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Abstract

There is an increasing need to develop and apply powerful statistical tests to detect multiple traits-

single locus associations, as arising from neuroimaging genetics and other studies. For example, in

the Alzheimer's Disease Neuroimaging Initiative (ADNI), in addition to genome-wide single

nucleotide polymorphisms (SNPs), thousands of neuroimaging and neuropsychological

phenotypes as intermediate phenotypes for Alzheimer's disease, have been collected. Although

some classic methods like MANOVA and newly proposed methods may be applied, they have

their own limitations. For example, MANOVA cannot be applied to binary and other discrete

traits. In addition, the relationships among these methods are not well understood. Importantly,

since these tests are not data adaptive, depending on the unknown association patterns among

multiple traits and between multiple traits and a locus, these tests may or may not be powerful. In

this paper we propose a class of data-adaptive weights and the corresponding weighted tests in the

general framework of generalized estimation equations (GEE). A highly adaptive test is proposed

to select the most powerful one from this class of the weighted tests so that it can maintain high

power across a wide range of situations. Our proposed tests are applicable to various types of traits

with or without covariates. Importantly, we also analytically show relationships among some

existing and our proposed tests, indicating that many existing tests are special cases of our

proposed tests. Extensive simulation studies were conducted to compare and contrast the power

properties of various existing and our new methods. Finally, we applied the methods to an ADNI

dataset to illustrate the performance of the methods. We conclude with the recommendation for

the use of the GEE-based Score test and our proposed adaptive test for their high and

complementary performance.
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1 Introduction

Published genome-wide association studies (GWAS) have shown that single nucleotide

polymorphisms (SNPs) associated with common diseases and complex traits are not easy to

be detected. The main reason is due to their small e ect sizes: the odds ratios from the

identified associations are often only 1.1-1.3. It is also realized that using only one single

phenotype may not suffice to identify the underlying genetic mechanism, as a complex

disease may exhibit its occurrence or progression in several syndromes. Thus, multivariate

trait analysis is being increasingly recognized as a potentially useful strategy in genetic

studies (Zhu and Zhang 2009). However, a dilemma in joint analysis of multiple traits is the

inevitable power loss as more and more non-associated traits are being included; in practice,

there is no guarantee that multiple traits being analyzed are all simultaneously associated

with the same SNP. Therefore, a key issue in multivariate trait analysis is how to maximally

maintain statistical power in the presence of many non-associated traits while gaining the

power when many or most of the traits are associated with an SNP.

Various methods have been proposed and applied to multivariate trait analysis. Broadly

speaking, any existing method for pedigree or longitudinal data analysis is applicable; see a

recent nice review by Yang and Wang (2012). The methods can be classified into a few

categories. The first category is to conduct univariate analysis on each trait, then combine

their results (Yang et al 2010). For example, for any given SNP, one can conduct a single

trait–single SNP analysis for each of the multiple traits, then take the minimum p-value from

the univariate analyses with an adjustment for multiple testing. This is like the most

commonly adopted approach to single trait–multilocus analysis in GWAS, the so-called

UminP approach. The second class is based on dimension reduction on multivariate traits,

usually by principal components analysis (PCA) (Lan et al 2003; Wang and Abbott 2007) or

by principal components of heritability (PCH) (Klei et al 2008) and related methods (Wang

et al 2008; Lin et al 2012). For PCA, a main issue is that a few top PCs may not capture su

cient association signals (Aschard et al 2013). For PCH, the sample splitting strategy for

population-based studies is not e cient (Yang and Wang 2012), though the modification of

Lin et al (2012) overcomes this downside. Nevertheless, the interpretation with the use of a

few principal components may not be straightforward, and it is debatable whether there exist

a few PCs that can genetically capture a large proportion of trait variations. Importantly, it is

not clear how robust these methods are in the presence of many non-associated traits, and

how many components are needed. Canonical correlation analysis (CCA) also belongs to

this class; it seeks the linear combination of all traits yielding the greatest association with a

locus (Ferreira and Purcell 2009). Another special case is simply to take the average (or

sum) of multiple traits and then conduct a univariate analysis with this single average (or

sum) trait, which is called Average (or Sum) method and has been applied to neuroimaging

genetic data recently (Shen et al 2012). As in the case for single trait–multilocus testing, the
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Average (or Sum) method su ers from severe power loss in the presence of opposite

association directions between the traits and a locus (Pan 2009), or even worse, as to be

shown later, in the presence of some non-associated traits. The third class includes some

classical methods for multivariate data, such as MANOVA (Ferreira and Purcell 2009),

which however is not applicable to non-Normal traits, e.g. binary traits. Linear mixed

models (LMMs) or generalized least squares for quantitative traits, and generalized linear

mixed models (GLMMs) for discrete traits provide a more general alternative (Laird et al.,

1982; Fitzmaurize et al., 1993; Li et al 2011; Korte et al., 2012). However, these likelihood-

based approaches require one to correctly specify a model, including the correlation

structure among the multiple traits, which is often di cult, especially for non-Normal traits.

Furthermore, fitting GLMMs is computationally demanding. Alternatively, the generalized

estimation equations (GEE) methodology (Liang and Zeger, 1986) is convenient to use, only

requiring a correct specification of a marginal mean regression model, not a variance or

covariance structure and other higher moments of the traits. In particular, its (generalized)

score vector is easy to calculate, in contrast to the intractability in GLMMs. The GEE

framework is general and flexible: it can accommodate covariates and various types of traits

(Liu et al., 2009; Chen et al., 2011; Lange et al., 2003). Yang and Wang (2012) commented

that there may be inflated Type I errors in GEE; we show here that the problem is mainly

with the Wald test (Pan 2001) while the Score test and other score-based tests seemed to

work well. Hence, in this paper we adopt the GEE framework, applying some existing tests

and developing some new ones, to test for association between a single SNP and multiple,

possibly a large number of, quantitative traits.

A challenge in association testing with multiple parameters, such as in multilocus analysis or

multivariate trait analysis, is the lack of a uniformly most powerful test. Depending on the

unknown truth of the underlying association patterns, any given and fixed test may or may

not be powerful. For example, depending on how many of a given set of multiple traits are

associated with a locus, di erent tests may be more powerful: if only few of the traits are

associated, then a univariate minimum p-value (UminP) method based on choosing the most

significant p-value of the univariate tests on each of the multiple traits, similar to TATES

(van der Sluis et al 2013), would be more powerful; on the other hand, if most or all of the

traits are associated with the locus with similar e ect sizes, the simple Average method is

expected to be more powerful. Our simulation results will confirm these points later.

Accordingly, in multilocus association testing, adaptive tests based on weighting multiple

loci di erently have been proposed (e.g. Lin and Tang 2012). However, due to the use of

fixed weights, these adaptive tests may still su er from power loss under some situations.

Here we propose a class of more highly adaptive tests with a wide range of weights on

multiple traits. The goal is that, for a given situation with some unknown association

patterns, we can find at least one set of the weights yielding a high-powered test. In our

earlier example, if only one trait is associated with a locus, then assigning a large weight to

the associated trait while assigning small weights to other traits would be optimal; on the

other hand, if all traits are (almost) equally associated with the locus, we would like to

assign an equal weight to all the traits. Our proposed class of tests are based on weighting

the (generalized) score vector of a marginal generalized linear model (GLM) (McCullagh

and Nelder 1983) in GEE; it maintains the computational simplicity of the Score test and the
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generality and flexibility of GLMs. Each of our proposed test statistics is a sum of powered

score statistics, say SPU(γ), in which an integer γ indexes a set of weights on the multiple

traits. Our adaptive SPU (aSPU) test essentially estimates and thus chooses the most

powerful SPU test for a given dataset.

