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Abstract

The collective dynamics of a network of excitable nodes changes dramatically when inhibitory

nodes are introduced. We consider inhibitory nodes which may be activated just like excitatory

nodes but, upon activating, decrease the probability of activation of network neighbors. We show

that, although the direct effect of inhibitory nodes is to decrease activity, the collective dynamics

becomes self-sustaining. We explain this counterintuitive result by defining and analyzing a

“branching function” which may be thought of as an activity-dependent branching ratio. The

shape of the branching function implies that for a range of global coupling parameters dynamics

are self-sustaining. Within the self-sustaining region of parameter space lies a critical line along

which dynamics take the form of avalanches with universal scaling of size and duration,

embedded in ceaseless timeseries of activity. Our analyses, confirmed by numerical simulation,

suggest that inhibition may play a counterintuitive role in excitable networks.

Networks of excitable nodes have been successfully used to model a variety of phenomena,

including reaction-diffusion systems [1], economic trade crises [2], epidemics [3, 4], and

social trends [5]. They have also been used widely in the physics literature to study and

predict neuroscientific phenomena [6–12], and have been used directly in the neuroscience

literature to study the collective dynamics of tissue from the mammalian cortex in humans

[13], monkeys [14], and rats [14–17]. The effects of inhibitory nodes, i.e. nodes that

suppress activity, can be important but are not well understood in many of these systems. In

this Letter, we extend such networks of purely excitatory nodes to include inhibitory nodes

whose effect, on activation, is to decrease the probability that their network neighbors will

become excited. We focus on the regimes near the critical point of a nonequilibrium phase

transition that has been of interest in research on optimized dynamic range [6–11, 15],

NIH Public Access
Author Manuscript
Phys Rev Lett. Author manuscript; available in PMC 2014 June 03.

Published in final edited form as:
Phys Rev Lett. 2014 April 4; 112(13): 138103.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



information capacity [14], and neuronal avalanches [13–18], and has also been explored in

epidemiology where it constitutes the epidemic threshold [4]. At first pass, one would expect

the inclusion of inhibition in excitable networks to lead to lower overall network activity, yet

we find that the opposite is true: the inclusion of inhibitory nodes in our model leads to

effectively ceaseless network activity for networks maintained at or near the critical state.

Our model consists of a sparse network of N excitable nodes. At each discrete time step t,

each node m may be in one of two states sm (t) = 0 or sm (t) = 1, corresponding to quiescent

or active respectively. When a node m is in the active state sm (t) = 1, node n receives an

input of strength Anm. Each node m is either excitatory or inhibitory, respectively

corresponding to Anm ≥ 0 or Anm ≤ 0 for all n. If there is no connection from node m to node

n, then Anm = 0. Each node n sums its inputs at time t and passes them through a transfer

function σ(·) so that its state at time t + 1 is

(1)

and 0 otherwise, where the transfer function is piecewise linear; σ(x) = 0 for x ≤ 0, σ(x) = x

for 0 < x < 1, and σ(x) = 1 for x ≥ 1. In the presence of net excitatory input, a node may

become active, but in the absence of input, or in the presence of net inhibitory input, a node

never becomes active.

We consider the dynamics described above on networks drawn from the ensemble of

directed random networks, where the probability that each node m connects to each other

node n is p. In a network of N nodes, this results in a mean in-degree and out-degree of 〈k〉 =

Np. First, to create the matrix A, each nonzero connection strength Amn is independently

drawn from a distribution of positive numbers. While our analytical results hold for any

distribution with mean γ, in our simulations the distribution is uniform on [0, 2γ]. Next, a

fraction α of the nodes are designated as inhibitory and each column of A that corresponds

to the outgoing connections of an inhibitory node is multiplied by −1. Many previous studies

have shown that dynamics of excitable networks are well-characterized by the largest

eigenvalue λ of the network adjacency matrix A, with criticality occurring at λ = 1 [7, 8, 12,

19]. In order to achieve a particular eigenvalue λ, we use γ = λ/[〈k〉 (1 − 2α)], an accurate

approximation for large networks [20]. We explored a range of 0 ≤ α ≤ 0.3, which includes

the fraction α ≈ 0.2, corresponding to the fraction of inhibitory neurons in mammalian

cortex [21], and note that as α approaches 0.5, γ diverges. If excitatory and inhibitory

weights are drawn from different distributions, larger fractions α are possible which we

discuss in context below Eq. (4).

