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SUMMARY

Endothelial progenitor cells (EPCs), which can be cultured in vitro from mononuclear cells

in peripheral blood or bone marrow, express both hematopoietic stem cell and endothelial

cell markers on their surface. They are believed to participate in endothelial repair and post-

natal angiogenesis due to their abilities of differentiating into endothelial cells and secreting

protective cytokines and growth factors. Mounting evidence suggests that circulating EPCs

are reduced and dysfunctional in various diseases including hypertension, diabetes, coro-

nary heart disease, and ischemic stroke. Therefore, EPCs have been documented to be a

potential biomarker for vascular diseases and a hopeful candidate for regenerative medicine.

Ischemic stroke, as the major cause of disability and death, still has limited therapeutics

based on the approaches of vascular recanalization or neuronal protection. Emerging evi-

dence indicates that transplantation of EPCs is beneficial for the recovery of ischemic cere-

bral injury. EPC-based therapy could open a new avenue for ischemic cerebrovascular

disease. Currently, clinical trials for evaluating EPC transfusion in treating ischemic stroke

are underway. In this review, we summarize the general conceptions and the characteristics

of EPCs, and highlight the recent research developments on EPCs. More importantly, the

rationale, perspectives, and strategies for using them to treat ischemic stroke will be

discussed.

Introduction

Stroke is the fourth leading cause of death in the United States.

According to the updated statistics reported by American Heart

Association, there are about 795,000 new and recurrent stroke

patients and 134,100 deaths each year in the United States [1].

The burden of stroke is even higher in China, Africa, and South

America [2]. Ischemic stroke accounts for about 85% of all stroke

events. Thrombogenesis and embolism in the intracranial artery

are the two major causes of ischemic stroke. Earlier recanalization

with following reperfusion constructs the foundation for conserv-

ing brain tissue under acute ischemia. Current recanalization

therapies for acute ischemic stroke mainly include intravenous or

intra-arterial fibrinolysis [3,4] and interventional treatments, such

as percutaneous transluminal angioplasty and stenting (PTAS)

and thrombectomy [5,6]. Although the fibrinolytics and interven-

tional managements have achieved certain benefits, these thera-

pies have several limitations. Intravenous thrombolysis with

recombinant tissue-type plasminogen activator (rt-PA) or alte-

plase has a narrow therapeutic time window (3–4.5 h) [3,7]. The

interventional PTAS has a high rate (20.0%) of re-stroke within

the first year [5]. On the other hand, antiplatelets are also com-

monly used for treating ischemic stroke.

Although numerous animal studies on neuroprotective drugs

have shown promising data in treating ischemic stroke, clinical tri-

als testing these drugs revealed disappointing results [8]. Current

treatments for acute ischemic stroke mainly rely on vascular

recanalization. However, approaches for promoting cerebral
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recovery following ischemic stroke are limited. Emerging studies

document the beneficial role of different stem/progenitor cells in

accelerating cerebral recovery after ischemic stroke, such as bone

marrow (BM) stem cells [9], mesenchymal stem cells (MSCs)

[10], neural stem cells [11], and endothelial progenitor cells

(EPCs) [12]. EPCs probably have a great potential in cerebrovascu-

lar disease because of their unique characteristics [13–15]. This

article reviews the general conceptions and recent research pro-

gress of EPCs. Furthermore, the rationale, perspectives, and strate-

gies of EPC-based therapy for ischemic stroke will be discussed.