Another contribution of this work is to point out connections among the existing and new

tests. Although some existing methods, such as classic ones like CCA and MANOVA,

recently proposed ones like TATES (van der Sluis et al 2013), MultiPhen (O'Reilly et al.,

2012) and kernel machine regression (KMR) (Maity et al 2012), and some potentially usable

ones like MDMR (McArdle and Anderson 2001), have been suggested for analysis of

multivariate traits, their relationships with each other are largely unknown. Here we

analytically illuminate on how these existing tests and our proposed tests are related. In

particular, when testing on association between multiple quantitative traits and a single SNP

in the absence of other covariates, we point out that many existing tests are special cases of

the SPU tests. For example, CCA, MANOVA and the GEE-Score test are equivalent, which

in turn are closely related to MultiPhen; the Average method coincides with the GEE-

SPU(1) test, while TATES is closely related to the GEE-SPU(∞); Under suitable

conditions, both MDMR and KMR are the same as the GEE-SPU(2) test. These analytical

results will be confirmed in our extensive simulation studies.

Finally we will apply these methods to the NIH Alzheimer's Disease Neuroimaging

Initiative (ADNI) data. We aim to detect associations between SNPs and some multivariate

neuroimaging phenotypes in several related regions of interest (ROIs). As both imaging and

genotyping technologies advance, imaging genetics is emerging as a promising yet

challenging field. In particular, due to numerous phenotypes measured for the ROIs, there is

a high demand on developing and applying powerful association testing for multivariate

traits, given limited multivariate methods available (Glahn et al., 2007). Shen et al. (2010)

applied the simple Average method and confirmed two associated genes, APOE and

TOMM40. We aimed to investigate how our proposed new tests perform as compared to

other existing tests. We will demonstrate the advantages and potential usefulness of the

GEE-based tests.

2 Methods

2.1 Generalized Estimating Equations

Suppose that for each subject i = 1, ..., n, we have k traits Yi = (yi1, yi2, ..., yik)′, xi = 0, 1 or 2

is the genotype score (i.e. count of the minor allele) for an SNP of interest, and zi = (zi1,

zi2, ..., ziq) is a row vector of q covariates. Define the design matrices for the SNP e ects and

covariates as
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where 0 is a row vector of all 0's. Xi is a k × k matrix, and Zi is a k × k(q + 1) matrix

including the intercept term. Define two regression coe cient vectors as β = (β1, ..., βk)′ for Xi

and φ = (φ11, ..., φ1(q+1), ..., φk1, ..., φk(q+1))′ for Zi, where the main interest is on β, the SNP

e ects on the traits. The marginal means, E(Yi|xi, Zi) = μi, the SNP and covariates are

modeled through a marginal generalized linear model (GLM):

with Hi = (Zi, Xi), = (φ′, β′)′ and g(.) as a suitable link function.

The consistent and asymptotically Normal estimates of β and φ are obtained by solving the

GEE (Liang and Zeger, 1986):

where g−1(.) is the inverse function of g(.), ϕ is a possible dispersion parameter, Ai =

diag{v(μi1), v(μi2), ..., v(μik)} with v(μim) = Var(yim|xi, zi)/ϕ, and Rw = Rw(α) is a working

correlation matrix that may depend on some unknown parameters α. Note that Rw does not

have to be correctly specified; for convenience, a working independence model with Rw = I

is often used, as done in this paper unless specified otherwise.

With a canonical link function and a working independence model (i.e. Rw = I), it is not di

cult to obtain the (generalized) score vector and its consistent covariance estimate:

(1)

Where  is an estimate of μi,  is partitioned according to the score vector components U.1

and U.2 for φ and β respectively.

Binary Traits—For binary traits (coded as 0 and 1), we use the logit link function, and

v(μim) = μim(1 − μim). The (m, l)th element of ∂μi/∂ θ′ is Hi,mlμim(1 − μim) with Hi,ml as the

(m, l)th element of Hi. We have the score vector and its covariance estimate as

with  as an estimate of μi, Ai = diag(μi1(1 − μi1), ..., μim(1 − μim)).

Quantitative traits—We use the identity link g(μim) = μim and v(μim) = ϕ. Then we have
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(2)

If we assume a common covariance matrix for Yi's across all i, then a better covariance

estimate is

which is used by default for its better finite-sample performance (Pan 2001).

2.2 Existing Tests in GEE

Our goal is to detect whether there is any association between any of the traits and the SNP

via testing the null hypothesis H0: β = (β1, ..., βk)′ = 0 versus H1: β ≠ = 0.

To construct score-based tests with covariates Zi, we first fit the GEE model under H0, g(μi)

= Ziφ, to obtain  and . If we denote for subject i, Ui1 as the score vector corresponding to

covariates Zi, and Ui2 as the score vector for the SNP, then the score vector under the null

hypothesis, with an assumed independent working correlation structure for the traits, is:

The null distribution of the score vector for β is asymptotically Normal under H0:

(3)

where V11, V12, V21, V22 are defined in (1).

The Wald test— , where  is the estimate of β in the GEE marginal

model, and  is the sandwich estimate. Under H0, we have  asymptotically. In

spite of its simplicity and popular use, as well known (Pan 2001) and to be shown later, with

a relatively large k, the Wald test in GEE may become too liberal with inflated Type I errors.

The Score test— , where U.2 and Σ.2 are discussed above; it is

asymptotically equivalent to the Wald test with the same null distribution . Since we only

need to fit the model under the null hypothesis, it is computationally simpler than using the

Wald test, which requires fitting a full model. More importantly, as to be shown, the Score

test controls the Type I error much better than the Wald test.
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The UminP test— , where U.2,j is the jth element of U.2, and .2,jj is

the jth entry on the diagonal of .2. Although a numerical integration-based method as for

single trait–multilocus testing (e.g. Pan 2009) can be adopted, we use a simulation based

method to calculate its p-value. Specifically, we simulate the score vectors U(b) = (U(b),1,

U(b),2, ..., U(b),k)′ from its null distribution  for b = 1, ..., B, then calculate

the null statistics , and the p-value .

With a working independence model Rw = I, each component U.2,j is equal to the score

function for the univariate analysis on the jth trait. Hence, the GEE-UminP test is equivalent

to the usual UminP test that combines the univariate analyses on the multiple traits.

2.3 New Tests in GEE

For association analysis of rare variants, weighting on the components of the score vector

has been recognized as a general and effective approach to synthesizing information

contained in the components of the score vector (Lin and Tang 2012). We borrow this idea

and apply it to the current context, yielding a weighted score test:

where the weights wj's have to be specified, which is a key and challenging issue. Various

choices of the weights have been proposed for analysis of rare variants, all of which are

some fixed weights. Our goal is to specify a whole class of weights such that they can cover

a wide range of situations: for any given data with unknown true association patterns, we

hope that at least one member from the specified class of weights would yield a high-

powered test. We reason that, since association information is largely contained in the score

vector, the driving force of constructing various score-based tests (as reviewed above), it

might be productive to use the score vector to construct the weights. Accordingly, we

propose a class of weights  for a series of values of γ = 1, 2, ..., ∂, leading to the

sum of powered score (U) tests, called SPU tests:

As γ = 1, the SPU(1) test sums up the information in the multiple traits equally, just as the

Average (Sum) test. As the power parameter γ increases, the SPU(γ) test puts higher weights

on the traits with larger |U.2,j|, while gradually decreasing the weights on the other traits

with smaller |U.2,j|. By statistical theory, we know that a trait associated with the SNP is

expected to have a larger |U.2,j| while a non-associated one has a smaller value. Hence, an

increasing value of γ tends to put higher weights on those more strongly associated traits. An

extreme situation is that, as γ → ∂ (as an even number), we have
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taking only the largest one. In our experience, an SPU(γ) test with γ> 8 often yields results

similar to that of the SPU(∞) test. Hence, in all our following experiments, we only used γ

∈ Γ = {1, 2, ..., 8, ∞}.

While the SPU(1) is similar to the Average (Sum) test, the SPU(2) test is the same as the

SSU test outlined by Yang and Wang (2012), an extension of the SSU test for single trait–

multilocus analysis (Pan 2009) to the current context for multiple traits and a single SNP.

