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Abstract

Myoelectric pattern recognition with a large number of electromyogram (EMG) channels provides

an approach to assessing motor control information available from the recorded muscles. In order

to develop a practical myoelectric control system, a feature dependent channel reduction method

was developed in this study to determine a small number of EMG channels for myoelectric pattern

recognition analysis. The method selects appropriate raw EMG features for classification of

different movements, using the minimum Redundancy Maximum Relevance (mRMR) and the

Markov random field (MRF) methods to rank a large number of EMG features, respectively. A k-

nearest neighbor (KNN) classifier was used to evaluate the performance of the selected features in

terms of classification accuracy. The method was tested using 57 channels’ surface EMG signals

recorded from forearm and hand muscles of individuals with incomplete spinal cord injury (SCI).

Our results demonstrate that appropriate selection of a small number of raw EMG features from

different recording channels resulted in similar high classification accuracies as achieved by using

all the EMG channels or features. Compared with the conventional sequential forward selection

(SFS) method, the feature dependent method does not require repeated classifier implementation.

It can effectively reduce redundant information not only cross different channels, but also cross

different features in the same channel. Such hybrid feature-channel selection from a large number

of EMG recording channels can reduce computational cost for implementation of a myoelectric

pattern recognition based control system.
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I. INTRODUCTION

Surface electromyogram (EMG) signals from residual muscles of amputee patients have

been used for myoelectric prosthesis control for many years [1] [2]. Surface EMG can also

be used as control signals for assistive or rehabilitative devices in robot-aided therapy for

individuals with neurological injuries [3–6]. To increase dexterity of myoelectric control,

EMG pattern recognition has been developed to overcome the limitations of conventional

proportional control by extracting multiple features from EMG signals rather than solely

relying on EMG amplitude [7–9]. Such features describing EMG signals can be used to

identify different intended movements. To date, with advances in both feature extraction and

classifier design techniques, high accuracies can be achieved in classification of different

movements using surface EMG signals [10–12].

A recent emerging approach to assessing myoelectric control information is to use a large

number of EMG recording channels (or high-density surface EMG recording) in

combination with pattern recognition analysis. Such an approach has been applied in

residual muscles of amputee subjects after the surgery of targeted muscle reinnervation [13],

and in paretic muscles of stroke or spinal cord injury (SCI) subjects [14] [15]. It has been

demonstrated that substantial neural control information can be extracted from the recorded

muscles. In spite of encouraging findings from high-density surface EMG recording and

analysis, using a large number of EMG electrodes hinders the practical application.

Therefore, it is crucial to select a small number of appropriate channels which can yield the

desired classification accuracy. Previous studies have used a sequential forward selection

(SFS) method for this purpose [16] [17]. The method selects the best single channel for

classification and then adds one channel at a time that can maximize classification

performance in combination with the selected channels. With this method, the classifier has

to be repeatedly implemented in order to select a single channel each time. Moreover, the

redundancy of features in the same channel is not considered, since features extracted from

each channel are fixed during the process. Thus, the SFS algorithm can not remove the

already selected features that might become obsolete after the addition of other candidate

features (or channels).

To overcome the limitations of the SFS method, this study introduces a different channel

reduction strategy based on evaluation of EMG features extracted from high-density surface

EMG recordings. The proposed strategy does not require repeatable implementation of the

classification. Instead, it minimizes the number of channels by ranking the most

discriminative features derived from all the EMG channels. The performance of such a

strategy was confirmed by high classification accuracies using a small number of selected

features, comparable to those derived from all the features or channels. The advantage of the

proposed strategy was also demonstrated by comparing with the SFS channel selection

method.
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II. METHODS

A. Dataset description

The datasets used for this study were collected from 9 subjects with incomplete cervical

spinal injury (6 males, 3 females; age range 31–62 year; Neurological injury level C4–C8;

ASIA class: C or D; Upper extremity motor score: 30–45). The experimental protocols were

detailed in our previous report [15]. In brief, subjects were comfortably seated and instructed

to rest their forearm on a table. Six grasp patterns were performed including cylindrical grip,

tool grip, power grip, lateral pinch, open pinch, and fine pinch. These patterns were selected

because of their high usage frequency in daily life [24] [25]. For each pattern, subjects were

instructed to perform the task with a comfortable and consistent level of effort for

approximately 5 s, and then relax. This was repeated for 8 times, recorded in one trial. Thus,

the surface EMG signals for six grasp patterns were recorded in six trials, respectively.