Definition, Identification, and
Characterization of EPCs

Endothelial progenitor cells were first isolated from human

peripheral blood in 1997 and defined as BM-derived immature

cells with the ability to differentiate into mature endothelial cells

(ECs) [16,17]. They are believed to originate from hematopoietic

lineage, whereas their nonhematopoietic lineage origin is still in

debate [18]. EPCs have been identified through several methods,

such as colony formation assay in combination with specific bio-

markers, fluorescence detection of acetylated low-density lipopro-

tein uptake and lectin binding, as well as flow cytometry

technique based on their surface markers [16,19]. The biomarkers

used for characterizing EPCs include both hematopoietic stem cell

markers (CD34 and CD133) and EC markers, such as CD31, kinase

insert domain receptor (KDR, VEGFR2), Von Willebrand factor

(vWF), vascular endothelial cadherin (VE-cadherin or CD 144),

Tie2, c-kit/CD117, and CD62E (E-selectin) [19–22]. In addition,

CD45, CXCR4, CXCR2, and CCR2 are also expressed on EPCs

[23]. The CD34+KDR+ antigenic combination appears to be of

high sensitivity and specificity and has been often used for EPC

identification [20]. It was noticed that EPCs from different sources

express different surface markers. For example, both bone-mar-

row derived EPCs (BM-EPCs) and cord-blood derived EPCs (CB-

EPCs) have been shown to express the CD105, CD73, and CD34

markers [24]. The markers CD31, CD144, CD146, and KDR are

positive on CB-EPCs, but are negative or weak on BM-EPCs.

Another study showed that peripheral blood derived EPCs (PB-

EPCs) expressed KDR, CD144, vWF, Tie-2, CD31, CD11b, and

CD14 [13]. Nevertheless, for therapeutic and diagnostic purposes,

more exact identification of EPCs might be desired.

Based on the culture characters, EPCs are mainly divided into

two types: early EPCs and late EPCs [20,21]. Early EPCs appear

after short-term (4–10 days) culture of mononuclear cells (MNCs)

from peripheral blood. They are similar to colony-forming unit

ECs (CFU-ECs). Early EPCs are spindle shape and display peak

growth at 2–3 weeks and live up to 4 weeks. The late EPC or

endothelial colony forming cells (ECFCs) can be found after long-

term culture (>14 days) of MNCs. Late EPCs exhibit cobblestone

shape, rapid growth at 4–8 weeks, and survive until 12 weeks.

Studies suggest that EPCs promote angiogenesis and neovascular-

ization by producing diverse growth factors which may mainly be

secreted by early EPCs [21,25–27]. The late EPCs have a higher

expression level of VE-cadherin and KDR and are able to physi-

cally contribute to vascular regeneration [21,28]. Genome-wide

transcriptional profiling and protein electrophoresis methods

reveal that these two types of EPCs have different gene expression

signatures [29]. Early EPCs display a molecular phenotype linked

to monocytes, whereas late EPCs highly express vascular develop-

ment and angiogenesis-related signaling genes (Tie2, eNOS,

Ephrins).

EPCs Generation, Mobilization, and
Homing

Generally, EPCs are adult stem cells generated from BM [17].

Most of EPCs quiescently lodge in a microenvironment within the

BM, termed the stem cell niche [30]. They can be mobilized into

the circulation and are able to colonize in endothelium [31,32].

The mechanisms for this process have not been fully understood.

The chemokine stromal-derived factor 1 (SDF-1)/CXCR4 axis has

been well documented to play a key role in EPC mobilization in

response to hypoxia or injury [33,34]. At basal conditions, the

level of SDF-1 is low in circulation, BM, and other tissues [31,35].

Upon tissue ischemia, hypoxia-inducible factor-1 (HIF-1) is up-

regulated, which can activate its downstream factors, SDF-1, and

vascular endothelial growth factor (VEGF) [33,36]. Then, EPCs

are mobilized from BM to circulation and migrate towards ische-

mic tissue following SDF-1 gradients. VEGF also induces SDF-1

expression which further promotes the process of EPC mobiliza-

tion [37]. On the other hand, matrix metalloproteinase-9 (MMP-

9), which is up-regulated by SDF-1 and VEGF, partakes in the

transformation of EPCs from quiescent to proliferative state in BM

[38]. MMP-9 also promotes the mobilization of EPCs into the cir-

culation by inducing the release of soluble Kit Ligand (sKitL),

which can bind with the c-Kit expressed on EPC for facilitating

the mobilization [31]. Granulocyte colony-stimulating factor (G-

CSF) has been used to mobilize functional EPCs into the circula-

tion of patients with coronary artery disease [39]. G-CSF induced

EPC mobilization is associated with increased level of neutrophils

in circulation, which could release VEGF [40]. Another study

showed that G-CSF stimulates the mobilization of hematopoietic

progenitor cells through BM-neutrophils released elastase and

cathepsin G, which trigger proteolytic cleavage of vascular cell

adhesion molecule-1 expressed by BM stromal cells [41]. In addi-

tion, numerous physiopathological and pharmacological stimuli

have been shown to mobilize EPCs (Table 1).