Suppose that the sample size is large enough for the asymptotic null distribution of the score

vector to hold, we use a simulation method to estimate the p-value of an SPU test (Seaman

and Mller-Myhsok 2005; Lin 2005). Suppose that T is the test statistic for an SPU(γ) test

and  is the covariance matrix of the score vector based on the original data. We draw B

samples of the score vector from its null distribution: , b = 1, ...B, and

obtain a null statistic . We then calculate

.

Since the result of an SPU(γ) test depends on the choice of the power parameter γ while in

general it is unknown which value of is optimal for a given dataset, it would be convenient

to have a test that data-adaptively and automatically chooses the parameter γ. We propose an

adaptive SPU (aSPU) test to estimate and thus select the most powerful SPU test for given

data. Because it is di cult to characterize the power curve of an SPU test, we use the p-value

of a SPU test to approximate its power; this idea has been widely used in practice.

Accordingly, the aSPU test statistic is the minimum p-value among all SPU tests:

where PSPU(γ) is the p-value of the SPU(γ) test.

The p-value of aSPU can be obtained based on simulations. It may appear that a double

simulation procedure is needed, but indeed not necessary. As before, first, we simulate B

independent copies of the null score vector U(b) from  for b = 1, 2, ..., B. We then

calculate the corresponding SPU test statistics  and their p-values

. Thus, we have , and the

final p-value of the aSPU test is . Note that, in practice

we can first use a smaller B, say B = 1000, to scan a genome, then gradually and repeatedly
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increase B for a few SNPs that pass an initial significance criterion (e.g. p-value < 5/B) in

the previous step.

The aSPU test aims to data-adaptively approximate the most powerful SPU test among a set

of versatile SPU(γ) tests with various values of γ, thus maintaining high power at any given

situation. Although we use the minimum p-value to approximate the most powerful SPU

test, other combining methods (e.g. Pan et al 2010) are also possible and may be explored.

The aSPU test uses adaptive weights on the multiple traits to assess their aggregated e ects

(while down-weighting the e ects of null traits).

The SPU and aSPU tests assume that the multiple traits are in the same scale; if not, e.g.

when the variances of the traits vary a lot, one should first standardize the traits to have an

equal sample variance. For example, when some null traits have larger variances than that of

associated traits, an SPU test statistic will be dominated by the noises in the score

components for the null traits, leading to concealing association signals and thus reduced

power. Alternatively, to account for possibly different scales or variances of the multiple

traits, one can use a variance-weighted SPU test (SPUw): for any γ ∈ Γ,

Note that under the working independence model (Rw = I) in GEE, the SPUw(∞) test is

equal to the UminP test. The adaptive SPUw (aSPUw) test can be accordingly defined as for

the aSPU test.

2.4 Properties of the GEE Tests

We analyze how the proposed GEE-based tests are related to some existing tests in the

absence of covariates while testing for association between a set of quantitative traits and a

single SNP. By default (unless specified otherwise), we assume without loss of generality

that both Yi and xi have been centered at 0; that is,  and . For

simplicity we also assume that there is no missing data, and each subject has all k traits

observed.

We expect that most of our below conclusions can be extended to the case for quantitative

traits with covariates Zi: we first regress Yi on Zi to obtain residuals rY,i, and regress xi on Zi

to obtain residuals rX,i; then we apply the same arguments below to regression of rY,i on rX,i

(instead of regression of Yi on xi).

2.4.1 Fitting a GEE Working Independence Model and an Equivalent Model—In

the current context, the GEE model is

(4)
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with β = (β1, ..., βk)′. Note that, due to centering both Yi and xi at mean 0, no intercept term is

needed. To test H0: β = 0, under the working independence model (i.e. Rw = I), we have the

score vector and its empirical covariance estimate as

(5)

As an alternative, we fit the below model:

(6)

with b = (b1, ..., bk)′. To test H0: b = 0, we obtain its score vector and empirical covariance

estimate, which are exactly the same as in equation (5). Note that, due to the possible

correlations among the components of Yi and possibly non-Normality or non-constant

variances of xi (the latter of which is true because xi is the genotype score), we have to use

the empirical covariance estimate of the score vector. In summary, any test based on the

score vector of fitting the GEE working independence model (4) can be equally constructed

based on fitting a simple linear model (6). For example, a GEE-SPU(2) test based on the

GEE model (4) is equivalent to the SSU test based on model (6) (Pan 2009).

We note that using the GEE score components and their variances to test for Hm,0: βm = 0

separately for each trait m is the same as conducting a univariate Score test on each trait m

individually. Hence, in addition to UminP, other methods could be applied to combine these

univariate tests (Yang and Wang 2012); in fact, if Rw = I is used in GEE, all our proposed

tests could be regarded in this way.

Finally, we note that the above conclusion holds for other GLMs with a canonical link

function, under which the score vector maintains the same form as in (5) (McCullagh and

Nelder 1983).

2.4.2 GEE-SPU versus GEE-SPUw tests—In the current context, based on (5), we

have

where the Hardy-Weinberg equilibrium is assumed in the second equality for Var(yij), f is

the MAF of the SNP, and  is the residual variance of trait j (after removing the e ect of the

SNP). We also assume that Var(yij) does not depend on i (but may depend on j).

It is clear that the SPUw tests, but not SPU tests, are invariant to the scales of the traits.

Hence, the SPUw and aSPUw tests can automatically account for different scales of the

multiple traits, while the SPU and aSPU tests cannot, requiring one to standardize the
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(residual) variances of the traits if they di er a lot. On the other hand, if  are all equal, for

an associated trait j with βj ≠ = 0, due to its larger Var(yij), any SPUw test would put a lower

weight on it as compared to the corresponding SPU test, leading to power loss. However, for

complex traits with typically small |βj|, the power loss of the SPUw or aSPUw test is often

negligible, resulting in almost equal power between the aSPUw and aSPU tests, as to be

confirmed in our numerical examples.

2.4.3 Use of various working correlation structures in GEE—For quantitative

traits, it is often reasonable to assume that the marginal covariance matrix Cov(Yi|H0) = V0

does not vary over i. Under this assumption (and thus a equal cluster size dim(Yi) = k), we

can write the working covariance matrix Vw,i = Ai
−1/2RwAi

−1/2 = Vw,0, invariant to i. With

any working correlation matrix Rw, the score vector and its covariance estimate are

(7)

from which it can be seen that

That is, the GEE-Score test is invariant to Rw, the working correlation structure.

Since in general U(Rw) ≠ U(I) and  for Rw ≠ = I, the other GEE-based tests

(except GEE-Score) are not necessarily invariant to Rw.

Surprisingly, as to be shown, the GEE-UminP, GEE-SPUw(∞) and GEE-SPU(∞) tests may

lose power when the true correlation structure is used as Rw. Here we consider a simple

example. Suppose that the first 5 traits are associated with a SNP while all other remaining k

−5 traits are not; the true covariance matrix Cov(Yi) has a compound symmetry structure

CS(r): Var(yij) = 1 and Cov(yij, yil) = r for any j ≠ l. The score vector U(Rw) = (U1(Rw), . . .,

Uk(Rw))′ is defined in (8) and . Without loss of

generality, we also assume xi is standardized to have . Under the working

independence model Rw = I, assume that E(Uj(I)) = 1 for 1 ≤ j ≤ k1, and E(Uj(I)) = 0 for 5 <

j k. Hence, with Rw = I, the component-wise signal magnitude (related to the non-centrality

parameter for a univariate Score test on each trait) is

which is 1 for 1 ≤ j ≤ 5, and is 0 otherwise. On the other hand, in the ideal case with Vw =

Cov(Yi), we have
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Accordingly, we can calculate its component-wise signal magnitude λj = E(Uj(Rw ))2/

Var(Uj(Rw)). Table 1 shows some examples.

