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Abstract

Mobile Visual Location Recognition (MVLR) has attracted a lot of researchers’ attention in the past few years. Existing MVLR
applications commonly use Query-by-Example (QBE) based image retrieval principle to fulfill the location recognition task.
However, the QBE framework is not reliable enough due to the variations in the capture conditions and viewpoint changes
between the query image and the database images. To solve the above problem, we make following contributions to the
design of a panorama based on-device MVLR system. Firstly, we design a heading (from digital compass) aware BOF (Bag-of-
features) model to generate the descriptors of panoramic images. Our approach fully considers the characteristics of the
panoramic images and can facilitate the panorama based on-device MVLR to a large degree. Secondly, to search high
dimensional visual descriptors directly on mobile devices, we propose an effective bilinear compressed sensing based
encoding method. While being fast and accurate enough for on-device implementation, our algorithm can also reduce the
memory usage of projection matrix significantly. Thirdly, we also release a panoramas database as well as a set of test
panoramic quires which can be used as a new benchmark to facilitate further research in the area. Experimental results
prove the effectiveness of the proposed methods for on-device MVLR applications.
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Introduction

Mobile visual location recognition (MVLR) [1–6,37–46] is a

kind of location-based service that can be used in a variety of

contexts, such as hygiene, outdoor object search, entertainment,

work, personal life, etc. The function of MVLR is to enhance the

user’s experience by providing an augmented city guide or

navigational tools. In MVLR applications, the tourist captures a

query image of the landmark which he would like to know more

about, the system performs recognition by using the query image

and feedbacks of the observed landmark to the user for browsing

purpose. It’s worth noting that MVLR needs to fully consider the

characteristics of mobile devices, including (i) limited computing

power and battery capacity, and (ii) mobile user’s fast response-

time requirement [4]. Many researchers use client-server (C/S)

mode to perform MVLR. High performance servers endure the

computational load and speed up the recognition process.

However, the transmission delay of the network may affect the

user’s experience [7].

Although the research on MVLR has witnessed many

achievements in the past few years, the technology is still not

mature enough. For example, most existing methods are based on

Query-by-Example (QBE) principle which generally requires an

example image as a query to search for similar database images.

However, the level of retrieval reliability is still insufficient due to

the likely variations in the capture conditions (e.g. light, blur, scale,

and occlusion) and the viewpoint changes between the query

image and the images in the database.

We think that the use of panoramas can improve the usability of

on-device mobile visual location recognition systems obviously due

to following reasons. Firstly, compared with a query image with

relatively narrow angular field of view, a panoramic image

commonly contains more useful visual information which can be

used to generate visual descriptors with higher discrimination

power. Secondly, the use of panoramic query image can help users

to formulate their visual intent more conveniently, which is useful

for enhancing the user experience.

While promising, it is not a simple task to realize panoramas

based MVLR directly on resource limited mobile devices. For

example, it is difficult to fit the panoramas searching engine into

the RAM of mobile devices because the memory budget of an on-

device MVLR application is only about dozens of megabytes.

Secondly, the limited computational power makes the fast and

accurate panoramic image searching become a difficult and

challenging task on mobile devices.

In view of the above problems, we make following contributions

in this research to the design of a panoramas based on-device

MVLR system. Firstly, we use heading information from digital

compass to facilitate the BOF descriptors generation process. Our

approach fully considers the characteristics of the panoramic

images and can facilitate the panorama based on-device MVLR to

a large degree. Secondly, we propose a compressed sensing based

encoding method. Our method is fast and compact enough for
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power limited mobile devices, which makes the storing and

searching of panoramic image database directly on mobile devices

come true. Thirdly, we also release a panoramas database as well

as a set of test panoramic quires which can be used as a new

benchmark to facilitate further research in the area.

The rest of this paper is organized as follows: Section 2 discusses

the related work. Section 3 gives an overview of our panorama

based on-device MVLR system. Section 4 gives the details of

panoramas database construction. Section 5 introduces the

heading-aware BOF method that will be used to generate the

descriptors of panoramic images. Section 6 discusses the

compressed sensing based visual descriptor code method. Section

7 gives the location recognition method. Section 8 shows some

experimental results. Section 9 is a conclusion.

Related Work

In the past decade, MVLR [1–6,37–46] has attracted a lot of

researchers’ attention. The most popular MVLR approaches are

based on client-server mode in which the image database is

searched on a remote server by using the unloaded query images.