Additionally, spontaneous EMG signal during hand relaxation was recorded as a different

class. Sufficient relaxation time between trials and between repetitions of the same task were

allowed.

A high-density EMG system (Refa 128 model, TMS International BV, Netherlands) was

used to record surface EMG signals from the forearm and hand muscles in the weaker side

of each subject [15]. A total of 57 surface electrodes (5 mm in diameter) were used for

recording, among which 48 were placed over the forearm (Figure 1). To facilitate placement

of the electrodes, 8 equally spaced electrodes were first incorporated into a custom-made

stretchable fabric belt. In total, six electrode belts were made and equally placed around the

forearm at locations from approximately 12.5% to 75.0% (with 12.5% increments) of the

entire distance from the medial epicondyle of the humerus to the styloid process of the ulna.

In addition to the forearm, 9 electrodes, 3 in group, were place on three hand muscles (the

first dorsal interosseous, thenar and hypothenar muscles), respectively. A reference electrode

was located on the olecranon with a system feedback of the mean of all the recording

channels provided to each individual channel. The surface EMG signals were sampled at

2000 Hz per channel, with a band pass filter setting at 20–500 Hz.

B. Feature extraction

A manual data segmentation scheme based on examination of the EMG amplitude was used

to determine the onset and offset of the active segments, corresponding to each repetition of

a hand task. For each active segment, 57-channel EMG data were further divided into a

series of overlapping analysis windows (window length: 256 ms, window overlap: 128 ms).

For each analysis window, a set of features was extracted to characterize the EMG signals

for classification of the different tasks. Two feature sets were investigated in this study: the

time domain (TD) feature set which includes four time domain statistics, i.e. the mean

absolute value (MAV), the number of zero crossings (ZC), the waveform length (WL), and

the number of slope sign changes (SSC); and the AR+RMS feature set which includes a

sixth order autoregressive (AR) model coefficients plus the root mean square (RMS)

amplitude of the signal [8]. For each analysis window, the features extracted from all the

channels were concatenated to form a feature vector.
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C. Raw EMG feature selection

For each analysis window a large number of EMG channels resulted in a very high order of

feature vector dimensions. These raw EMG features were then ranked using the minimum

Redundancy Maximum Relevance (mRMR) criteria [18] and the Markov random field

(MRF) based Fisher-Markov selector [19], respectively.

The mathematical details of the mRMR and the MRF feature selection methods and their

implementation are described in [18] [19]. In brief, the mRMR criteria choose features that

are mutually dissimilar to each other and marginally similar to the classification variable, by

ranking candidate component features based on compromise between relevance and

redundancy which can be measured in different forms such as mutual information,

correlation, distances, etc [18]. If a ranked feature has a smaller index, it achieves a better

trade-off between the maximum relevance and minimum redundancy and will be more

important for classification. Mutual information difference criteria were used in this study to

search for the features in mRMR optimization conditions.

The MRF based selector aims to identify the best subset of candidate features that

maximizes the between-class distance while minimizing the within-class distance in a higher

dimensional kernel space [19]. The MRF feature selection was designed toward efficiently

selecting the globally optimal subset of features, which are the most useful in characterizing

differences among the possible classes. By using special kernel functions, MRF optimization

techniques can be employed to efficiently solve the formulated objective functions and

achieve global optimum for feature selection [19]. The MRF method assigns a coefficient

indicating its importance to each feature. The larger coefficients indicate higher importance

of the selected features. Thus, the distribution of such coefficients relative to the raw EMG

features can be used to rank the features.

D. Performance evaluation of raw feature selection

The performance of the raw EMG feature selection method was assessed by the resultant

classification accuracy. In this study, the k-nearest neighbor (KNN) classifier (k=5) [20] was

used. An eightfold cross-validation scheme was used to evaluate the classification

performance. The EMG data within any random seven active segments were assigned as

training dataset, and sequentially the EMG data of the remaining active segment were used

as testing dataset. The performance accuracy for each intended hand pattern was the

percentage of correctly classified windows over all the analysis windows in its testing

dataset. An overall performance was then calculated as the percentage of correctly classified

windows over all the analysis windows in the testing datasets across all hand grasp patterns.