It is clear that, compared to using Rw = I, one may gain or lose with respect to

componentwise information contents in the score vector by using a correct correlation

matrix as Rw in GEE, depending on the value of between-trait correlation r and the number

of traits k. In particular, with r > 0 and a small k, using a correct correlation matrix may give

maxj λj < 1, leading to loss of power by the UminP test, as compared to its using the

working independence model in GEE; as k increases (while keeping the number of

associated traits fixed), it will gain by using the correct correlation matrix as Rw. This latter

point is consistent with the theoretical result of Cai et al (2013) for a high-dimensional two-

sample comparison problem.

2.4.4 Relationships between the new and existing tests—Our proposed tests cover

several commonly used methods as special cases in the current context. A summary is given

in Table 2, and the details are relegated to the Appendix.

2.5 Simulation Set-ups

Unless specified otherwise, by default each simulated dataset consisted of n = 1000 subjects

with a varying number (k) of correlated quantitative traits, including the first k1 = 5 traits

associated with the SNPs to be tested under the alternative hypothesis H1 (while all other k

− k1 traits were not associated). For each subject, we generated a block of p = 11 SNPs in

linkage disequilibrium (LD) and the first one was the causal SNP under H1. Specifically, for

each subject i, we first generated a latent vector Gi = (Gi1, ...Gip)′ from a multivariate

Normal distribution with a first-order auto-regressive (AR-1) covariance structure with

parameter ρ = 0.5: Cov(Gij, Gil) = ρ|j−l|. Second, each latent element Gij was dichotomized

to 0 or 1 with probability Prob(Gig = 1) as its minor allele frequency (MAF), randomly

drawn from a uniform distribution (Pan 2009). The MAF of the causal (i.e. first) SNP was

from U(0.3, 0.4), while the MAFs of the other SNPs were independently drawn from U(0.1,

0.5). In this way, we generated a haplotype for subject i. Similarly, we independently

generated another haplotype for subject i; by combining the two haplotypes we obtained the

genotype of the subject. We tested on each of the first few SNPs nearest to the causal SNP.

Similarly, we also considered smaller sample sizes n = 500 and n = 200, and rare variants

(RVs) with MAF=0.01.

The phenotype for each subject i, Yi = (Yi1, ..., Yik)′ was simulated from a linear model:

where β0 = (β01, ..., β0k)′, β = (β1, ..., βk)′, xi is the genotype score of the causal SNP, and ∈i

was independently drawn form a multivariate Normal distribution N(0, σ2R), with σ = 1 and
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R as either an AR-1 correlation matrix with parameter r or a compound symmetry (CS)

matrix with parameter r; we considered r = ±0.3 or 0.5. In addition, we also considered

using a correlation matrix estimated from the ADNI data. β0m is the intercept for trait m.

Under H0, we had β = 0; under H1, we had βm ≠ = 0 for 1 ≤ m ≤ k1, and βm = 0 for k1 < m ≤

k. The non-zero βj's were randomly drawn from a uniform distribution U(0.2, 0.3) for weak e

ects, or from U(0.8, 1) for strong e ects. That is, under H1, only the first 5 traits were

associated with the causal SNP, and we gradually increased the number of the non-

associated (i.e. null) traits from 0 to 5, then 15, up to 35. Under each simulation set-up, 1000

datasets were independently generated and analyzed; we used B=1000 to obtain p-values for

any simulation-based method. Unless specified otherwise, by default, the working

independence model was used in GEE.

For comparison, in addition to the GEE-based tests, we also applied some representative

existing tests, including the Average method, MultiPhen, TATES, MANOVA (based on the

Wilks statistic) and MDMR (based on the L1-norm or L2-norm as the distance metric).

2.6 ADNI Data

Data used in the preparation of this article were obtained from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). Determination of

sensitive and specific markers of very early AD progression is intended to aid researchers

and clinicians to develop new treatments and monitor their e ectiveness, as well as lessen the

time and cost of clinical trials. The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California - San Francisco. ADNI is the

result of e orts of many coinvestigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over 50 sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed

by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults,

ages 55 to 90, to participate in the research, consisting of cognitively normal older

individuals, people with early or late MCI, and people with early AD. The follow up

duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO.

Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in

ADNI-2. For up-to-date information, see www.adni-info.org.

3 Results

3.1 Simulations

3.1.1 CS—In Table 3, the multivariate traits had a compound symmetry (CS) correlation

structure with parameter r = 0.3 or 0.5. All the tests, except the GEE-Wald test, could
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control the Type I error. As the number of the traits, k, increased, the GEE-Wald test

gradually had a severely inflated Type I error; in contrast, the GEE-Score test performed

satisfactorily. The poor performance of the Wald test and better performance of the Score

test for finite-samples in GEE are well known (e.g. Guo et al 2005); due to its inability to

control Type I errors, we will omit the discussion on the GEE-Wald test in the sequel.

Table 9 shows the power performance of the tests when the causal SNP had strong genetic e

ects on the associated 5 traits. Since the causal SNP and its nearest neighbor were strongly

associated with (a subset of) the traits, the power of each test was close to 1 (not shown);

hence, we tested on the second and third nearest SNPs next to the causal SNP. First, we can

empirically verify our theoretical results derived earlier: i) the equivalence between

MANOVA and the GEE-Score test, between MDMR(L2) and the GEE-SPU(2) test, and the

Average and GEE-SPU(1) tests; ii) the similar performance between TATES and UminP (or

SPUw(∞)), and between MultiPhen and the GEE-Score test. Since the traits had a

multivariate Normal distribution, using the L2-norm as the distance was more powerful than

using the L1-norm in MDMR; however, with other trait distributions, it is possible that the

latter may edge over the former. Second, we note that the Average test, or equivalently the

GEE-SPU(1) test, had the highest power when all k = k1 = 5 traits were associated with the

causal SNP (with similar e ect sizes and the same e ect direction); however, they quickly lost

power as k increased, i.e. more non-associated traits were included. Third, as k increased, an

SPU(γ) test with a larger γ had higher power than those with smaller γ. In particular, we

highlight the case with k = 40: the power of the GEE-SPU(1) or GEE-SPU(2) test could be

much lower than GEE-SPU(6) or SPU(∞); for example for SNP 2 and r = 0.3, the SPU(1),

SPU(2) and SPU(6) tests had power as 0.084, 0.432 and 0.680 respectively. We also note

that GEE-SPU(6) and SPU(∞) gave similar power, implying that using up to 6 or 8 (as done

here) is good enough. Fourth, we see that, for any given situation, one of the SPU tests had

high power, though its identity changed with the situation. Most importantly, the aSPU test

seemed to be able to remain (nearly) most powerful across all situations.

Between an SPU(γ) and SPUw(γ) tests for a fixed γ, the former one was more powerful (not

shown). As analyzed in section 2, this was presumably due to the larger e ect sizes of the

associated traits, giving lower weights to associated SNPs in an SPUw(γ) test than in an

SPU(γ). Accordingly, the aSPU test was also more powerful than the aSPUw test.

Table 5 shows the results with weaker genetic e ects. Now the GEE-Score and related

MANOVA and MultiPhen tests were more powerful than the SPU/aSPU tests. Note the

puzzling phenomenon: the former tests could have lower power with all k = 5 associated

traits than that with some additional non-associated traits; this problem of MANOVA was

pointed out by Ferreira and Purcell (2009) and studied by Cole et al (1984). In addition, due

to the smaller e ect sizes of the associated SNP, the SPU and SPUw tests, and thus aSPU and

aSPUw tests, performed similarly (not shown).