A very important problem to be solved in client-server based

MVLR system is to reduce the transmission delay as much as

possible to ensure good user experience. In case of large size query

image, some related works have been proposed to extract the

image features (such as SIFT [10] and SURF [11]) on the mobile

device and generate the compact image descriptor directly for

transmission. For example, Ji et al. [8,9] design an efficient

location aware visual descriptor encoding scheme to compress

visual descriptors for extremely low bit rate mobile visual search.

In that case, traditional image describing (such as BOF [12])

and indexing (such as inverted index) techniques commonly used

in the field of CBIR (Content-based image retrieval) can be

directly taken to fulfill the location recognition task. This

framework has been proved to be simple and efficient in dealing

with the problem of large-scale image retrieval. However, the

accuracy is affected by discarding spatial information. Some

related works are proposed to address this problem. Lazebnik et al.

[13] design an extension of the orderless BOF by partitioning the

image into increasingly fine sub-regions and computing histograms

of local features found inside each sub-region. Cao et al. [14]

design the Spatial-Bag-of-Features by projecting the image

features to different directions or points to generate a series of

ordered BOF, then selecting the most representative features to

generate a new BOF-like vector representation of an image.

Another approach is using phrases or collocations generated from

visual words. Zhang et al. [15] use statistical methods to select

visual phrases that frequently co-occurring visual word pairs.

Zhang et al. [16] propose the geometry-preserving visual phrases

(GVP) that models local and long-range spatial interactions

between the visual words. Zhou et al. propose the spatial coding

[34] to encode the spatial relationships among local features in an

image, and contextual visual vocabulary [35] that takes both the

spatial and semantic contexts into consideration.

Some approaches use additional information acquired from

mobile devices such as GPS and various sensors. Chen et al. [4]

propose a discriminative vocabulary learning method for land-

mark recognition based on the context information such as

location from the GPS and direction from the digital compass.

Guan et al. [7] integrate the information from inertial sensors into

the Vector of Locally Aggregated Descriptors (VLAD [17])

generation and image similarity evaluation processes. David et

al. [18] propose to perform localization by registering a single

omnidirectional ground image to a 2D urban terrain model and

introduce a novel image descriptor that encodes the position and

orientation of a camera relative to buildings in the environment.

More recently, it is reported that large scale image search can be

performed directly on a mobile device to obtain fast on-device

MVLR. Guan et al. [7] develop several methods to make the city

scale on-device visual location recognition come true such as:

compressing image descriptors to get memory efficient searching

engine, utilizing gravity for more distinctive image descriptor, and

integrating GPS into the image similarity evaluation process for

accurate location recognition.

For on-device visual location recognition, the storage and

computation requirements for high-dimensional visual descriptors

are extreme. The quantization based methods can encode an

image descriptor into only several bytes while searching accuracy

is acceptable. Jegou et al. [19] introduce product quantization

(PQ) to compress the vector to a short code composed of its

subspace quantization indices. Chen et al. [20] propose residual

vector quantization based approaches that database vectors are

quantized by residual vector quantizer. However, the codebook

needed for these methods may be too large to fit the mobile

phones, and fail to make significant improvement as code length

increases. Ji et al. [36] propose a task-dependent codebook

compression framework. The hashing based methods convert very

high-dimensional real vectors to long binary strings. Most hashing

methods can be classified into two categories: the random

projection based methods and the learning based methods. The

random projection based methods like Locality Sensitive Hashing

(LSH) [21] have to generate long codewords to preserve the

locality of the data points, leading to large storage space and high

computational cost. The learning based methods like Spectral

Hashing [22] work well for short codewords but fail to make

significant improvement as code length increases [23]. While the

vectors can be encoded to be very short, larger code sizes are

needed to get the highest absolute accuracy [24].

In this paper, we explore the possibility of large binary coding

using compressive sensing. The theory of compressive sensing (CS)

[25–27] enables the recovery of sparse or compressive signals from

a small set of incoherent projections. Duarte et al. [28–30] propose

that many applications can be more efficient and accurate to

extract information directly from a signal’s compressive measure-

ments than first recover the signal and then extract the

information. Haupt et al. [31] show that the signal’s compressive

measurements can be effectively used in signal classification

problems, where the goal is to identify a signal from a class of

candidates. Lin et al. [24] design Compressed Hashing to process

the compressive measurements without recovering. The weakness

of the CS based methods is that the random projection matrix

costs too much storage space when the dimension of input vector is

very high.

