Skip to main content
. Author manuscript; available in PMC: 2015 Aug 1.
Published in final edited form as: Neuroimage. 2014 Apr 1;96:309–325. doi: 10.1016/j.neuroimage.2014.03.061

Table 2.

Relationships between the existing and new tests.

Method Model or test statistic Relation to the new tests
The Average method (Shen et al 2011) j=1kYij=α0+α1xi+ei, Applying the Score test on H0: α1 = 0. Average = GEE-SPU(1).
TATES (van der Sluis et al 2013) Yij = β0,j + β1,jxi + eij for j = 1, 2, ..., k. Testing for H0: β1,1 = ... = β1,k = 0 with analytical approximations to calculate a p-value. TATES ≈ GEE-UminP ≈ GEE-SPUw(∞).
CCA=MANOVA (Ferreira & Purcell 2009; Yang & Wang 2012) CCA seeks to maximize the correlation between a linear combination of (Yi1, ..., Yik) and xi. Test statistic: B=SXX12SXYSYY1SYXSXX12 CCA=MANOVA=GEE-Score.
MDMR (Zapala & Schork 2012) Dij=d(Yi,Yj),A=(Dij22), G = (I – 11′/n)A(I – 11′/n), H = X(X′X)1X′, Test statistic: F = tr(HGH)/tr[(I – H)G(I – H)] MDMR=GEE-SPU(2) if d(,) is Euclidean.
KMR (Maity et al 2012) Test statistic: TKMR=(YY)V01KV01(YY) KMR = GEE-SPU(2) if K = XX′ and Rw = Corr(Yi|H0).
MultiPhen (O'Reilly et al., 2012) πj(y)=Pr(xi=jYi=y),κj(y)=m=0jπm(y) for j = 0, 1, 2, logκj(y)1κj(y)=αjyβ for j = 0 and 1. Applying the Score (or likelihood ratio) test on H0: β = 0. MultiPhen ≈ GEE-Score.
Generalized Kendall's tau (Zhang et al 2010) uij = (Yi1Yj1, ..., Yiq – Yjq)′, ui=j=1nuijn,τ=i=1nxiui. Test statistic: T=τV01τ. GK-tau = GEE-Score.