The performance of the raw EMG feature selection was further compared with the SFS

based method previously used for channel reduction of high-density surface EMG

recordings [17]. The SFS methods using individual raw EMG features and individual

channels were respectively implemented for comparison.
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III. RESULTS

A. Classification performance with raw EMG feature selection

The performance of the raw EMG feature selection was evaluated by the resultant

classification accuracies, as demonstrated in Figure 2, where the classification accuracies

achieved from different feature sizes were compared, for TD and AR+RMS feature sets

respectively. A maximum of 20 raw EMG features were respectively selected using the

mRMR, MRF and SFS (based on individual raw features) methods. We observed that for the

TD feature set, the MRF method achieved the best performance among the three methods.

For the AR+RMS feature set, the MRF and mRMR methods achieved similar performance,

slightly better than the SFS method. With sequentially adding the selected raw EMG

features, the classification accuracy dramatically increased at the beginning and then

gradually approached to a maximum value. The results indicate that it is feasible to greatly

reduce the number of raw EMG features or channels) while maintaining high classification

accuracies achieved using high-density surface EMG. For example, across all subjects, the

selected 4 raw EMG features using the MRF method achieved an average overall

classification accuracy higher than 90%.

B. Comparing with individual channel based SFS method

The comparison of the raw EMG feature selection using the MRF and SFS (based on

individual channels) methods is demonstrated in Figure 3. It was observed that the MRF

method approached the maximum classification accuracies more quickly than the SFS

method. The average overall classification accuracy of approximately 95% was achieved by

7 TD features (Figure 3a) or 6 AR+RMS features (Figure 3b) selected using the MRF

method, which was similar to that achieved by 20 TD features or 42 AR+RMS features

selected using the individual channel based SFS method. This can also be observed from the

channel point of view. With increase of the channel number, the MRF method tended to

approach similar or higher classification accuracies compared with the SFS method for both

TD (Figure 3c) and AR+RMS (Figure 3d) feature sets. However, the MRF method required

extraction of significantly fewer EMG features per channel than the SFS method.

C. Analysis of selected raw EMG features and channels

For each subject, we further investigated the selected raw EMG features using the MRF

method. Figure 4 shows an example of the distribution of the coefficients used to determine

the importance of each raw EMG feature [19]. From the coefficient distribution a small

fraction of highly discriminative features in the presence of a large number of irrelevant or

redundant features can be selected. From Figure 4 it was observed that for the TD feature set

the waveform length (WL) was the most important feature for the datasets, while the RMS

amplitude was the most important feature among the AR+RMS feature set. We examined

the selected features using the MRF method and the corresponding EMG channels for each

subject. It was found that for either TD or AR+RMS feature set, no consistent patterns of

selected channels were observed across different subjects. Furthermore, for the same

subjects, the selected channels might be partly or completely different for different feature

sets (for example, Subject 5: first 4 channel indexes: 10, 26, 2, 37 for TD, and 10, 2, 37, 14

for AR+RMS; Subject 1: 4, 47, 12,7 for TD, and 6, 44, 14, 10 for AR+RMS).
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IV. DISCUSSIONS

This study presents a different strategy from the SFS method to reduce the number of

channels used in high-density surface EMG recordings, toward developing a practical

myoelectric control system. Recent development in EMG instrumentation, particularly in

EMG amplifier design, has allowed simultaneous recording of more than 100 channels from

single or multiple muscles. Commercial high-density surface EMG data acquisition systems

have become available (e.g. TMS International BV, Netherlands; OT Bioelettronica, Italy).

High-density surface EMG recording has achieved increasing applications. For example,

using an electrode array recording from a single muscle, it is possible to extract motor unit

activity and the spatial information which may be impractical to obtain with a needle

electrode [21] [22].

An important application of high-density surface EMG is to perform pattern recognition

analyses toward developing a practical myoelectric control system for helping restoration of

limb function (of amputee, stroke and SCI subjects) [13–15] [23]. The results of the current

study using the raw feature selection methods are in consistent to the previous findings with

different subject populations that there is much redundant information contained in high-

density surface EMG recordings, which should be removed for implementation of a practical

myoelectric control system [13–15]. It is noted that the redundancy of information does not

compromise the importance of high-density EMG recording and analysis. An important

finding from the previous analyses was that myoelectric pattern recognition performance

was subject-specific, for both amputee subjects who received nerve transfer surgery [13] and

subjects with neurological disorders [14] [15]. There was lack of common patterns across

each group of tested subjects in regard to class-to-class misclassification performance, the

best location or number of the EMG electrodes, etc. This may be due to the difference

between subjects (such as impairment level, injury location, or different nerve transfer

surgeries, etc). Thus, the most appropriate design (such as number and locations of EMG

channels for myoelectric pattern recognition) is not available for each specific subject. High-

density surface EMG analysis is useful for guiding implementation of a practical

myoelectric control system because it offers an approach to appropriate selection of a small

number of EMG channels and determination of their locations.