The homing or recruitment of circulating EPCs (cEPCs) into

injury or ischemic sites is an important process for executing their

angiogenic and repairing function [42]. Both tissue factors and

EPC surface receptors are involved in homing of EPCs (Table 1).

For example, the SDF-1/CXCR4 axis plays a significant role in

mediating EPC homing in ischemic tissue [34,43,44]. CXCR2 and

its ligands, CXCL1 and CXCL7, have been shown to mediate EPC

homing to injured arteries [23,45]. Recently, the interaction of

chemokine ligand CCL5 and its receptor CCR5 is suggested as a

signal for EPC recruitment into wounded tissue [46].

The mobilization and homing of EPCs to injured blood vessels

and ischemic tissue are important for them to participate in endo-

thelial repair and contribute to postnatal angiogenesis (see below).

Although there is no evidence showing that EPCs directly induce

malignant tumorigenesis, EPC migrating to tumor tissue may have

a risk in supporting tumor vascularization [47,48]. The potential
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adverse effects of EPC-based therapy are detailed in the section of

“Safety Respects of EPC-based Therapy”.

Several technologies have been developed for tracking EPCs in

vivo. For example, EPCs stained with DiI-Ac-LDL or radiolabeled

with 111In-oxine have been used for tracking EPCs after injecting

them into animals [13,14,49]. A recent study has used Dex-

DOTA-Gd3+ as a magnetic resonance imaging contrast agent for

monitoring the anatomical migration and the survival period of

transplanted EPCs in a rat model of hindlimb ischemia [50].

Hence, these methods provide useful approaches for supporting

preclinical and clinical research on EPC-based therapy.

Functional Characteristics of EPCs

EPCs Participate in Endothelial Homeostasis and
Repair

The abilities of EPCs to differentiate into mature ECs and secrete

different protective cellular factors indicate that they play a signifi-

cant role in endothelial homeostasis and repair. This notion is sup-

ported by solid evidence. For one thing, EPCs presenting in both

vascular intima and circulation have been shown to participate in

endothelialization and replacement of dysfunctional ECs

[32,65,88,89]. Secondly, reduction of cEPCs can independently

predict the progress of atherosclerotic disease [20,88]. More

directly, transfusion of EPCs has been reported to reduce neointi-

ma formation in a vascular injury model [90], and to inhibit plate-

let activation and thrombogenesis in an arterial thrombosis model

[91].

EPCs Contribute to Angiogenesis

Angiogenesis is necessary for blood vessel reconstruction and col-

lateral circulation establishment, which are important to deliver

nutrients and protectants to the jeopardized tissue for repair. The

first finding of EPCs by Asahara et al. has initiated a new era in

angiogenesis research [16,17]. Thereafter, mounting evidence

confirms the role of EPCs in angiogenesis. Both early and late

EPCs have been suggested to participate in the process of angio-

genesis. Early EPCs are involved in angiogenesis by secreting an

array of growth factors and cytokines, such as VEGF, SDF-1, IGF-

1, and G-CSF, which can enhance EC proliferation, reduce cell

apoptosis, and recruit endogenous progenitor cells [13,21,26].

Later evidence suggests that late EPCs may also have the ability to

secrete soluble factors to contribute to these processes [14]. These

findings help to explain why EPC-conditioned medium promotes

neovascularization [25]. Moreover, late EPCs contribute to neo-

vasculogenesis by differentiating into ECs [20,21]. EPCs have been

shown to account for up to 26% of all ECs in neovascularization

[92]. On the other hand, the contribution of EPCs in angiogenesis

has also been documented in the recovery processes of various

diseases, such as myocardial ischemia [93,94], limb ischemia

[16,34], ischemic stroke [12,13], and wounds [95]. All these

researches in animal models prelude the physiological function of

EPCs and highlight the potential of EPCs as a cell candidate for

regenerative therapy.

