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Mouse Visual Neocortex Supports Multiple Stereotyped
Patterns of Microcircuit Activity
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Spiking correlations between neocortical neurons provide insight into the underlying synaptic connectivity that defines cortical micro-
circuitry. Here, using two-photon calcium fluorescence imaging, we observed the simultaneous dynamics of hundreds of neurons in
slices of mouse primary visual cortex (V1). Consistent with a balance of excitation and inhibition, V1 dynamics were characterized by a
linear scaling between firing rate and circuit size. Using lagged firing correlations between neurons, we generated functional wiring
diagrams to evaluate the topological features of V1 microcircuitry. We found that circuit connectivity exhibited both cyclic graph motifs,
indicating recurrent wiring, and acyclic graph motifs, indicating feedforward wiring. After overlaying the functional wiring diagrams
onto the imaged field of view, we found properties consistent with Rentian scaling: wiring diagrams were topologically efficient because
they minimized wiring with a modular architecture. Within single imaged fields of view, V1 contained multiple discrete circuits that were
overlapping and highly interdigitated but were still distinct from one another. The majority of neurons that were shared between circuits
displayed peri-event spiking activity whose timing was specific to the active circuit, whereas spike times for a smaller percentage of
neurons were invariant to circuit identity. These data provide evidence that V1 microcircuitry exhibits balanced dynamics, is efficiently
arranged in anatomical space, and is capable of supporting a diversity of multineuron spike firing patterns from overlapping sets of
neurons.
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Introduction
There is an ongoing discussion as to the nature and extent of
microcircuit structure in mouse visual cortex. Murine primary
visual (V1) microcircuitry exhibits retinotopic mapping (Dräger,
1975; Bonin et al., 2011), but the orientation tuning of neurons is
not organized into anatomical columns (Bonin et al., 2011; Li et
al., 2012; Ohtsuki et al., 2012). Orientation tuning has been used
as evidence for columnar processing in primates, but the impli-
cation of a “salt and pepper,” or random, organization (Ohki et
al., 2005, Van Hooser et al., 2005) on the structure and function
of V1 in mouse is far less clear. Random assignment of orienta-
tion tuning implies a lack of architectural structure in cortex
(Bonin et al., 2011) compared with the clear columnar organiza-
tion in other areas of sensory neocortex, such as somatosensory
barrel field and primary auditory cortex (Woolsey and Van der
Loos, 1970; Bandyopadhyay et al., 2010). Further a “salt and pep-
per” organization may either suggest a lack of efficient circuit

wiring or it may act to minimize the wiring costs necessary for
connectivity between neurons while maintaining a full represen-
tation of the sensory space (Kaschube, 2014). Primary visual cor-
tex has also been hypothesized to contain microcircuitry that is
predominantly feedforward (Reid and Alonso, 1995). This prop-
erty has been used in many V1 layer-specific network models to
capture aspects of the cortical representation of visual informa-
tion in cat and macaque (Miller et al., 1989). How these different
organizational features manifest functionally at the mesoscopic
scale, spanning lamina and comprising hundreds of neurons,
remains unclear.

Spatiotemporally patterned spiking circuit activity has been
shown to encode sensory input (Luczak et al., 2007), motor out-
put (Churchland et al., 2007), and behavioral choice (Harvey et
al., 2012). These patterns of activity are generated by specific
circuits of interconnected neurons that interact with each other
(Luczak and MacLean, 2012; Sadovsky and MacLean, 2013).
How the structure of V1 microcircuitry determines the nature of
temporally patterned activity in V1 remains unclear. Here we
used two-photon microscopy in combination with calcium indi-
cator dyes to study spontaneous multineuronal dynamics (Vo-
gelstein et al., 2010; Sadovsky et al., 2011) with a dense unbiased
sampling of large numbers of neurons (Sadovsky and MacLean,
2013) in mouse V1. To best sample functional microcircuitry
(Milo et al., 2002), we maximized the number of neurons imaged
while using a heuristically optimal scan path, which allowed us to
achieve scan rates an order of magnitude greater than the tradi-
tional raster scan method (Sadovsky et al., 2011; Sadovsky and
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MacLean, 2013). By imaging the correlated spiking activity or
activity flow at the mesoscale level, we generated functional wir-
ing diagrams from mouse V1 describing reliable interrelation-
ships in spike times. In addition, we evaluated the extent to which
spiking activity of individual cells in V1 microcircuits is tempo-
rally stereotyped.