3.1.2 AR-1—Now we consider the case where the multivariate traits had an AR-1

correlation structure. Table 6 shows that all the tests could control the Type I error rates

around the nominal level of 0.05 satisfactorily.
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For power (Table 7), regardless of the value of r, we reached the same conclusions. First, it

is clear that the aSPU test was more powerful than the MultiPhen, TATES, Score and

UminP test. As more null traits were added, power of all methods generally decreased and

the aSPU test still maintained its advantage. The power of MultiPhen was close to that of the

GEE-Score test, while that of TATES was close to that of the UminP test. For example,

when testing the association between SNP 1 and k = 5 traits (with no null traits), MultiPhen

had a power of 0.458, TATES had 0.554, GEE-Score test had 0.458, UminP had 0.522,

while the aSPU test had 0.624, close to 0.661, the highest power given by the Average

method, essentially the same as that of SPU(1) test at 0.651. However, as the total number of

traits increased to 20 (with 15 null traits), the power of the Averaging method dramatically

reduced to 0.217, compared to 0.286 of the GEE-Score test and 0.334 of the UminP, all

much lower than 0.400 of the aSPU test. The results also confirmed that if the SNP of

interest was physically farther away from the causal SNP, the power any test would be

largely reduced. For example, when testing SNP 1 based on 10 traits, the power of the Score

test was 0.388 and the aSPU was 0.516; but when testing SNP 2, their power decreased to

0.100 and 0.139 respectively.

It is confirmed that the SPU and SPUw tests, and thus aSPU and aSPUw tests, were always

almost equally powered, presumably due to the small e ect sizes here (not shown). Given

that the majority of common SNPs that are associated with common diseases and other

complex traits have only small e ect sizes, we conclude that it is unlikely that the aSPU and

aSPUw tests would perform much di erently in practice; we recommend the use of the aSPU

test (after standardizing the correlated traits to the same scale if needed).

When the causal SNP had di erent e ect directions on di erent traits, and/or when the

correlations among the multiple traits were possibly negative, it was confirmed that the

Average, SPU(1), SPUw(1) (and more generally, any SPU(γ) or SPUw(γ) test with γ as an

odd number) would lose power; the better performance of the GEE-Score (and related tests)

over that of aSPU, or vice versa, depended on the situations (not shown), as previously

shown for the cases with a CS correlation structure.

3.1.3 Using a more realistic correlation matrix—We also considered using a

correlation matrix mimicking real data. Specifically, based on the ADNI data, we fitted a

null model (with several covariates but no SNP) to a set of 26 neuroimaging traits and thus

estimated their correlation matrix. These traits appeared to be strongly correlated with the

first quartile, median and third quartile of pair-wise correlations at 0.34, 0.47 and 0.59

respectively. We generated simulated data as before except fixing the number of the traits at

26 with their true correlation matrix as the one estimated from the ADNI data. As shown in

Table 8, under the null hypothesis, it is clear that the methods could control the Type I error

rates satisfactorily (except the GEE Wald test, which was omitted). For power, we randomly

picked up the first five traits to be associated with a causal SNP; we considered both strong

and weak e ects from the causal SNP. The conclusions were the same as before. For

example, when the SNP-traits were strongly associated, the aSPU test was more powerful

than the Score test. On the other hand, if the causal SNP was weakly associated with the five

traits, given that the traits were strongly correlated as for the previous simulation case with a

CS structure, the Score test appeared to be more powerful than the aSPU test.
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3.1.4 Other cases with smaller sample sizes and association parameters—We

considered whether the sample size would change our conclusions. We used a smaller

sample size n = 500 or n = 200 while the multiple traits had a CS(0.3) correlation matrix. As

shown in Table 9, we reached the same conclusions. For example, the aSPU test was more

powerful than the Score test in these cases.

So far we have always assumed that the association directions between a causal SNP and

multiple traits are in the same direction. Next we considered the case where a subset of the

traits were positively while another subset were negatively, and weakly associated with the

causal SNP. We still used a CS(r) as the correlation matrix for the traits. As shown in Table

10, as expected, the Average method and any SPU(γ) test with γ being an odd number were

always low powered. Between the Score and aSPU tests, if r = 0.3, then the Score test was

more powerful; however, if r = −0.3, then the aSPU test was more powerful. Overall, either

the Score test or the aSPU test was the winner.

3.1.5 Rare variants—As suggested by a reviewer, we considered rare variants with MAF

fixed at 0.01 when simulating genotypes, while all other aspects were the same as before. To

be consistent with our focus here on single SNP testing, we tested on each RV separately,

though testing on multiple RVs was expected to be more powerful. As shown in Table 11,

the results were pretty much the same as those for common variants when the causal SNP

was strongly associated with five traits. For example, it was confirmed again that the results

between the Average and GEE-SPU(1), between TATES and GEE-UminP, and among

MultiPhen, MANOVA and GEE-Score tests were almost the same respectively. More

importantly, the aSPU test was much more powerful than the previous tests, especially as

the number of non-associated traits increased.

3.1.6 Using other working correlation structures in GEE—It is confirmed that

using a non-diagonal correlation structure in GEE may or may not improve the performance

of the GEE-based tests. For example, when the true CS correlation structure was used as the

working one, the performance of the SPU and aSPU tests improved (Table 12); on the other

hand, if Rw=CS was used for the case with an AR-1 as the true correlation structure, the

power of the SPU and aSPU tests could be lower than that of using Rw = I (Table 12). On

the other hand, in the current context, as shown in section 2, the GEE-Score is invariant to

the use of Rw. We also note that the UminP and SPU(∞) (and SPUw(∞)) tests could have a

severe loss of power with the use of a non-diagonal working correlation structure, even if

the working correlation structure was the same as the true CS structure, as analyzed in

section 2.

3.1.7 Combining the GEE Score and aSPU tests—It has been shown that, depending

on the correlation structure for multiple traits and association parameters between SNPs and

traits, one of the GEE Score test and aSPU test was better than the other, but neither could

dominate the other across all situations. In light of this result and that in practice it is

unknown which test would be more powerful, it might be productive to combine the two

tests. A simple strategy is to take the minimum p-value of the two tests, yielding an

aSPU.Sco test with test statistic
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where PSco is the p-value of the Score test (and PSPU(γ) is the p-value of the SPU(γ) test).

To calculate the p-value of the aSPU.Sco test, we do not need another level of resampling;

we simply include the Score test along with the SPU tests in the simulation algorithm

discussed earlier for the aSPU test.

Table 13 shows the results for the multiple traits with a CS(0.3) correlation matrix. First, it is

clear that the new test could maintain a satisfactory Type I error rate. Second, the

performance of the new test was always between the other two tests, often closer to the

winner. For example, in the case of a causal SNP weakly associated with 5 traits: i) when

testing on the five associated traits, the Score test was less power than the aSPU test with

their power as 0.464 and 0.632 respectively, while the power of the new test was 0.612, very

close to the aSPU test; ii) on the other ahnd, when testing on 10 traits, the power of the

Score test was 0.569, larger than 0.456 of the aSPU test, and the new test achieved the

power of 0.537, again close to the winner.

3.2 ADNI data

We applied the methods to the ADNI cohort at baseline, which consisted of 680 non-

Hispanic Caucasians with both genotype and phenotype data, including 192 healthy

controls, 327 subjects with mild cognitive impairment and 161 patients with Alzheimer's

disease. We would like to use a few structural MRI-derived multiple traits as intermediate

phenotypes to assess their association with genetic variation. We downloaded from the

ADNI website 56 cross-sectional FreeSurfer traits related to volumetric and cortical

thickness measures at the baseline as processed by the UCSF team (Hartig et al 2012). For

illustration, we only tested 20 SNPs shown by Shen et al (2010) to be marginally

significantly associated with one or more of the FreeSurfer traits. Here we considered only 7

multivariate traits consisting of a varying number of univariate traits as shown in Table 14,

which were singled out by Shen et al (2010) to be more significantly associated with some

of the 20 SNPs. The 7 multivariate traits included each of the six multivariate traits in Table

14 at the right side of the brain plus one of them (MeanPar) at the left side of the brain too.

The covariates included were sex, handedness, brain volume, education (in years), and age.

There were in total 680 subjects.

We first used B = 10000 for any simulation-based method (i.e. GEE-UminP, GEE-SPU and

GEE-aSPU tests) to calculate p-values. Then for those SNPs with p-value< 5/B, we

gradually increased B to 105, then to 106, and finally up to 107 if needed. Other tests used

asymptotics to calculate their p-values.