While promising, existing methods are not efficient enough

because the retrieval reliability of the Query-by-Example based

image retrieval principle is still insufficient. In view of that, we

propose a panorama based framework in this research to improve

the performance of on-device MVLR systems.

Architectures

The proposed panorama based on-device MVLR framework is

shown in Figure 1.

Offline Panoramic Images compression and indexing: In this

stage, we build a panoramic image search engine which will be

used for on-device MVLR. We firstly generate the heading-aware

BOF descriptor of each database panoramic image and then

Mobile Visual Location Recognition
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convert them into binary vectors by using the method given in

section 6.

Online location recognition: To perform location recognition,

the heading-aware BOF descriptor of the query panoramic image

will be generated firstly. Then, the method of section 7 will be used

to perform panoramic image searching directly on mobile device

to fulfill the location recognition task.

Subsequent sections describe the method used in detail, present

the results, and evaluate the method’s performance.

Database Construction

We collect the HUST Panorama database by using a mobile

mapping vehicle composed of Ladybug3 360uspherical digital

video camera system, Global Positioning System (GPS), and

Inertial Measurement Unit (IMU). We directly use the panoramic

images to generate the database.

We collect the street view of the main roads of the Huazhong

University of Science and Technology (HUST) and obtain 5081

images captured at 4-meter intervals on average. Our work is

permitted by the Huazhong University of Science and Technol-

ogy. The range (GPS) of our study is between (30031
0
29,68,

114023
0
47,06), (30031

0
20,71, 114025

0
18,96), (30030

0
33,15,

114023
0
39,18) and (30030

0
33,15, 114025

0
06,17). The GPS infor-

mation of each panorama is recorded. The route can be simulated

according to the GPS information. And the heading information

of each panorama can be estimated from the route.

We perform a two-step pre-treatment for database panoramas.

Firstly, we segment the panoramas, removing the irrelevant part.

Secondly, we rearrange each panorama according to the heading

information. After rearranging, the angle between the leftmost

position of panorama and the north is 0. See Figure 2.

Query panoramas are captured by camera phone after the

database is built. We select 22 landmarks at the campus and

capture the panoramas of each landmark at different views,

including 206 queries altogether. Each query panorama is labeled

manually, and the GPS and heading information is also recorded.

It is worth noting that the queries may not be complete 360-degree

panoramas. See Figure 3.

Visual Descriptor Generation

This section deals with the problem of visual descriptor

generation on mobile device. In this section, we will first describe

the heading-aware method for visual descriptor generation, which

can be applied to the panorama based on-device MVLR system,

followed by the approach of generating BOF (Bag-of-features)

using heading-aware method.

So many kinds of methods such as BOF (Bag-of-features),

VLAD (Vector of Locally Aggregated Descriptors) and REVV

(Residual Enhanced Visual Vector) can be used to generate the

visual descriptors of panoramic images. Obviously, we can directly

generate the descriptors of query and database panoramic images

to fulfill the searching task. However, it will cause trouble in our

case because the database images are complete 360-degree

panoramas, while the submitted query may not be. As shown in

Figure 3. If traditional method is adopted to generate the

corresponding visual descriptors, the performance of location

recognition will be affected because the database images contain

much irrelevant information (such as another building, the street

and trees). We design the heading-aware method to address this

challenge.

Heading-Aware Method for Database
The ideal situation is that we can extract the query

corresponding areas only, filtering out the disturbed areas. Based

on this idea, we propose to partition the database panoramas

equally. As shown in Figure 4, the panorama is partitioned into 6

parts. The first part ranges from 0 to 59 degree, and the last part

ranges from 300 to 359 degree. Generate the sub-descriptor for

each part separately, and concatenate them to compose the

heading-aware visual descriptor.

Suppose that the database panoramas are divided into L parts.

The heading-aware visual descriptor is concatenated by L sub-

descriptors:

H~½h1,h2,:::,hL�

Where hi is the sub-descriptor in the i-th part.