Materials and Methods
Preparation of V1 calcium indicator-loaded slices. Fura-2 AM calcium
indicator-loaded coronal and 15 degree angle off coronal axis primary
visual cortex slices of C57BL/6 strain mice of both sexes were obtained in
the same manner as previously described (Sadovsky and MacLean, 2013)
on postnatal day ages 14 –17. Animals were anesthetized by intraperito-
neal injection of ketamine-xylazine, rapidly decapitated, and had their
brains removed and placed in oxygenated ice-cold “cut” artificial CSF
(contents in mM as follows: 3 KCl, 26 NaHCO3, 1 NaH2PO4, 0.5 CaCl2,
3.5 MgSO4, 25 dextrose, 123 sucrose); 500-�m-thick coronal slices con-
taining the sensory region of interest were cut using a vibratome
(VT1000S; Leica). Slices were then placed in a 35°C oxygenated incuba-
tion fluid (Incu-ACSF; contents in mM as follows: 123 NaCl, 3 KCl, 26
NaHCO3, 1 NaH2PO4, 2 CaCl2, 6 MgSO4, and 25 dextrose) for 30 – 45
min. Calcium dye loading was then achieved by placing all slices into a
small Petri dish containing �2 ml of Incu-ACSF, an aliquot of 50 �g
fura-2 AM (Invitrogen) in 13 �l DMSO, and 2 �l of Pluronic F-127
(Invitrogen) as previously described (Sadovsky et al., 2011). Experi-
mental procedures were approved and performed in accordance with
the Institutional Animal Care and Use Committee at the University of
Chicago.

Data acquisition. Experiments were performed in standard ACSF
(contents in mM as follows: 123 NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 2
CaCl2, 2 MgSO4, and 25 dextrose, which was continuously aerated with
95% O2, 5% CO2). Whole-cell current-clamp recordings were made us-
ing Multiclamp 700B amplifiers (Molecular Devices). Rapid whole-field
imaging of fura-2 AM-loaded neurons was achieved by taking multiple 5
min movies using the Heuristically Optimal Path Scanning technique
and microscopy setup as previously detailed (Sadovsky et al., 2011), al-
lowing us to monitor action potential generation within individual neu-
rons. Our dwell time parameter for each experiment was fixed at a value
of 16 samples/cell/frame for each experiment.

Spike and circuit event detection. Spikes were inferred from the calcium
traces of individual neurons using a modified version of fast non-
negative spike deconvolution (Vogelstein et al., 2010). We examined the
software’s capability to correctly infer spikes in cells for which we also had
simultaneous patch-clamp recording data and biased our inference to-
ward minimizing false positives (MacLean and Yuste, 2009; calibration
presented in Sadovsky et al., 2011). Spikes from each cell’s calcium trace
were then identified. Circuit events were defined as epochs where the
network of cells was active for at least 500 ms. At least four circuit events
were necessary for a field of view to be included in our dataset.

Statistical analysis. All analyses were performed with MATLAB (Math-
Works), with the exception of flow hierarchy, and figures of graphical
networks, which were performed in Python using the NetworkX Python
package. Data are presented as mean � SD. Comparison p values were
obtained using the Wilcoxon rank sum test, implemented via the
MATLAB ‘ranksum’ function unless otherwise noted. For this and other
tests, � � 0.05 was used as the cutoff for significance.

Functional graph creation. Structure in the cross-correlation of neuro-
nal spiking reflects structure in the underlying connectivity (Gerstein and
Perkel, 1969). If we let each neuron be represented by a node, we can
represent a functional microcircuit as a mathematical graphical object.
Suppose cell A fires before cell B for some proportion of all the times that
they fire. The reliability of this correlation between A and B can then be
incorporated mathematically as a directed and weighted edge starting at
node A and pointing to node B. This representation indicates that the
order of firing is preserved and that there exists a functional connection
between cell A and cell B, regardless of the actual neuroanatomical and
physiological way this occurs (Gerstein et al., 1978). As described previ-
ously (Sadovsky and MacLean, 2013), functional directional edges were

created for each dataset using single frame lagged correlated spiking with
weight equal to the proportion, or reliability, of observing a pairwise lag
correlation between two cells.