EPCs for Treating Ischemic Stroke

Pathophysiology of Ischemic Stroke

The pathophysiology of ischemic stroke involves complex pro-

cesses such as energy failure, loss of cellular ion homeostasis, free

radical-mediated and cytokine-mediated toxicities, inflammation,

disruption of the blood-brain barrier (BBB), and infiltration of

leukocytes. These events are interrelated and coordinated [96].

Upon ischemic stroke, cerebral damage occurs early and in a pro-

gressive fashion. Based on the time course, ischemic stroke can be

roughly derived into acute (hours), subacute (hours to days), and

chronic (days to months) phases [97]. The acute phase is mani-

fested with BBB disruption and vascular tonus. Neutrophils

adhere to the endothelium and produce superoxide anions by

reacting with NO and can further trigger tissue damage and

inflammation. Within the subacute phase, frank edema and injury

appear. Multiple genes such as MMP-9, IL-1, VEGF, angiopoietin-

2 are activated. In the chronic phase, limited endogenous angio-

genesis and neurogenesis attempting for recovery are proceeding.

Pathologically, ischemic areas include an infarct core and penum-

bra (peri-infarct area). Dead cells constitute the infarct core, which

Table 1 Factors affect the release, mobilization, and homing/

recruitment of EPCs

Mobilization and/or release Homing/recruitment

Chemokines/growth factors (GF) Chemokines, GF and/or their receptor

HIF-1 [33] SDF-1 [34] ↑ SDF-1/CXCR4 [34]

VEGF [51], IGF-1 [52] ↑ CCL5/CCR5 [46]

G-CSF [39] ↑ CXCL1 and CXCL7/CXCR2 [45]

Angiopoietin-2 [53], PAR-1 [54] ↑ VEGF/VEGFR [81]

Drugs/protein/hormone IL-8/Gro CXCchemokines [82]

Statin [55], ARB [56] ↑ IGF2/IGF2R [83]

ACEI [57] ↑ Other factors

Estrogen [58], EPO [59] ↑ Caspase-8 [84]

Phytoestrogen [60] ↑ Hyaluronic acid and thrombin [85]

Berberine [61] ↑ CD9 [86]

Heme oxygenase-1 [62] ↑ Alpha6 integrin subunit [87]

NO and eNOS [63,64] ↑

Ang II [65] , Endostatin [66] ↓

Morphine [67] ↓

Aldosterone [68] ↓

Physiologic/pathological factors

Physical training [69] ↑

Wound [70] ↑

Ischemic events [71,72] ↑

Aging [73], Obesity [74] ↓

Smoking [75] ↓

Hypertension [76] ↓

Diabetes [77,78] ↓

Hypercholesterolemia [79] ↓

Homocysteine [80] ↓

G-CSF, granulocyte-colony stimulating factor; IGF-1, insulin-like growth

factor-1; PAR-1, protease-activated receptor-1; ARB, angiotensin II type

1 receptor blocker; ACEI, angiotensin-converting enzyme inhibitor; EPO,

Erythropoietin; eNOS, endothelial nitric oxide synthase; Ang II, Angioten-

sin II; IL-8, Interleukin-8; IGF2R, insulin-like growth factor 2 receptor.

ª 2012 Blackwell Publishing Ltd CNS Neuroscience & Therapeutics 19 (2013) 67–75 69

Y.-H. Zhao et al. EPCs and Ischemic Stroke



represents irreversible damage, whereas the penumbra is the res-

cuable area where the angiogenesis can develop [98,99]. Thus,

the penumbra is the target for reducing acute damage.

Rationale for Using EPCs to Treat Ischemic
Stroke

Level of cEPCs Correlates with Ischemic Stroke

Mounting evidence advocates that the level of cEPCs is reduced in

various stroke risk factors such as hypertension [76], hypercholes-

terolemia [79], diabetes [77,78], and atherosclerosis [88]. The

level of cEPCs has been manifested as an important biological

marker to predict endothelial dysfunction, cardiovascular risk

[88,89,100], and cerebrovascular events [101,102]. Clinical stud-

ies show that acute stroke induces a transient increase of cEPCs

[103], and the level of cEPCs negatively correlates with severity of

ischemic damage [104,105]. A higher level of CFU-ECs during the

first week of stroke is shown to independently associate with a

better outcome [106]. Current evidence supports that EPCs not

only serve as biomarker but also might offer a new therapeutic

strategy for ischemic stroke [19,42].