Figure 1. Panorama based on-device MVLR framework.
doi:10.1371/journal.pone.0098806.g001
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Heading-Aware Method for Query
While capturing the query panorama, two headings from

compass are recorded. One heading is recorded when it starts to

capture query panoramas, and another heading is recorded when

it finishes capturing. While combining the perspective of camera,

the query’s start and end angles with north direction can be

estimated. Suppose that the start angle with north direction is a,

and the end angle is b. The query’s range is defined as the interval:

range~
½a,b� if avb

½a,359�|½0,b� else

�

The range corresponds to the parts:

part~
½ceil(a=

360

L
),ceil(b=

360

L
)� if avb

½ceil(a=
360

L
,L�|½1,ceil(b=

360

L
)� else

8><
>:

Check the area’s endpoints. If the query in this part is less than

half of it, the endpoint part is excluded. As shown in Figure 5, the

query’s range corresponds to the parts 1 to 4. Check the endpoint

part 1 and part 4, and the part 1 is excluded. For each included

part of query, extract the local image features and generate sub-

descriptor. Suppose that the included parts are ½p1,p2, � � � ,pn�. The

heading-aware descriptor of query is concatenated by n sub-

descriptors:

Figure 2. Example of the panorama in database. The panorama above is the original image obtained by Ladybug3 360usphericaldigitalvideo
camera, and the panorama upper is the image used in database.
doi:10.1371/journal.pone.0098806.g002

Figure 3. Query panoramas captured at different views.
doi:10.1371/journal.pone.0098806.g003
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H~½hp1
,hp2

,:::,hpn �

Where hpi
is the sub-descriptor in the i-th included part.

Image Matching Using Heading-Aware Method
Given a specific query with included parts ½p1,p2, � � � ,pn�, for

each database panorama, only the sub-descriptors in the included

parts are selected and concatenated to compose the heading-aware

BOF.

Let Q be the query, and D be the database panorama. Their

similarity under this feature is defined as:

vHQ,HD
w~

Xn

i~1

Sim(hQ
pi

,hD
pi

)

Where Sim(:,:) could be any histogram similarity measure, e.g.

cosine similarity.

Applying the heading-aware method to panorama based

MVLR system can filter out most disturbed areas. Meanwhile,

partial spatial information can be retained by dividing the

panoramas, which makes up for the shortcoming of traditional

visual descriptor methods to some extent. However, it also leads to

an increase in the descriptor dimension. More memory space is

needed to store the database’s descriptors, and more computation

time is needed to retrieve. We suppose to address this problem by

the compressed sensing based code method, which will be

introduced in details in section 6.

Heading-Aware BOF
In this research, we use the BOF method which has been

proved to be the most common and effective approach in dealing

Figure 4. Illustration of heading-aware method for database. (a) The database panorama is partitioned into 6 parts equally. ‘‘0–59’’ represents
that the part 1 ranges from 0 to 59 degree. (b) Illustration of heading-aware method for database. Stars, triangles, and circles represent different visual
words.
doi:10.1371/journal.pone.0098806.g004

Figure 5. Illustration of heading-aware method for query.
doi:10.1371/journal.pone.0098806.g005
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with the problem of large-scale image retrieval. In BOF method,

local image features from sample images are used to train a

vocabulary tree [32] to generate a set of visual words for local

feature quantization use. For each image, all of the detected local

features are quantized to its nearest visual word by using the built

vocabulary tree, and the normalized visual words histogram with

components weighted by term frequency-inverse document

frequency (TF-IDF) [33] will be used as the BOF descriptor for

image retrieving use.

Algorithm 1 Heading-aware BOF for database

Input:

D~fx1,x2,:::,xNg: the database;

L: the number of parts;

l: the number of the vocabulary tree’s layers;

n: the number of nodes at each layer;

1. Extract local image features from each panorama of D;

2. Use the local features to train a vocabulary tree, and the

number of leaf nodes is d, d~nl ;

3. Determine the part that the feature belongs to by the feature

location. Generate the BOF h [ Rd for each part of every

panorama in D, and the BOF for panorama is

H~½h1,h2,:::,hL�, H [ Rd|L.

Output:

The vocabulary tree;

H [ Rd|L: heading-aware BOF for database H [ Rd|L.

Bilinear Compressed Sensing Based Visual
Descriptor Code

The heading-aware BOF increase the space and computation

time requirements. This section deals with this problem by

descriptors coding. In this section, we will first introduce the

compressed sensing theory and bilinear projection briefly, followed

by the approach of using bilinear method to realize the

measurement of compressed sensing.