We present the heat maps of − log10 (p-values) of the new methods in Figure 1; as a

comparison, the results from four existing methods are shown in Figure 2. In agreement with

our theoretical analysis and simulation study, it is confirmed that i) the GEE-Score test,

MANOVA and MultiPhen, ii) the GEE-UminP test and TATES, and iii) the GEE-SPU(1)

test and the Averge method, yielded similar results. For this dataset, it turns out that the
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GEE-SPU(2), GEE-aSPU and GEE-aSPUw tests also gave p-values similar to each other,

and to those of GEE-SPU(1). However, the three groups i)–iii) of the tests did give quite di

erent results. Below, taking the GEE-Score, GEEUminP and GEE-SPU(1) as a

representative for each group, we show their identified marginally significant SNPs at p-

values < 10−6 and < 10−5 respectively. i) The GEE-Score test identified an association

between rs429358 (in gene ApoE) and RMeanPar (MeanPar at the right side of the brain)

with a p-value of 8.45 × 10−7; it also gave a p-value of 8.13 × 10−6 for rs7526034 and

RMeanLatTemp. ii) the GEE-UminP test detected rs7526034 marginally associated with

RMeanLatTemp and RMeanTemp with p-values of 3.10 × 10−6 and 7.90 × 10−6

respectively; note neither is significant at the level of p-value< 10−6. iii) the GEE-SPU(1)

test identified rs7526034 to be associated with three traits, RMeanTemp, RMeanLatTemp

and RMeanMedTemp, with p-values of 2.00×10−7, 6.00×10−7 and 9.00×10−7 respectively,

in addition to a marginal association between rs12839763 and RMeanMedTemp with a p-

value of 2.00 × 10−6. As a comparison, the GEE-aSPU test gave results similar to the GEE-

SPU(1) test: for the above 4 associations indicated by the SPU(1) test, the aSPU test gave p-

values of 6.00 × 10−7, 9.00 × 10−7, 1.80 × 10−6, and 4.20 × 10−6 respectively; in addition, it

also gave a p-value of 9.00 × 10−6 to rs2075650 and LMeanPar. In summary, it appears that

the three groups of the tests could identify di erent sets of (marginally) significant

associations, though TATES and GEE-UminP did not identify any association with p-value

< 10−6, illustrating a possible loss of power in taking out only most significant univariate

associations.

As in the simulation study, the p-values obtained from the Average method and SPU(1)

were very close. However, because the former was based on the asymptotic Wald test while

the latter was a Score test based on simulations, their p-values might be slightly di erent. For

example, for association between rs2075650 and LMeanPar, the Average method gave a p-

value of 9.94×10−6, which was essentially the same as 1.10×10−5 by the GEE-SPU(1) test.

The similar results between the Average method (or SPU(1)) and SPU(2) or aSPU test were

presumably due to the relatively small numbers of univariate traits consisting of the seven

multi-variate traits. To investigate the robustness of the tests to a larger number of traits, we

pooled all seven multivariate traits together to form a combined trait; after removing

duplicated ones, a total of 26 univariate traits remained. Since all the methods indicated

marginal associations between the rs7526034 and/or rs429358 and several traits, we focused

on the two SNPs. As shown in Table 15, in agreement with earlier analyses of the seven

individual multivariate traits, i) for SNP rs429358, the GEE-Score test and MultiPhen gave

the most significant p-values; ii) for SNP rs7526034, the GEE-SPU(2) and aSPU tests

yielded most significant results, followed by those given by TATES and GEE-UminP.

However, the Average method and GEE-SPU(1) gave much less significant results,

suggesting their non-robustness to a large number of non-associated traits as confirmed in

the simulation study. In summary, it seems that the GEE-Score test (or equivalently

MultiPhen) and the GEE-aSPU test could give complementary and useful results.

To demonstrate the feasibility of the new tests for GWAS, we conducted a genome-wide

scan with a set of 31 FreeSurfer traits. Since the results did not o er additional new insights,

to save space, we report the results in Supplementary Materials.
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4 Discussion

In this paper we have developed a class of the so-called SPU tests for association analysis of

multiple (correlated) traits and a single SNP. We have also proposed an adaptive test called

the aSPU test to estimate and thus select the most powerful SPU test for a given dataset. For

multivariate trait-single SNP analysis, based on a marginal regression model in GEE that

allows the SNP to have different effect sizes and e ect directions on different traits, the aSPU

test can adapt to the existence and the number of the null (non-associated) traits e ectively.

With a larger power parameter γ, the SPU(γ) test reduces the influence of null traits and

reinforces the associated ones. Thus this test can maintain high power in the presence of a

large number of null traits. This property is especially useful for studies where many

correlated phenotypes are collected but there are no established guidelines to selecting

relevant phenotypes. On the other hand, in the presence of many associated traits, the

SPU(γ) test with a smaller γ will be more powerful. In particular, SPU(1) is quite similar to

the Average (or Sum) method as used in Shen et al (2012), while SPU(2) is an extension of

the SSU test for single trait-multilocus association analysis to multivariate trait-single locus

analysis. As noted, under suitable conditions the SPU(2) test is the same as MDMR or

KMR. We have also pointed out how some existing methods, like CCA/MANOVA, TATES

and MultiPhen are related to the various GEE-based tests. We emphasize that, many of the

existing methods, such as CCA/MANOVA and MultiPhen, may not be applicable to discrete

traits or multiple loci, while our proposed GEE-Score and GEE-aSPU tests can with their

general modeling and inference framework of GEE. Our proposed tests are potentially

useful for a large number of traits, as arising as intermediate phenotypes in neuroimaging

studies, which has not been adequately considered in the genetics literature. We also note

that our proposed GEE-aSPU test can be equally applied to multiple principal components

after PCA or PCH dimension reduction on a large number of traits, though further studies

are needed.

From simulation studies we observed that the relative performance of the GEE-based Score

and aSPU tests varied with the degree of the correlations among the traits and with the e ect

sizes of the causal SNPs. When the traits were somewhat more weakly correlated (e.g. with

an AR-1 correlation structure), regardless of the e ects size of the causal SNP, the aSPU test

was much more powerful than the Score test and UminP test. However, under some

situations, e.g. when the traits had a compound symmetry correlation structure, the aSPU

test might not be as powerful as the Score test when the e ect sizes were small; the opposite

conclusion held with larger e ect sizes. We note that, the aSPU test largely combines the

strengths of the SPU(1) (equivalently the Average method), SPU(2) (closely related to

MDMR and KMR), and SPU(∞) (similar to UminP and TATES), but differing from the

Score test and MultiPhen while the latter two (and CCA/MANOVA) perform similarly.

Since currently we do not have a simple guideline on how to choose between the aSPU and

Score tests in practice, we recommend the use of both; we have also explored combining the

two tests with some promising preliminary results (see Table 13), though more studies are

needed.

We have focused on multitrait association testing on a single SNP. A natural extenstion is to

multitrait-multiple SNP testing. For univariate trait analysis, it has been established that
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testing on multiple SNPs simultaneously may gain power (Pan 2009), especially for RVs as

evidenced by the increasing use of the burden tests and variance component tests (Basu and

Pan 2011). Pan et al (2014) have proposed and studied an analogous aSPU test for RVs,

which data-adaptively over-weights (unknown and estimated) associated RVs (while down-

weighting non-associated RVs). In contrast, here our proposed aSPU test adaptively over-

weights (unknown and estimated) associated traits (while down-weighting non-associated

traits). It would be interesting to see whether combining the two ideas would work for

multitrait-multiple SNP association testing, especially in the presence of large numbers of

traits and of SNPs. An advantage of the aSPU test is its weighting on, rather than directly

selecting, traits (or SNPs), in order to alleviate the e ects of non-associated traits (or SNPs)

on diminishing the power of a test, expected to be present with many traits (or SNPs); given

small e ect sizes of common variants (or small MAFs of RVs), weighting tends to

outperform selection.

