 
the strong concordant expression of both mRNA and protein. Given 
that EMT is the initiating event for metastasis and may result in the 
dissemination of tumor cells, measuring EASP in the primary tumor, 
tumor cells in bone marrow compartment and circulating tumor cells 
may allow the ability to track disease progression.

Consistent with the functional attributes conferred by EMT and 
its regulation by TGF-β, we identified proteins that are implicated 
in tumor cell adhesion, migration, invasion, immune evasive mecha-
nisms, extracellular matrix components and tumor-stromal interac-
tions. Gene set enrichment analysis of the 97-gene EASP, which is the 
subset of all up regulated proteins and their mRNAs, also identified 
biological processes that are reflective of EMT and TGF-β biology. 
Similarly, even the proteins in rEASP are representative of the func-
tional EMT phenotype. Furthermore, clustering analysis of EASP with 
key oncogenic pathways showed a similar correlation to the expres-
sion of various pathways that are deregulated in lung adenocarcino-
mas. These include NF-κβ, antiapoptosis, JAK-STAT, PTEN, AKT, 
WNT, Notch, Hedgehog and EGFR signaling pathways (46,47). Most 
importantly, the correlation of EASP expression with ESC signature 
is consistent with the recent finding that the ESC signature is associ-
ated with poor prognosis and worse overall survival in lung adenocar-
cinoma patients (22). This correlation is also consistent with finding 
that EMT may confer stem cell-like properties to breast cancer cells 
(48). Together, these observations demonstrate that EASP not only 
reflects the heterogeneity and complexity associated with oncogenesis 
of lung cancer, but also demonstrates the significance and relevance 
of EASP biomarkers to the underlying biology of tumor metastasis.

Consistent with its prognostic significance, EASP distinguished 
well from moderate or poorly differentiated tumors and stage 1 from 
stage 2 and 3 patients. Most importantly, it was strongly correlated 
with positive lymph node status, which is an important prognostic 
factor that influences the therapeutic decision making and probabil-
ity of lung cancer recurrence. To test the clinical utility of EASP, 
the RSF analysis-based survival model was built and trained on 442 
primary lung adenocarcinoma tumor-derived gene expression data 
set, the largest lung cancer gene expression data set available with 
pathological, clinical and treatment annotations (23). Using VIMPS 
from the training set, we refined the EASP into a subset of 20 genes 
(rEASP) with highest VIMPS and tested its prognostic significance 

Table II. Clinical characteristics of samples used in this study

Data set Shedden set Bild set Raponi set Okayama set

Sample number 442 111 129 226
Type of cancer Ad 58 Ad/53 SCC SCC Ad
Age average 64.4 64.8 67.5 59.6
Gender
 Female 219 48 48 121
 Male 224 63 82 105
Stage
 Stage I 276 67 73 168
 Stage II 105 18 34 58
 Stage III 59 21 23 0
Differentiation
 Well 60 NA 15 NA
 Moderate 209 NA 76 NA
 Poor 167 NA 39 NA
Dead (5 year) 188 58 52 32
Alive 255 53 78 194
Adjuvant therapy
 Yes 109 48
 No 330 69 204
 Unknown 3 111 12 22

Ad, adenocarcinomas; NA, not available; SCC, squamous cell cancer. 
Adjuvant therapy includes chemo- and/or radiotherapy.

Table III. Prediction results of 20-gene rEASP signature on three test sets

RSFa Cox modelb HR Log rank testc P

Test error rate P 95% Confidence interval

Okayama test set (n = 226)

29.9% 0.0004
Low risk 1 0.002
Medium risk 2.37 1.03–5.46
High risk 3.75 1.70–8.28

Raponi test set (n = 129)
36.4% 0.007

Low risk 1 0.02
Medium risk 2.38 1.12–5.10
High risk 2.79 1.32–5.90

Bild test set (n = 111)
35.6% 0.002

Low risk 1 0.03
Medium risk 1.54 0.78–3.02
High risk 2.34 1.24–4.42

aRSF prediction model built from the 442 training set including 20 genes, age, gender and stage.
bMortality risk index (MRI) as continuous value, LRT was used in univariate Cox model.
cMRI separated test patients to three risk groups (low, medium and high-risk, one-third in each group).
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in three independent lung cancer data sets. Because the EASP was 
derived from an adenocarcinoma cell line, we asked whether EASP 
is specific to adenocarcinomas or does it have any relevance to other 
subtypes of lung cancer. To address this, we selected the Okayama 
et al. data set of only adenocarcinomas (n = 226), the Bild et al. data 
set of adenocarcinomas (n = 58) and squamous cell carcinomas (n 
= 53) and the Raponi et al. data set of only squamous cell carcino-
mas (n = 129) for independent testing. Interestingly, in all three inde-
pendent test sets, both EASP- and rEASP-based models were able to 
stratify patients into low-, medium- and high-risk groups with clearly 
separated mortality indexes and distinct HRs. This demonstrates the 
relevance of these models even for lung squamous cell cancer. It is 
important to note that both EASP and rEASP performed very well in 
the Okayama et al. data set, which is comprised of only early-stage 
patients (stages I  and II). Because rEASP predicted the survival of 
early-stage patients, it might serve as an ideal prognostic signature 
to identify the high-risk early-stage patients who might benefit the 
most from adjuvant therapy. In earlier studies, we identified multiple 
inhibitors of EMT in lung cancer (49,50), and it might be beneficial to 
test these agents or other EMT blockers as adjuvants for patients with 
high EASP expression.

In conclusion, this study demonstrates the importance of a mecha-
nism-based approach that integrates multiple omics data sets, to iden-
tify clinically relevant biomarkers for patient prognosis. Biomarkers 
rooted in underlying molecular and cellular biology of the tumors 
may provide very useful and actionable information for patient care.

Supplementary material

Supplementary Tables S1–S3 and Figures S1 can be found at http://
carcin.oxfordjournals.org/
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