Compressed Sensing
Compressive sensing (CS) has aroused great attention in the

signal processing community. Recent theoretical results show that

if the signal is sparse (or nearly sparse) in some basis, then with

high probability, the observations essentially encode the salient

information in the signal. We say that a signal x [ RN is K-sparse

if it can be represented as x~Ya where the vector a [ RN has

only KvvN significant coefficients [29].

For a K-sparse signal, the observation is obtained by projecting

the signal onto a randomly chosen vector, namely random

projection, of which the entries are independent and identically

distributed (i.i.d.) (Gaussian or Binary random variables, or

random Fourier basis vectors). Consider an M|N measurement

matrix W, MvN . We measure y~Wx and note that y [ RM with

MvN. The signal x can be accurately recovered from M
observations by solving:

min jjxjj1 s:t: jjWx{yjjƒ"

It’s inspiring that CS enables the recovery of sparse or

compressive signals from a small set of incoherent projections.

And recent researches show that the signal’s compressive

measurements can be more effectively used than first recover the

signal, which enable data compression. However, for high-

dimension data, the random projection matrix may require too

much storage space and computation time. For example, if

encoding a 10k-dimensional vector into a 1:6k-dimensional

vector, the 1:6K|10K random projection matrix takes roughly

61MB, which is extreme large for on-device MVLR system. To

address this challenge, we adopt bilinear projection [24] for CS.

Bilinear Projection [24]
Let x [ RN denote our descriptor vector. The projection

framework for x is that

H(x)~RT x

where R [ RN|N is the projection matrix.

We reorganize it into a n1|n2 matrix with N~n1|n2:

x [ Rn1n2|1?X [ Rn1|n2

The bilinear projection uses two matrices R1 [ Rn1|n1 and

R2 [ Rn2|n2 :

H(X )~vec(RT
1 XR2)

Where vec(:) denotes column-wise concatenation.

This projection is given by R̂R~R26R1, where 6 denotes the

Kronecker product:

vec(RT
1 XR2)~(RT

2 6RT
1 )vec(X )~R̂RT vec(X )

follows from the properties of the Kronecker product. Thus, a

bilinear projection can be considered as a special case of a full

projection, such that the full projection matrix R̂R can be

reconstructed from two smaller matrices R1 and R2, and memory

and computation time are reduced significantly.

Bilinear Compressed Sensing Code
We present a method for visual descriptor coding by using

random bilinear projection. As described earlier, we adopt BOF to

generate visual descriptor. Considering that the BOF vector is

sparse, and the sparsity increases with dimension, we can directly

extract the measurements by random matrix. Given a K-sparse

BOF x [ RN , we want to convert it to a binary code y [ f0,1gM

with MvN.

Algorithm 2 Bilinear Compressed Sensing Code

Input:

x [ RN : the visual descriptor;

K : the sparsity of x;

m1, m2: the dimension of measurement matrix;

1. Reorganize x into a n1|n2 matrix X [ Rn1|n2 with

N~n1|n2.

2. Generate two linear projections W1 [ Rm1|n1 and W2 [ Rm2|n2

with M~m1|m2, and they are independently sampled from

N(0,1=K) independently.

3. Compute the embedding of data Y
0
~W1XWT

2 , Y
0
[ Rm1|m2 .

4. Compute the binary code y by thresholding Y
0

i,k with respect to

the median of each column.

5. Concatenate Y
0

to form y [ f0,1gM
.
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Output:

W1 [ Rm1|n1 , W2 [ Rm2|n2 : the measurement matrices;

y [ f0,1gM
: the binary code.

The comparison of the traditional method and bilinear method

is shown in the Table.1. The bilinear method can significantly

reduce the space and computation time requirements. For

example, converting a 10k-dimensional vector into a 1:6k-

dimensional binary code, 61 MB of memory is needed for a full

random measurement matrix. However, it takes only 31 KB of

memory when using the bilinear measurement matrices

W1 [ R40|100 and W2 [ R40|100.

Distance Computation for Binary Codes
Given a query, we need to compute the distance to each binary

code in the database. The Hamming distance is very effective for

binary codes. Taking into account the retrieval accuracy, we adopt

the asymmetric distance, in which the database descriptors are

binarized after compression, but the query is just compressed. For

a query, which is compressed into x [ RM , the distance to

database binary code y [ f0,1gM
can be calculated as:

d(x,y)~ xk k2
2z yk k2

2{2xT y

Since xk k2
2 is same for all database codes, we only need to

compute yk k2
2{2xT y, and yk k2

2 can be stored previously.