It seems to be a common belief that accounting for correlations among multiple traits would

automatically increase power, which however may not be true, or at least not as simple as it

may sound. Here are our arguments. First, using a non-independent working correlation

matrix Rw ≠ I in GEE can be regarded as an attempt to account for correlations among

multiple traits; however, as shown in Tables 1 and 12, in these situations a test may or may

not have improved power. In particular, the GEE Score test is invariant to the use of the

working correlation matrix (with an equal cluster size). Second, as directly shown

numerically here (e.g. Table 9), the GEE-SPU(2) test could be more powerful than the GEE

Score test, though the SPU(2) test statistic ignores the correlations among the components of

the score vector (due to the correlations among the traits) while the Score test statistic does

not. The same phenomenon is also observed in single trait-multiple SNP analysis (Pan

2009), in which the SSU test (or equivalently KMR) is known to be often, but not always,

more powerful than the Score test. Pan (2009) offers an explanation based on a test's

rejection region, which however is hard to visualize for high-dimensional testing while the

power also depends on some unknown association parameters. Certainly this is a topic worth

further investigation.

Finally, we have not compared our methods with those based on constructing latent

composite traits such as PCA and PCH; a particularly interesting topic is to investigate how

our proposed tests compare with the modified PCH method of Lin et al (2012) for high-

dimensional neuroimaging traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Appendix: Relationships Between the New and Existing Tests

A.1 The Average (or Sum) test and the GEE-SPU(1) test

A simple dimension reduction method is to take the average (or sum) of the multiple traits

and use it as a single trait to assess its association with a single SNP; we call the

corresponding method as the Average or Sum method (Shen et al 2011; van der Sluis et al

2013). It is easy to see that the score vectors of the two methods in linear regression (or any

GLM with a canonical link) are equivalent to each other (up to a constant) as

which is equal to the SPU(1) test statistic under Rw = I in GEE. Hence, the Score test version

of the Average or Sum test and GEE-SPU(1) tests (under Rw = I) are exactly the same. We

implemented the Average test as a Wald test and used its asymptotic distribution to calculate

its p-values while we used simulations to calculated the p-values for GEE-SPU(1), which

led to some minor di erences in their results.

A.2 TATES, GEE-UminP, GEE-SPUw(∞) and GEE-SPU(∞) tests

It is easy to verify that the GEE-UminP and GEE-SPUw(∞) tests are exactly the same. It is

noted that, under the working independence model, the GEE score vector and its covariance

estimate are exactly the same as that for univariate analyses on each of the multiple traits

separately. Hence, the GEE-UminP and GEE-SPUw(∞) tests are also closely related to

univariate analysis-based TATES (van der Sluis et al 2013), but di er in two aspects: first,

TATES uses Simes procedure for multiple testing adjustment, while the former two use an

“exact” method for such a purpose; second, TATES uses a correlation matrix input by the

user to estimate the null distribution of the test statistic, hence is computationally simpler but

may be less accurate.

A.3 CCA, MANOVA and the GEE-Score test

To test for association between multiple traits and a single SNP (without any other

covariates), CCA and MANOVA are equivalent (Ferreira and Purcell 2009; Yang and Wang

2012). They are based on the largest eigen-value ρ2 of
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where ,  and  are sample variance-

covariance matrices. In the current context with a single SNP xi, since B is a scalar, we have

ρ2 = B.

With a working independence model Rw = I, the GEE-Score test statistic is

in which the second equality holds because SXX is a scalar. Furthermore, as shown earlier,

the GEE-Score test is invariant to Rw in the current context. Hence CCA and MANOVA are

equivalent to the GEE-Score test, regardless of the working correlation matrix Rw being used

in GEE.

A.4 MDMR, MANOVA and the GEE-SPU(2) test

MDMR is a nonparametric method as a generalization of Fisher's MANOVA (McArdle and

Anderson 2001); it has been applied to detect association between a single trait and multiple

SNPs, named as genomic distance-based regression (GDBR) (Wessel and Schork 2006).

Schork and colleagues have outlined its application to analysis of longitudinal or

multivariate traits (Zapala and Schork 2012). We briefly summarize its main steps as the

following:

Step 1. Calculate an n × n distance matrix for all pairs of subjec ts by D = (Dij) with Dij

= d(Yi, Yj) and d(, ) being a distance or semi-distance metric.

Step 2. Calculate A = (−Dij
2/2).

Step 3. Obtain a centered similarity matrix G = (I − 11′/n)A(I − 11′/n), where 1 is an n

× 1 vector of all 1's;

Step 4. Denote X as the n × 1 vector of centered genotype scores with elements xi (and

).

Step 5. Calculate the projection matrix H = X(X′X)−1X′;

Step 6. Calculate a pseudo F-statistic as

(8)

where tr(A) is the trace of matrix A.

To obtain a p-value, we recourse to permutations by shu ing X (or, equivalently, shuffling

both the rows and columns of A simultaneously).
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As discussed by McArdle and Anderson (2001), if G is an outer product matrix, say G = ZZ′

with an n × k matrix Z, the above F-test is simply testing H0′ : B = 0 in a multivariate linear

model

(9)

where 1 is an n × 1 vector of all 1's, μ is a 1 × p vector of unknown intercepts, B is a 1 × p

vector of unknown regression coe cients, and ∈ is an n × p matrix of random errors.

Following the same argument in Pan (2011), it can be shown that

(10)

which is the same as the GEE-SPU(2) test statistic for the multivariate linear model (9)

under the working independence model. In particular, if the Euclidean distance (i.e. L2-

norm) is used as the distance metric d(, ), we have Z = Y ; thus, MDMR(L2), the MDMR

implementation with the Euclidean distance, is the same as the GEE-SPU(2) test.

Importantly, as to be shown, GEE-SPU(2) loses power in the presence of many null traits, so

does MDMR.

Furthermore, MANOVA is based on the same model (9) with Z = Y ; however, the

(approximate) F statistics in MANOVA are di erent from (8). For example, the Wilks

statistic is based on

with |B| as the determinant of B. For this reason, MANOVA and MDMR(L2) will not be the

same.

A.5 KMR and the GEE-SPU(2) test

KMR has been extended to multivariate quantitative traits (Maity et al 2012; Schifano et al

2012; Wang et al 2013). In the current setting, its test statistic is

where V0 = Var(Y|H0) and K is a kernel function. With a single SNP, it su ces to use a linear

kernel with K = XX′, thus TKMR is the same as the GEE-SPU(2) test statistic if the working

correlation Rw is the true correlation structure of Yi (i.e. Rw = Corr(Yi|H0)).

Since the extended KMR method is based on a mixed-effects model, it is not surprising to

see that it requires specifying the correct correlation structure; in contrast, our proposed

GEESPU(2) and other SPU tests only need a working, not necessarily correct, correlation

structure Rw, maintaining the main advantage of the GEE methodology (while possessing its
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disadvantage of possible e ciency loss). Furthermore, it is not clear how to extend KMR to

multiple discrete (e.g. binary) traits, while our GEE-SPU tests can be easily extended to

other types of traits (as long as they can be modeled by GLMs). More importantly, as to be

shown, GEE-SPU(2) loses power in the presence of many null traits, suggesting the same

drawback of KMR.

A.6 MultiPhen and the GEE-Score test

MultiPhen (O'Reilly et al., 2012) is based on fitting a proportional odds model (POM). For

simplicity, here we assume that xi's are not centered or transformed; otherwise, we just need

to modify some notation accordingly. Define πj(y) = Pr(xi = j|Yi = y), and

 for j = 0, 1 and 2. The POM is

(11)

for j = 0 and 1. To test H0: β = (β1, ..., βk)′ = 0, MultiPhen applies a likelihood ratio test. We

can equally apply an asymptotically equivalent Score test. Following McCullagh (1980),

after some algebra, we derive the negative score vector for the POM as

(12)

where  for j = 0, 1 and 2. In contrast, the Score vector for the GEE

working independence model (4) can be written as

(13)

Comparing the two score vectors UPOM and UGEE, we see that they only differ in their

weights on Yi's for xi = 0 and xi = 2. Hence, we would expect that MultiPhen and GEE-Score

test give similar results unless the MAF of xi is extreme. The similarity of empirical

performance between MultiPhen and MANOVA was observed by other authors (e.g. van

der Sluis et al 2013), which is shown theoretically here, based on our earlier result on the

equivalence between MANOVA and the GEE-Score test.

