The Average method (Shen et al 2011) |
, Applying the Score test on H0: α1 = 0. |
Average = GEE-SPU(1). |
TATES (van der Sluis et al 2013) |
Yij = β0,j + β1,jxi + eij for j = 1, 2, ..., k. Testing for H0: β1,1 = ... = β1,k = 0 with analytical approximations to calculate a p-value. |
TATES ≈ GEE-UminP ≈ GEE-SPUw(∞). |
CCA=MANOVA (Ferreira & Purcell 2009; Yang & Wang 2012) |
CCA seeks to maximize the correlation between a linear combination of (Yi1, ..., Yik) and xi. Test statistic:
|
CCA=MANOVA=GEE-Score. |
MDMR (Zapala & Schork 2012) |
, G = (I – 11′/n)A(I – 11′/n), H = X(X′X)–1X′, Test statistic: F = tr(HGH)/tr[(I – H)G(I – H)] |
MDMR=GEE-SPU(2) if d(,) is Euclidean. |
KMR (Maity et al 2012) |
Test statistic:
|
KMR = GEE-SPU(2) if K = XX′ and Rw = Corr(Yi|H0). |
MultiPhen (O'Reilly et al., 2012) |
for j = 0, 1, 2, for j = 0 and 1. Applying the Score (or likelihood ratio) test on H0: β = 0. |
MultiPhen ≈ GEE-Score. |
Generalized Kendall's tau (Zhang et al 2010) |
uij = (Yi1 – Yj1, ..., Yiq – Yjq)′, . Test statistic: . |
GK-tau = GEE-Score. |