EPCs Contribute to Neurovascular Protection,
Angiogenesis and Neurogenesis

As stated above, EPCs have been suggested to maintain endothe-

lial protection/repair and angiogenesis. Further studies provide

evidence that angiogenesis is coupled with neuroprotection and

neurogenesis following ischemic injury [14,107]. The underlying

mechanisms include that the regenerated blood vessels provide

nutritive blood flow and that EPCs, by secreting factors such as

SDF-1 and VEGF, create a microenvironment for neural regenera-

tion and survival [108,109]. Furthermore, neuroblasts migrate

along these regenerated vessels to achieve neurogenesis in peri-

infarct area [107,110,111]. Therefore, suppression of angiogenesis

substantially reduces migration of neuroblasts from the subven-

tricular zone to the ischemic region [111].

Transplantation of EPCs Accelerates Cerebral
Repair Following Ischemic Stroke

The involvement of endogenous EPCs in cerebral neovasculariza-

tion after ischemic stroke was first reported by Zhang et al. in

2002 [12]. However, EPCs are usually reduced in number and

dysfunctional in disease conditions. Therefore, transfusion of

exogenous EPCs could accelerate the repairing processes. Several

transplantation studies on CD34+ cells (EPC-rich fraction) have

shown their therapeutic effect in promoting new vessel formation

and neurogenesis after ischemic stroke [112,113]. Lately, injection

of human ECFCs was shown to decrease cell apoptosis, promote

angiogenesis and neurogenesis, and improve functional recovery

[14]. It is also suggested that administration of EPCs can increase

regional cortical blood flow, reduce infarct volume, and neurolog-

ical deficits in 2 days after stroke [114]. Our study demonstrates

that EPCs are reduced in quantity and dysfunctional in db/db

type-2 diabetic mice, which might account for decreased cerebral

microvascular density and enlarged ischemic damage [15]. Infu-

sion of functional EPCs reduces ischemic cerebral damage in db/

db diabetic mice, which is associated with improvement in angio-

genesis. A recent study demonstrates that labeled EPCs were

found around microvessels in the cerebral ischemic boundary

24 h after EPC transplantation, and improved long-term neurobe-

havioral outcomes of ischemic stroke [13]. Several studies demon-

strated that EPCs could replace dysfunctional endothelium at the

site of denuding injury [115–117]. All these studies indicate that

EPCs could serve as a cellular reservoir for the replacement/repair

of dysfunctional ECs in stroke and are promising stem cells for the

treatment of ischemic stroke.

The beneficial effects of EPC-based therapy might come from

several aspects (as shown in Figure 1). At the early stage of ische-

mic stroke, both injected and endogenous EPCs could protect cells

(ECs and neurons) from ischemia-induced death/damage because

EPCs secrete various growth factors such as VEGF, SDF-1, IGF-1.

These factors also assist to recruit more EPCs and support their

survival, while alleviating acute injury via protecting the function

of neurovascular units and/or existing collateral blood vessels. In

the later stage, EPCs working together with their secreted factors

promote neovascularization and neurogenesis, which functionally

and structurally rebuild the BBB, blood vessels, and neuron net-

works; in turn, contributing to the recovery.

Strategies of EPC-based Therapy for
Ischemic Stroke

Administration of EPCs

The optimal starting time point for administration of EPCs follow-

ing ischemic stroke may be important for the therapeutic efficacy.