A.7 Generalized Kendall's tau and the GEE-Score test

Zhang et al (2010) proposed a nonparametric method to test association between multiple

traits and a single SNP. The test statistic is a U-statistic as a generalized Kendall's tau

(denoted as GKτ). Specifically, define uij = (f(Yi1 − Yj1), ..., f(Yiq − Yjq))′, where f() is an

identity function for quantitative traits or binary traits, or a sign function for ordinal traits; in

the former case, we have uij = Yi − Yj. Define . Then the GKτ statistic, after

ignoring a constant factor, 2/(n − 1), is , which is asymptotically distributed as

N(0, V0) under H0. The corresponding GKτ test is a score or Wald-type test:
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 under H0. With quantitative or binary traits, it is easy to verify

; under this condition we have exactly τ = U if a canonical

link function and a working independence model are used in GEE, suggesting the

equivalence between the GKτ test and the GEE Score test with Rw = I, which was confirmed

by our numerical results (not shown). It is interesting to note that the nonparametric GKτ

test coincides with our semi-parametric GEE approach.

This equivalence suggests a natural extension of the GKτ test to multiple SNPs (or markers):

a new GKτ test statistic can be defined as the same as the score vector U for multiple SNPs

in GEE with a canonical link function and a working independence model. This extension

overcomes a conceptual di culty in generalizing Kendall's tau to two random vectors with

unequal lengths. Furthermore, rather than using a score- or Wald-type test (which may be

low-powered with a high dimensionality of kq), we can explore the power of the aSPU test

as discussed before. Finally, our proposed approach di ers from the GKτ test in the case with

covariates. The modified GKτ test with covariates (Zhu et al 2012) uses a weighting scheme

to adjust for covariate effects, in contrast to our regression approach.
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Figure 1.
The heatmaps of − log10 (p-values) of the GEE-based tests for seven multivariate traits.
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Figure 2.
The heatmaps of − log10 (p-values) of the four existing tests for seven multivariate traits
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Table 1

Component-wise signal magnitude with various Rw and k in GEE.

Rw I R0: CS(r = 0.5) R0: CS(r = –0.5)

k ≥ 5 5 10 40 400 5 10 40 400

E(U1) 1 0.3 1.091 1.756 1.975 −1 0.191 0.577 0.658

Var(U1) 1 1.667 1.818 1.951 1.995 0.333 0.571 0.649 0.665

λ 1 1 0.067 0.655 1.581 1.955 3.000 0.064 0.513 0.652

E(U6) 0 - −0.909 −0.244 −0.025 - −0.476 −0.090 −0.008

Var(U6) 1 - 1.818 1.951 1.995 - 0.571 0.649 0.665

λ 6 0 - 0.455 0.031 0.0003 - 0.397 0.013 0.0001

max j=1
k λj

1 0.067 0.655 1.581 1.955 3.000 0.397 0.513 0.652
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Table 2

Relationships between the existing and new tests.

Method Model or test statistic Relation to the new tests

The Average method
(Shen et al 2011) ∑ j=1

k Y ij = α0 + α1xi + ei, Applying the Score test on H0: α1 = 0.
Average = GEE-SPU(1).

TATES (van der Sluis
et al 2013)

Yij = β0,j + β1,jxi + eij for j = 1, 2, ..., k. Testing for H0: β1,1 = ... = β1,k = 0 with
analytical approximations to calculate a p-value.

TATES ≈ GEE-UminP ≈ GEE-
SPUw(∞).

CCA=MANOVA
(Ferreira & Purcell
2009; Yang & Wang
2012)

CCA seeks to maximize the correlation between a linear combination of

(Yi1, ..., Yik) and xi. Test statistic: B = SXX
−1∕2SXY SYY

−1SYX SXX
−1∕2

CCA=MANOVA=GEE-Score.

MDMR (Zapala &
Schork 2012) Dij = d (Y i, Y j), A = ( − Dij

2 ∕ 2), G = (I – 11′/n)A(I – 11′/n), H = X(X

′X)–1X′, Test statistic: F = tr(HGH)/tr[(I – H)G(I – H)]

MDMR=GEE-SPU(2) if d(,) is
Euclidean.

KMR (Maity et al
2012) Test statistic: T KMR = (Y − Y

‒)′V0
−1K V0

−1(Y − Y
‒) KMR = GEE-SPU(2) if K = XX′

and Rw = Corr(Yi|H0).

MultiPhen (O'Reilly et
al., 2012) πj

(y) = Pr(xi = j ∣ Y i = y), κj
(y) = ∑m=0

j πm
(y) for j = 0, 1, 2,

log
κj

(y)

1 − κj
(y) = αj − y ′β for j = 0 and 1. Applying the Score (or

likelihood ratio) test on H0: β = 0.

MultiPhen ≈ GEE-Score.

Generalized Kendall's
tau (Zhang et al 2010) uij = (Yi1 – Yj1, ..., Yiq – Yjq)′, u

‒
i = ∑ j=1

n uij ∕ n, τ = ∑i=1
n xi u

‒
i. Test

statistic: T = τ ′V0
−1τ.

GK-tau = GEE-Score.
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Table 13

Empirical Type I error rates (for β = 0) and power (for β ≠ 0) for the multiple traits with a CS(0.3) correlation

matrix; for β ≠ 0, the first five traits were associated with a causal SNP with log-ORs βj ~ U(0.8, 1) or ~ U(0.2,

0.3), while all others had βj = 0. An independence working correlation structure was used in GEE.

β = 0 βj ~ U(0.2, 0.3) βj ~ U(0.1, 1)

#traits Score aSPU aSPU.Sco Score aSPU aSPU.Sco Score aSPU aSPU.Sco

5 0.051 0.050 0.051 0.468 0.632 0.612 0.682 0.865 0.832

10 0.060 0.051 0.059 0.573 0.456 0.537 0.684 0.795 0.777

20 0.060 0.047 0.048 0.535 0.305 0.463 0.611 0.757 0.741

30 0.032 0.049 0.042 0.456 0.257 0.394 0.528 0.703 0.693

40 0.054 0.054 0.057 0.409 0.211 0.321 0.424 0.639 0.628
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Table 14

Multivariate traits. A letter “L” or “R” is to be added to each trait's ID to indicate the left or right side of the

brain.

Trait ID Trait description

MeanCing Mean thickness of caudal anterior cingulate, isthmus cingulate, posterior cingulate, and rostral anterior cingulate

MeanFront Mean thickness of caudal midfrontal, rostral midfrontal, superior frontal, lateral orbitofrontal, and medial orbitofrontal gyri
and frontal pole

MeanLatTemp Mean thickness of inferior temporal, middle temporal and superior temporal gyri

MeanMedTemp Mean thickness of fusiform, parahippocampal, and lingual gyri, temporal pole and transverse temporal pole

MeanPar Mean thickness of inferior and superior parietal gyri, supramarginal gyrus, and precuneus

MeanTemp Mean thickness of inferior temporal, middle temporal, superior temporal, fusiform, parahippocampal and lingual gyri,
temporal pole and transverse temporal pole
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Table 15

P-values of testing on a pooled set of 26 univariate traits.

GEE

SNPs Average MultiPhen TATES UminP Score SPU(1) SPU(2) aSPU

rs7526034 1.40e-04 5.82e-04 1.72e-05 2.10e-05 5.86e-04 7.30e-05 7.00e-06 7.00e-06

rs429358 1.42e-04 1.68e-05 1.23e-04 1.50e-04 2.32e-05 1.10e-04 7.00e-05 1.60e-04
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