Anatomical identification and projection of functional connections into
the imaged field of view. We used biocytin-filled neurons as fiduciary
markers in combination with measures of distance from pia to identify
lamina. In addition, we used cell density measures from bright-field,
biotinylated NeuN staining and two-photon calcium florescence to help
confirm lamina location. To project functional connections (directed
edges) onto pairs of component neurons in the imaged field of view, we
used neuron centroid locations identified from two-photon imaging for
the start and end points of a vector.

Columnar/laminar flow. For each individual circuit event, directional
flow between lamina was defined within a field of view where a statisti-
cally significant correlation existed between time frames and distance
from the pial surface. Intercolumnar flow was determined similarly ac-
cording to distance to an arbitrary line perpendicular to the pial surface
not in the field of view. Events with significant correlations in both cases
were considered to have both types of flow. Events with no significant
correlation in either case were considered disperse.

Circuit peak detection. Multiple peaks were defined as time points in
the multiunit average where net spiking was greater than or equal to 90%
and �2 frames away from the maximum peak.

Fuzzy clustering. Fuzzy clustering was performed as in Sadovsky and
MacLean (2013). We created binary representations of each circuit event,
with 1 s indicating which cells were active at any point during the event
and 0 s representing cells not active in that event. Fuzzy c-means (FCM)
clustering was achieved using the MATLAB function ‘fcm’ with N clus-
ters, where N ranged from 2 to the total number of events for a single
slice. This function returns the membership function matrix indicating
how strongly each event belongs to each of the N specified clusters. For
our analysis, cluster sufficiency was defined as all events having at least
one cluster membership larger than 1/N � (1/N )/4. This indicated that
an event was unambiguously placed into a single fuzzy cluster. To obtain
the number of clusters necessary to explain all the events in a region, we
iteratively ran the fuzzy clustering method with increasing values of N,
looking for the point in which all events fell under the definition of being
sufficiently clustered. Because fuzzy clustering is dependent on initial
seed, we took the average output of 100 runs of the fcm function, with
each run consisting of either a maximum of 100 iterations or a clustering
improvement of �0.00001.

Spike timing precision. We established statistical significance of tempo-
ral stereotypy for each cell in a field of view by comparing all the individ-
ual spike trains of a cell obtained from every circuit event. Cells had to
be active in at least 4 events to be considered for analysis. To compare
spike trains, we used the D spike metric (Victor and Purpura, 1996) with a
time parameter (q) of 1 s. This comparison gave us a distance value
corresponding to the amount each spike train needed to be modified to
be identical across activations. Edit distance is inversely related to the
temporal similarity of spike trains. To determine whether distance values
were significantly smaller than what would be expected by chance we
created a null hypothesis comparison by generating 5000 shuffled spike
trains that preserved network firing rates and computing the edit dis-
tances. Shuffled spike trains were simulated with an inhomogeneous
Poisson process with a rate that was equal to the average network firing
rate across events. We then compared our observed metric value to those
from the shuffled population to obtain a p value (e.g., see Sadovsky and
MacLean, 2013). Cells showing a p � 0.05 were considered significant.

Rentian scaling. Rentian scaling was performed using a 2D modifica-
tion of the function “rentian_scaling” provided in the MATLAB Brain
Connectivity Toolbox (https://sites.google.com/site/bctnet/) imple-
menting Bassett et al. (2010). To avoid boundary conditions, only parti-
tions containing a sum of nodes less than half of the total population were
used for analysis.