Our study focuses on the aggregate activity of the network, defined as S(t) = N−1∑n sn (t),

the fraction of nodes that are excited at time t. According to Eq. (1), if the entire network is

quiescent, S = 0, it will remain quiescent indefinitely. In the excitatory-only case, the

stability of this fixed point has been thoroughly investigated, finding stability for λ ≤ 1 and

instability for λ > 1. Many studies have examined this phase transition in activity S, finding

that many of the interesting properties occur at the critical point λ = 1 such as peak dynamic
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range [6–8, 15, 19] and entropy [14], and critical avalanches [12, 14, 15], and so our

investigation is restricted to values of λ near 1.

The main result in this Letter is that when inhibitory nodes are included, the state S = 0 is

unstable. The representative time series of S(t) in Fig. 1A show that when α > 0, activity no

longer ceases. Subcritical network activity fluctuates within a tight band near S = 0,

supercritical network activity fluctuates within a tight band near S = 1, and critical network

activity fluctuates widely, yet is repelled away from S = 0. Empirical distributions of system

states are shown for each of these cases in Fig. 1B, highlighting the broad distribution for λ

= 1, and narrow distributions otherwise. Importantly, Fig. 1B also demonstrates that for α >

0, network activity never reaches S = 0, while for α = 0 and λ ≤ 1, activity always eventually

dies. A raster plot of self-sustained activity with λ = 1 is provided in Fig. S2 [23].

In order to analyze and understand this behavior, we introduce the branching function Λ(S),

which we define as the expected value of S(t + 1)/S(t) conditioned on the level of activity

S(t) at time t,

(2)

We note that Λ is similar to the branching ratio in branching processes except that Λ varies

with S. For values of S such that Λ (S) > 1, activity will increase on average, and for values

of S such that Λ(S) < 1, activity will decrease on average. The expectation in Eq. (2) is taken

overmany realizations of the stochastic dynamics. Noting that there is a set of many different

possible configurations  of active nodes that result in the same active fraction S,

we define this set as (S). Thus, Λ (S) = S−1E (S) [E [S(t + 1)|s⃗ (t) ∈ (S)]], where the

outer expectation averages over configurations in (S) and the inner expectation averages

over realizations of the dynamics for a given configuration. Using Eq. (1) we write

(3)

where 〈·〉 denotes an average over all nodes n. A is a large network with uniformly random

structure, so we approximate the expectation over (S) by assuming each sn (t) is 1 with

probability S and 0 otherwise, independent of the other nodes. Since nodes differ in the

number and type of inputs, this assumption is valid only for large, homogeneous networks.

Thus, each node will have, on average, S〈k〉 (1−α) active excitatory inputs and S〈k〉α active

inhibitory inputs. To account for the variability in the number of such inputs for any

particular node (due to both the degree distribution of a random network and the

stochasticity of the process), letting (β) be a Poisson random variable with mean β, we

model the number of active excitatory inputs as ne = (S〈k〉(1 − α)) and the number of

active inhibitory inputs as ni = (S〈k〉α). We describe the total input to the transfer function

using ne and ni draws from the link weight distribution. Replacing the argument of σ in Eq.

(3), and taking the expectation over the distributions of ne and ni, as well as over the link

weight distributions, we approximate
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(4)

where wj and wk are independent draws from the link weight distribution. Eq (4) may be

used for any function 0 ≤ σ ≤ 1, and wj and wk may represent draws from different excitatory

and inhibitory link weight distributions.

Ceaseless dynamics are now explained by the shape of the branching function, shown in Fig.