To select optimal channels from high-density surface EMG for myoelectric pattern

recognition, the performance of all the combinations of the desired number of channels

should be assessed to select the one with the highest classification accuracy. Such an

approach is impractical considering a large number of possible combinations (for example,

selection of 5 from 57 channels would require testing of 4,187,106 different combinations).

Therefore, in the previous studies, a sub-optimal method of sequential feed-forward

selection (SFS) was used, which iteratively added one channel producing the highest

classification accuracy combined with the previously selected channels. However, the SFS

algorithm can not remove selected features that become obsolete after the addition of other

candidate channels. Instead of focusing on individual channels, the current study used a

feature dependent method to select the most informative EMG features in order to reduce

the number of EMG channels without significantly degrading classification performance.

The feature dependent channel selection has two advantages over the SFS method. First,
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each iteration of the SFS method requires repeatedly training and testing of the classifier for

N-m+1 times (N is the total number of electrodes, m is the iteration index, m=1, 2, … M, M

is the number of selected channels), while the feature dependent method does not require

classifier implementation. Instead, it ranks and selects discriminative features applicable to

different classifiers in general. Second, the feature dependent channel selection treats

features from the same or different channels in the same manner. Thus it can effectively

reduce the redundant information not only cross different channels, but also cross different

features in the same channel. Compared to the SFS based channel selection, the hybrid

feature-channel selection method can reduce computational cost for implementation of a

practical myoelectric control system.

It is noted that even for the same subject, the selected EMG channels might not be the same

for TD and AR+RMS feature sets, suggesting that the channel selection is not only subject

specific, but also related to different feature sets. Therefore, determination of appropriate

number and location of EMG channels during implementation of a practical myoelectric

control system (for neurological injury rehabilitation) should consider user difference (such

as user need, remaining motor control capacity, etc). Additionally, the effects of different

features on classification performance and channel selection should also be considered.

In this study, the performance of the EMG feature selection methods was evaluated using a

combination of TD or AR+RMS feature set and the KNN classifier. The hybrid feature-

channel selection method can be applied to other features. The selected features are also

suitable for pattern recognition analysis with other classifiers in general. The hybrid feature-

channel selection was tested using EMG data from incomplete SCI subjects. The method

can also be used for high-density EMG recordings from different populations. As an

evaluation criterion, calculation of average overall classification accuracies was used to

confirm the performance of the selected features or channels in this study. We acknowledge

that the robustness of the individual features (such as with respect to electrode shift,

electrode size, orientation, etc) should also be considered for designing or implementing a

practical myoelectric control system.
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Figure 1.
(a) An overall review of the electrode placement for 57-channel EMG signal recordings; (b)

The channel index for the 48 electrodes placed on the forearm; (c) Cross section of the

forearm and the electrode positions.
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Figure 2.
Comparison of the mRMR, MRF and SFS methods for raw EMG feature selection. The SFS

method was based on individual raw EMG features. The average overall classification

accuracy across all subjects was presented as a function of the number of selected TD or AR

+RMS features using the three methods, respectively.
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Figure 3.
(a) and (b): comparison of the classification performance with incease of the number of raw

EMG features selected by the MRF and SFS methods for TD and AR+RMS features,

respectively. The SFS method was based on individual EMG recording channels. (c) and

(d): comparison of the classification performance with incease of the number of EMG

channels selected by the MRF and SFS methods for (c) TD and (d) AR+RMS features,

respectively.
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Figure 4.
An example of the importance coefficient distribution of the raw EMG features using the

MRF method. β and γ are two parameters used in the MRF feature selection criterion [19]. β

is a constant factor related to the number of selected features from the high dimensional

feature vectors. γ is a free parameter. Both β and γ were set the same values as suggested in

[19].
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