Results
Using high-speed multiphoton laser scanning microscopy, in
combination with calcium indicator dye, we imaged the spiking
activity (Vogelstein et al., 2010; Sadovsky et al., 2011; Sadovsky
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and MacLean, 2013) of large unbiased and
densely sampled neuronal populations in
V1. We imaged activity of up to 979
(mean � 734 � 129; n � 11 datasets) neu-
rons in a 1.1 mm diameter circular field of
view in slices of mouse V1 neocortex (Fig.
1A) at speeds of 87 � 15 ms per frame. We
identified spontaneous, emergent, circuit
activity that is the result of synaptic con-
nectivity between neurons (Cossart et al.,
2003; Sadovsky and MacLean, 2013). This
top-down approach (from emergent dy-
namics to underlying structure) can
delineate multiple possible functional re-
lationships between neurons in a field of
view (Luczak et al., 2007; Luczak and Ma-
cLean, 2012). To control for sampling bias
resulting from slice angle, we created
slices 15 degrees off the coronal axis for
one-third of our experiments. We found
no notable differences between data col-
lected from this angle compared with cor-
onal slices and pooled the data as a result.
Spontaneous V1 circuit events (n � 104
events; Fig. 1C,D) spanned a range of cir-
cuit event sizes (populations of active
neurons � 176 � 94 cells) and durations
(1342 � 698 ms). Over the full time
course of the experiment, spontaneous V1
circuit events engaged the vast majority of
imaged neurons in every field of view
(80 � 12% across datasets) through mul-
tiple discrete circuit activations. We de-
fined the overall flow direction of spiking
activity during a circuit event by identify-
ing statistically significant correlation be-
tween active neurons across imaged
frames and distance from the pial sur-
face. We found that a sizable portion
(48%) of circuit events did not have a
dominant flow vector as they pro-
gressed. However, 36% of events had a
direct columnar flow, 8% had a directed
laminar flow, and 9% demonstrated a
combined columnar and laminar flow.
When we whole-cell patch-clamped
neurons in the field of view, we observed
that imaged activity was accompanied
by electrophysiological UP states in sin-
gle cells (n � 56 up states; Fig. 1E) (Sa-
dovsky and MacLean, 2013). Mesoscale
imaging of large numbers of neurons
without laminar bias allowed us to cap-
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Figure 1. Visual cortex is capable of spontaneous circuit activity. A, Experimental preparation of a 1.1 mm diameter field of view
of a V1 slice. B, Identified cells and single imaging frame example of activity from A. Active cells are in red. C, Spike raster of a single
circuit event. D, Multiunit average of above raster. E, Single neuron whole-cell patch-clamp example of a visual neuron in an
upstate during a circuit event. Action potentials have been truncated for presentation. F, Representative raster (quiescent intervals
between events removed) of 14 circuit events observed in a single visual field of view. For each cell (n � 613), a black tick mark

4

indicates a detected spike within a 72.8 ms imaging frame. G,
Top, Each data point (red star) represents a single circuit event.
Bottom, Each data point (blue x) represents a single circuit
event. H, Plots showing cumulative firing across multiple cir-
cuit events in rate-matched Poisson (left) and V1 data (right).
Each line represents a separate circuit event. Line color is nor-
malized to event durations from short events (cool colors) to
long events (hot colors).
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ture multiple and varied circuit events within a single field of
view (Movie 1; Fig. 1F ).

The temporal progression of circuit activity in V1
Circuit dynamics, or the propagation of spiking activity through
the network, have important implications for the organization of
the underlying circuit (Roxin et al., 2011; Litwin-Kumar and
Doiron, 2012). By imaging the activity of large neuronal popula-
tions during individual circuit events, we found that emergent
circuit events in V1 began with a small initial group of active
neurons (6 � 7 cells in the first 85 � 16 ms relative to even onset),
which then rapidly recruited additional neurons up to a peak
number of cells (39 � 23 cells) before exponentially decaying
(� � 743 ms from average for all circuits) back to quiescence, with
a full event comprised of a total of 176 � 94 active cells. This
neuronal recruitment pattern was common across circuit activa-
tions: 95% of events contained a single peak, which then decayed
to quiescence (Fig. 1D; see Materials and Methods). Across cir-
cuit events, the peak occurred within the within the first 28 �
15% (391 � 150 ms) of the full duration of the total circuit
activation. The discrete nature of each circuit event allowed us to
determine whether overall duration of an individual circuit event
was a linear function of firing (i.e., a similar scaled average firing
rate within the circuit across multiple durations). We found a
linear, correlative relationship between the number of spikes ob-
served and the duration of the imaged events (Fig. 1G, top; r �
0.72; linear R 2 fit � 0.51). Similarly, we found a linear, correlative
relationship between the number of cells active and the total
number of spikes in a circuit event (Fig. 1G, bottom; r � 0.94;
linear R 2 fit � 0.89). The relations between these variables de-
scribing V1 circuit dynamics in the majority of events indicated
that the functional circuit did not have a specific or defining size
and exhibited consistent dynamics over a large range of scales,
possibly reflecting inhibition and excitation in balance with one
another (Haider et al., 2006; Shew and Plenz, 2013). We did
observe nonlinear effects at the upper end of our numerical cir-
cuit size. This may be due to some circuit events being so large
that they involved cells outside our field of view, thus making

these observations an undercount of the total number of neurons
active.