1C. Specifically, for small S, Λ(S) > 1, so low activity levels tend to grow, thus preventing

the dynamics from ceasing. The role of inhibition in this growth of low activity may be

succinctly quantified as

(5)

shown in Fig. 2A and derived in [23]. This estimate coincides with the dominant eigenvalue

of the network adjacency matrix without inhibitory links, λ+, derived in [23]. Pei et al.

proposed a different model in which a single inhibitory input is sufficient to suppress all

other excitation and found that λ+ controlled dynamics for all activity levels in their model

[19]. In contrast, we find that for moderate values of S, Λ (S) ≈ λ, and for large values of S,

Λ(S) decreases further. For non-critical networks, Λ(S) = 1 at a single value of S, provided α

> (1 − λ)/(2 − λ). Since Λ(S) is non-increasing, S(t) will stochastically fluctuate around that

single point of intersection, Fig. 1C (arrows). On the other hand, for networks in which λ =

1, Λ(S) ≈ 1 over a wide domain in S, placing the network in a critical state where activity

tends to, on average, replicate itself. For large values of S, Λ(S) < 1, imposed by system size.

We find that when there are no inhibitory nodes (α = 0) network activity resulting from an

initial stimulus ceases after a typically short time, in agreement with previous results [6–8].

However, as α is increased, activity lifetime grows rapidly. To understand the dependence

of activity lifetime on model parameters, we simulated the critical case λ = 1 with various N,

〈k〉, and α, finding that the expected lifetime of activity after an initial excitation of 100

nodes grows approximately exponentially with increasing α, with growth rate proportional

to N/〈k〉 (Fig. 2B). Thus large, sparse networks are likely to generate effectively ceaseless

activity without any external source of excitation. The expected lifetime of activity τ,

derived analytically (see [23]) by treating S(t) as undergoing a random walk with drift (Λ(S)

− 1)S, is approximately given by

(6)

where C1 and C2 are two constants. Figure 2C shows collapse of numerically estimated τ for

different values of N/〈k〉 when plotted against q = Nα/[〈k〉(1 − 2α)(1 − α)], in agreement

with Eq. (6).

We now turn our attention to avalanches. For systems in which activity eventually ceases, an

avalanche can be defined as the cascade of activity resulting from an initial stimulus, and
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thus in excitatory-only models, avalanches occur with well-defined beginnings and ends.

Because our model generates a single ceaseless cascade, we define an avalanche as an

excursion of S(t) above a threshold level S* [22], fragmenting a ceaseless timeseries S(t) into

many excursions above S*, Fig. 3A. Avalanche duration is defined as the number of time

steps S(t) remains above S*, and avalanche size is defined as a = ∑S(t), summing over the

duration of the avalanche. This definition corresponds to an intuitive notion of a lower

threshold below which instruments fail to accurately resolve a signal. For λ = 1 and all α

tested in the model, avalanche sizes are power-law distributed (Fig. 3B) with exponents that

are consistent with critical branching processes and models of critical avalanches in

networks [12], with size distribution P(a) ~ a−β with β ≈ 1.5. This is equivalent to a

complementary cumulative distribution function P (avalanche size > a) ~ a−1/2 as displayed

in Figure 3B. Exponents from numerical experiments [1] are shown in Table S1.

Critical branching processes [25] and critical avalanches in excitatory-only networks [12]

should have durations distributed according to a power law with exponent −2. However, as

can be seen in Fig. 3C, avalanche durations, while broadly distributed, are not power laws,

which we confirmed statistically [1]. Though at first glance this appears to disqualify

dynamics as critical, we find that time series from a Galton-Watson critical branching

process [25] that are fragmented into avalanches by thresholding show distributions like

those shown in Fig. 3C, and not a power law with exponent− 2 [23]. Our predictions in both

Figs. 3B and C therefore agree well with the criticality hypothesis (dashed lines). Our choice

of S* for cascade detection was the lowest value of S for which Λ(S) < 1.01, thus accounting

for differences in the dynamics of the model for different α and acknowledging that for low

activity, dynamics are not expected to be critical since Λ (S) is far from unity. These results

are robust to moderate increases in S*. Based on these observations, we note that to classify

or disqualify dynamics as “critical” or “not critical” based on avalanche duration statistics

may depend on precisely how avalanches are defined and measured.