However, there is limited research on this aspect. Based on the

ability of EPCs to secrete various growth factors which have pro-

tective effects on ECs and neurons, their application at the earlier

stage of stroke may have better efficacy. However, it should be

pointed out that inflammation, free radical-mediated, and cyto-

kine-mediated toxicities occurring in the acute phase of stroke

may limit the function and survival of transplanted EPCs

[96,97,118]. EPCs obtained from patients in the subacute phase of

ischemic stroke have showed greater vasculogenic capacity than

those from patients in the acute phrase [119]. It remains to be

determined whether administration of autologous EPCs in the

subacute period is more effective. In regards to EPC administration

in clinical settings, intravenous infusion should be the optimal

route because intra-arterial infusion is inconvenient and could

cause embolism, and direct injection of stem cells into the brain is

complex and might cause local hemorrhaging [120]. As for the

dosing, administration of EPCs with the range of 0.2–3.0 9 104

per gram body weight has shown satisfactory efficacies in various

animal models [13,14,18,112]. The first on-going clinical trial on

EPC-based therapy for ischemic stroke (Identifier: NCT01468064)

is designed to intravenously apply 2.5 9 106 EPCs per kilogram

body weight. It is also unclear regarding the ideal frequencies of

EPC administration. The current clinical trial adopts two EPC

transplantations 1 week after initial dosing.

A recent study on late EPCs raises perspective for the use of late

EPCs as an optimal EPC-based therapy [14]. However, in this

study, transplantation of early EPCs also led to similar
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improvement in modified neurological severity score and somato-

sensory scores up to 14 days after stroke. Another study showed

infusion of early EPCs significantly reduced ischemic infarct vol-

ume at 3 days following stroke and enhanced the long-term out-

come [13]. Which type of EPCs is more effective should be further

investigated as the data from comparison of early or late EPCs are

still elusive. Currently, coadministration of different types of pro-

genitor/stem cells may constitute a novel therapeutic strategy for

ischemic diseases [121].

Ex Vivo Modification of EPCs before
Administration

In order to enhance the therapeutic effect, EPC modifications such

as gene transfection, ischemia preconditioning and pre-treatment

have been investigated. EPCs transduced with vectors over-

expressing diverse genes such as CXCR4 [122], VEGF [123], IGF-1

[52], HIF-1 [124], and eNOS [125] have shown positive results. In

a carotid artery injury model, transplantation of EPCs over-

expressing CXCR4 was able to further enhance the reendothelial-

ization capacity of EPCs [122]. In a hind limb ischemic model,

combination of intravenous infusion of EPCs over-expressing

VEGF with local SDF-1 application showed to be more efficient in

improving local blood supply than either of them used alone

[123]. Interestingly, VEGF over-expression on EPCs could

increase the expression of CXCR4 which could further enhance

EPC homing. Transplantation of EPCs over-expressing IGF-1 has

led to inhibition of cardiac apoptosis, enhancement of cardiomyo-

cyte proliferation, and increment of capillary numbers in the peri-

infarct area [52]. On the other hand, hypoxia preconditioning

enhances VEGFR2 expression on EPCs, and accordingly, aug-

ments the neovascularization efficacy of EPCs after administration

[126]. In addition, preincubating EPCs with SDF-1 enhances their

pro-angiogenic potential in treating hind-limb ischemia [127].

The mechanism is mainly due to the up-regulation of a4 and aM

integrin subunits, which are involved in the homing of EPCs, and

secretion of FGF-2 and MMP-2 which are involved in enhancing

cell invasion. All these studies indicating the advantages of modi-

fied EPCs advocate the new directions of EPC-based therapy for

ischemic stroke.

Modulation of Endogenous EPC Mobilization and
Function by Drugs

Drugs that can affect endogenous EPC behavior are summarized

in Table 1. G-CSF is one of the early drugs discovered to be able to

enhance EPC mobilization into the circulation and augments EPC

colony-forming capacity after venous administration [39]. After-

wards, Ang II was shown to induce pro-apoptotic signaling path-

ways through Ang II type 1 receptor (AT1-R) expressed on EPCs,

and impairs colony-forming and migratory capacities of EPCs

[65]. By decreasing Ang II production or blockade of AT1-R, the

drugs targeting the renin-angiotensin system such as ACEI and

ARB are shown to increase the number and functional activity of

EPCs in vitro or in vivo [56,57]. Furthermore, statins have also been

shown to promote the mobilization, clonal growth ability of cEP-

Cs, and may consequently increase myocardial capillary density in

the chronically ischemic heart [55,128]. The underlying molecu-

lar mechanisms may relate to the activation of AKT signaling and

inhibition of TNF-alpha-induced apoptosis pathway. As these

drugs are commonly used in clinical treatment of cardiovascular

diseases, all these data may help to interpret the beneficial effects

of these drugs on top of their known pharmacological actions.