Location Recognition Methods

This section introduces the method used to perform location

recognition. Before the location recognition process, we generate

the heading-aware BOF for database panoramas by Algorithm 1,

and encode them by Algorithm 2. The codes

CD~½cD
1 ,cD

2 ,:::,cD
L �, CD[f0,1gdim |L

Table 1. The space and time complexity contrast between full projection based CS and bilinear based CS.

full bilinear

Space
Complexity

o(m1m2n1n2) o(m1n1zm2n2)

Time
Complexity

o(m1m2n1n2) o(m1n2(n1zm2))

doi:10.1371/journal.pone.0098806.t001

Figure 6. Location recognition results. (a), (b), (c), (d) and (e) are achieved by the method of [5]. (f), (g), (h), (i) and (j) are achieved by our
proposed method. The image marked with red ‘‘X’’ denotes wrong result.
doi:10.1371/journal.pone.0098806.g006
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of database are stored. dim is the dimension of code. L is the

number of diving parts.

The heading information and GPS are used to generate the

heading-aware BOF. In the similarity evaluation process, the GPS

information is used to narrow down the retrieval range to improve

the location recognition accuracy. The location recognition

method is described in detail as follows:

Step 1) Narrow down the candidate range set = by using the

GPS information of the query panorama.

Step 2) Find the included parts ½p1,p2,:::,pn� by using the

heading information of the query panorama.

Step 3) Generate the heading-aware BOF HQ~½hQ
p1

,hQ
p2

,:::,hQ
pn
�,

and encode it by bilinear compressed sensing. The code of query is

CQ~½cQ
p1

,cQ
p2

,:::,cQ
pn
�, CQ [ Rdim |n

The code of query isn’t binarized after the bilinear compressed

sensing for improving the accuracy.

Step 4) For each database panorama in set =, select the sub-

code SCD~½cD
p1

,cD
p2

,:::,cD
pn
�. The distance between the query and

Table 2. Average computation time.

Step Time(s)

Feature points detecting 3.10

Local descriptors generation 0.52

Heading-aware BOF generation and bilinear CS code 1.37

Location recognition 0.21

total 5.20

doi:10.1371/journal.pone.0098806.t002

Figure 7. Performance of heading-aware BOF under different vocabulary size.
doi:10.1371/journal.pone.0098806.g007
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each candidate in set = can be calculated as:

cos vSCD,CQ
w~

SCD|CQ

SCDk k| CQk k

Results and Discussion

In this section, we first give the result of our location

recognition. Then we evaluate the heading-aware BOF algorithm

on the HUST panorama database that we release. And we

evaluate the performance of bilinear compressed sensing on the

HUST panorama database and San Francisco PFI database [5]

previously released. San Francisco PFI database contains 638K

database images with precise ground truth labels and geotags. 803

query images taken with different camera phones are provided to

test retrieval performance.

The performance of different methods are measured by recall@

R which is defined as the proportion of query vectors for which the

correct match is ranked within the top R returned results.

Location Recognition Results
We extract SURF features from each database panorama. The

hierarchical K-means are adopted to train a vocabulary tree which

contains 10k visual words for the use of heading-aware BOF

generation. We divide the panoramas into 12 parts. Each visual

descriptor is encoded into 1:6k bits by algorithm 2.

To perform the location recognition, we first use the GPS

information to find the database candidates within 200 meters

Figure 8. Performance of heading-aware BOF under different L.
doi:10.1371/journal.pone.0098806.g008

Figure 9. Comparison of different code methods on HUST Panorama and San Francisco PFI database.
doi:10.1371/journal.pone.0098806.g009
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from the query. We generate the heading-aware BOF according to

the query’s heading information and use the algorithm proposed

in the section 7 to perform the location recognition. Finally, a

geometric verification (RANSAC with a 2D affine model) [5]

process is carried out to refine the location recognition results.

We also implement the method proposed by Chen et al. [5] for

comparison. Figure 6 gives the comparison results. We can see that

our method outperforms the method of [5]. The method of [5]

fails in many query examples, while our method works well.