The inclusion of inhibition in this simple model produces dynamics that may naturally vary

between regimes. The low activity regime, where Λ(S) > 1, prevents activity from ceasing

entirely while the high activity regime, where Λ(S) < 1, prevents activity from completely

saturating. This may be understood in the following way. For an inhibitory node to affect

network dynamics, it must inhibit a node that has also received an excitatory input. When

network activity is very low, the probability of receiving a single input is small, and the

probability of receiving both an excitatory and an inhibitory input is negligible. Thus, as

network activity approaches zero, the effect of inhibition wanes and dynamics are governed

by λ+. On the other hand, when network activity is very high, some nodes receive input in

excess of the minimum necessary input to fire with probability one, and so input is “wasted”

by exciting nodes that would become excited anyway, shifting the excitation-inhibition

balance toward inhibition, Λ(S) < 1. The moderate activity regime, where Λ(S) ≈ 1, features

activity that is on average self-replicating. For super- and subcritical networks, the moderate

activity regime is a single point, but for critical networks where λ = 1, this regime is

stretched, allowing for long fluctuations that emerge as critical avalanches. Thus, for large,

critical networks, we find avalanches embedded in self-sustaining activity.
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To conclude, in this Letter we have described and analyzed a system in which the addition

of inhibitory nodes leads to ceaseless activity. Our findings may be particularly useful in

neuroscience, where self-sustaining critical dynamics has been observed [18]. In

experiments, networks of neurons exhibit ceaseless dynamics and optimized function

(dynamic range and information capacity) under conditions where power-law avalanches

occur [14, 15, 18], but it is not currently possible to directly test the relationship between

cortical inhibition and sustained activity in vivo. One alternative may be to compare

empirically measured branching functions from in vivo recordings with their in vitro

counterparts, where more manipulation of cell populations is possible. This could also be

done in model networks of leaky integrate-and-fire neurons, but while criticality [26] and

self-sustained activity without avalanches [27] have been found separately, they have not yet

been found together. The relation of our mechanism to more traditional “chaotic balanced”

networks studied in computational neuroscience [28], and the ability of balanced networks

to decorrelate the output of pairs of neurons under external stimulus [29] remain open.

Outside neuroscience, our results may find application in other networks operating at

criticality, such as gene interaction networks [30], the internet [31], and epidemics in social

networks [5, 32].
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FIG. 1.
(Color online.) A) Time series of S(t) show typical behavior of this system: α > 0 causes the

S = 0 state to become repelling, so that dynamics are self-sustaining. B) Empirical

distributions of network activity show that states of critical systems are much more

uniformly distributed while sub- and supercritical states fluctuate within tight bands. C)
Predictions of branching function Λ [Eq. (4)] agree well with empirical measurements of S(t

+ 1)/S(t) for various λ and α. Three regimes corresponding to Λ > 1, Λ = 1 and Λ < 1 are

visible, explaining dynamics from panels A and B. The Λ > 1 regime causes self-sustained
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behavior. Sub- and supercritical networks achieve Λ = 1 at a single S (arrows), around which

dynamics fluctuates tightly; critical networks achieve Λ ≈ 1 over a wide range in S,

allowing broad fluctuations. Λ < 1 for large values of S preventing activity from completely

saturating. N = 104, 〈k〉 = 200 for all panels.
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FIG. 2.
(Color online.) A) Empirical measurements of Λ0 (symbols) agree well with predictions, Eq.

(S15), showing that as α increases, the S = 0 state becomes more repulsive. B) Lifetime of

network activity increases with inhibitory fraction α for various N and 〈k〉. Simulations

began with 100 active nodes, with lifetime calculated from the fraction of simulations that

ceased prior to T = 104 timesteps. (C) Lifetime scales correctly with q, as shown in Eq. (6),

indicated by collapse of curves.
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FIG. 3.
(Color online.) A) We define avalanches as excursions above a threshold S*, with duration d

the length of the excursion and size a the integral under the curve over the duration of the

excursion. B) Distributions of avalanche size are power law for all α, P(a) ~ a−3/2. The

dashed line corresponds to sizes from a critical Galton-Watson branching process with S* =

128. C) Durations are not power-law distributed but have the same distribution as durations

from a critical Galton-Watson process. Durations do not show the familiar universal power-
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law exponent of −2 due to the conversion of ceaseless time series into avalanches (see text

and [23]). Data shown: N = 104 nodes over 3 × 106 timesteps, 〈k〉 = 200.
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