Further studies in this area could facilitate the discovery of new

drugs targeting EPCs.

Risk Factor Management

The risk factors for stroke such as hypertension, diabetes, or

hypercholesterolemia could reduce the number and biological

Figure 1 EPC function and therapeutic mechanism of EPCs for ischemic stroke.
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activity of EPCs (Table 1). It can be logically speculated that envi-

ronment of circulation is essential for the living of EPC, which

would raise the perspective on the demand in managing the risk

factors of stroke.

Promising Strategies Relate to EPCs

A recent study showed that a collagen patch seeded with EPCs

promotes angiogenesis and arteriogenesis when placed on cryo-

injured rat heart [129]. This may offer a new strategy to increase

the local number of EPCs in ischemic area through interventional

therapy for stroke. In addition, application of a bio-engineered

EPC-capture stent, which accelerates re-endothelialization and

reduces thrombogenicity, may reduce the rate of restenosis after

PTAS in the future [130].

Safety Respects of EPC-based Therapy

Translational research (from laboratory to clinic) on stem cell-

based therapeutics for stroke has been explored in recent years.

The studies have been guided by the research recommendations

from Stem Cell Therapeutics as an Emerging Paradigm for Stroke

(STEPS) in order to enhance therapeutic safety and efficacy [131].

The pioneering pilot studies have been conducted in stroke

patients to explore the feasibility and safety of autologous BM

stem cell and MSC transplantations [9,10,120,132,133]. Intrave-

nous infusion of autologous human MSCs has not shown any

treatment-related abnormal cell growth or tumorigenesis, neuro-

logical deterioration, and venous thromboembolism during 1–

5 years of follow-up [10,120]. Intra-arterial transplantation of BM

stem cells at 5–9 days after stroke onset has also been demon-

strated to be safe and has a trend to improve the Barthel Index,

positively correlating with the number of CD34+ cells [133]. How-

ever, these pilot studies had a relatively small size of samples. Lar-

ger clinical trials are in need to further warrant the results of those

studies.

The safe aspects of EPC transfusion have been explored in

recent years. The level of cEPCs has been found higher in patients

with lung, hepatocellular, breast, and colorectal cancers [47]. BM-

EPCs have been shown to present in the early phase of tumor

angiogenesis, and ablation of EPCs results in delay of tumor

growth which is associated with decreased vessel density [48].

This evidence indicates that EPCs participate in the neovascular-

ization of tumors and that EPC transfusion to patients with tumors

should be avoided. In addition, EPCs might aggravate ischemia by

increasing the ischemic inflammation because they could produce

inflammatory factors such as interleukin-8, monocyte chemotac-

tic protein-1, and recruit monocytes and macrophages

[14,21,134]. By contrast, transplantation of EPCs was shown to

decrease inflammation and enhance neovascularization in a rat

model of myocardial infarction [135]. A study of EPC transfusion

in patients with acute myocardial infarction showed that EPC

therapy did not affect the serum levels of C-reactive protein and

leukocytes [136] and did not cause any tumorigenesis during the

5-year follow-up [137]. Currently, two clinical trials (clinicaltrials.

gov identifier: NCT01468064; NCT00535197) are undergoing to

evaluate the safety and efficacy of autologous EPC and CD34+

stem cell transplantation for treating ischemic stroke.

Conclusion

To sum up, there is no doubt of the angiogenic ability of EPCs,

which is probably the most distinguishable characteristic over

other stem cells. Accumulating evidence suggests the great thera-

peutic potential of EPCs for ischemic stroke. It remains to clarify if

EPC-based therapy is the safest and has the greatest efficacy over

other types of stem/progenitor cells. How to improve the strategies

in order to maximize the therapeutic application of EPCs deserves

further investigation. Besides the hope of therapy, the potential of

EPC-based prevention for ischemic stroke may also present a

future direction.
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