In our current system, each database panorama takes 2410

bytes (2 bytes for panorama ID, 8 bytes for GPS information, and

2400 (200|12) bytes for visual descriptor code). The projection

matrices used in bilinear Compressed Sensing code take 30.5 KB.

Thus, it takes about 12 MB to perform the location recognition.

We test the computation time spent in our location recognition

method on the SONY mobile phone with a 2-core 1 GHz CPU.

Table 2 shows the average computation time of each phase. Note

that the query is a panorama that has a wider perspective than the

ordinary image, it takes more time to detect the feature points and

generate the local descriptors.

Heading-Aware BOF Result
Our method generates database and query descriptors sepa-

rately by part. To verify the effectiveness of our method (HBOF),

we propose a method for comparison (HBOF-CMP). The method

generates database descriptors separately by part, while query does

not. Meanwhile, generate traditional N-dimensional BOF for

query. For database, select the descriptors of the corresponding

parts and add them to a N-dimensional BOF. Figure 7 shows the

comparison of the methods under different vocabulary size. The

panoramas are diving into 12 parts. The baseline method is

traditional BOF method. The performance of BOF is very poor

because of lots of disturbed areas. The HBOF and HBOF-CMP

methods improve the performance greatly by filtering out most of

disturbed areas. Moreover, HBOF outperforms HBOF-CMP

because HBOF can retain partial spatial information of database

and query panorama.

Figure 8 shows the performance of our method under different

numbers of divided parts L. Our method turns out to be

traditional BOF method when the number is 1. The vocabulary

trees used contains 10K visual words. The performance upgrades

when Lincreases.

Bilinear Compressed Sensing Results
We test the performance of bilinear Compressed Sensing based

visual descriptor code on the HUST panorama database and San

Francisco PFI database. For HUST panorama database, we divide

the panoramas into 12 parts and generate Heading-aware BOF by

algorithm 1. The vocabulary tree used contains 10K visual words,

and the descriptor for each part is a 10K vector. So the size of each

panorama is 10K|12. For San Francisco PFI database, we

generate the BOF descriptors by the method of []. The descriptor

for each image is a 10K vector.

We compare our method (BCSC) with Compressed Sensing

based visual descriptor code (CSC) and Product Quantization

(PQ, s~8 and k~1024, 10bytes). For BCSC and CSC, each

10K-dimensional descriptor is encoded to a 1:6K-dimensional

code. The projection matrix size for CSC is 1:6K|10K , and both

projection matrices for BCSC are 40|100 with the descriptor is

reorganized into a 100|100 matrix. Figure 9 shows the

comparison of these methods on HUST Panorama and San

Francisco PFI database. The baseline (original) is the location

recognition result by using the original descriptors without

encoding.

Comparing our method with Compressed Sensing based

method, our bilinear projection based method can reduce memory

needed for projection matrix and computation time greatly.

Table 3 gives the memory and time requirements comparison.

When the descriptor dimension scales up to 1 M, which is a

common size in many applications, the memory needed to store

the projection matrix may be too large to endure. Compared to

the bilinear projection matrices, only hundreds of KB is needed.

Comparing our method with PQ, PQ performs poorly in our

experiments. PQ can encode the descriptor into very short code,

but it fails to provide a rational accuracy, which proves the

necessity of larger code size for high dimensional descriptor to get

the highest absolute accuracy. Meanwhile, the memory needed to

store the codebooks is 39.1 MB, which is extreme for our

application.

Conclusions

In this paper, we discuss the MVLR by panoramas images. The

traditional visual descriptors perform poorly on the panoramas

images. We propose a heading-aware visual descriptor method for

panorama image. Experimental results on HUST Panorama

database prove the effectiveness of heading-aware BOF. We also

design bilinear Compressed Sensing based code which reduces the

costs of memory and computation time for projection matrix

significantly. Experimental results on HUST Panorama and San

Francisco PFI database show that the performance of bilinear

projection method is comparable with Compressed Sensing based

code with a full projection matrix. We also release a HUST

Panorama database. We hope that the released dataset will

facilitate further research in the area.
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Table 3. The memory and time requirements comparison when encoding a 10K vector into a 1:6K vector.

BCSC (W1[R40|100,W2[R40|100) CSC (W[R1:6K|10K )

Memory 30.5 KB 61 MB

Time (ms) 11 30

The computation time is tested on a machine with a 4-core 2.5 GHz CPU.
doi:10.1371/journal.pone.0098806.t003
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