We confirmed that these circuit dynamics reflect coordinated
neuronal interactions by comparing these cumulative spike
counts within recorded neurons to the cumulative spike counts
generated from homogeneous Poisson networks. These null hy-
pothesis populations were firing rate-matched to each cell in each
circuit event dataset. Circuit firing properties in V1 resulted in
sigmoidal-shaped cumulative progression of firing. In contrast,
the cumulative progressions in each Poisson network were, as
expected, nearly linear (Fig. 1H). These Poisson networks, which
contain no interactions between model cells, did not mimic the
cumulative progression of spiking activity observed in the inter-
connected neurons of V1 (Thomson et al., 2002; Perin et al.,
2011).

Functional circuit flow of V1 circuitry indicates feedforward
network properties
To further evaluate the neuronal interactions that generate V1
circuit dynamics and to reveal aspects of the organization of V1
microcircuitry, we used the pairwise temporal progression of ac-
tion potentials between neurons (single frame lagged correlation)
to generate functional microcircuit wiring diagrams: graphs
whose weighted directed connections represented the probability
of lagged spiking activity. Graph theory provided a mathematical
framework and a set of established metrics for describing high
dimensional networks (Bullmore and Sporns, 2009) and allowed
us to quantify statistical features in the functional microcircuit
topology of V1. Circuit activations in each field of view were
translated into graph space with neurons acting as nodes, and
single frame lagged spiking activity between two neurons result-
ing in directed edges, weighted by their reliability (see Materials
and Methods) (Sadovsky and MacLean, 2013). Although not ev-
ery edge in a functional graph reflects an underlying synaptic
connection (Gerstein et al., 1978), we have previously found that
functional topologies captured the distance dependent likelihood
of a connection that is found in the underlying connectivity
(Song et al., 2005, Perin et al., 2011; Sadovsky and MacLean,
2013), and when translated into actual connections in neuronal
network models, they become capable of recapitulating experi-
mentally measured dynamics (Sadovsky and MacLean, 2013).

In V1, we found that functional graphs were sparse, contain-
ing an average ratio of 13 � 8 edges to each node. However, these
edges were not distributed evenly, as we found neurons in each
dataset that contained more edges than average, consistent with
the idea of hub neurons (Picardo et al., 2011). Hubs with degree
�1 SD of mean network degree equated to 10.6 � 4% of all
neurons (�3 SDs, 1.6 � 0.8%). We defined hub neurons accord-
ing to the number of edges that a neuron possessed, and it re-
mains to be seen what relation these neurons have to previously
defined hubs in V1 (Yu et al., 2008; Folias et al., 2013). Nodes
tended to be clustered together in a small-world-like fashion,
where their directed clustering coefficient (Fagiolo, 2007) was
significantly greater than that found in degree-matched random
networks. For each dataset, 100 random networks were created
with the same degree (Wilcoxon signed rank test: p � 9.8 �
10	4) while maintaining average path length (data � 2.7 � 0.4
average path, random � 2.8 � 0.7, Wilcoxon signed rank test p �
1). Thus, V1 functional networks were marked by nonrandom
structure.

We quantified the recurrence of functional V1 circuit archi-
tecture using two metrics. As a null hypothesis, we used Erdős–
Rényi random topologies in which edges between nodes are set

Movie 1. V1 example activity. Top, Filled red neurons are cells, which were active in a frame.
Bottom, Representative raster (quiescent intervals between events removed) of 9 circuit events
observed in a single visual field of view. For each cell (n � 764), a black tick mark indicates a
detected spike within a 90 ms imaging frame. Movie time is altered for display. Top, Red line
indicates current frame projected spatially.
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with a fixed probability, to establish an expectation based on total
node and edge count. For each dataset, we created 100 corre-
sponding Erdős–Rényi graphs with equal numbers of nodes and
an equal probability of connection as observed in the data (cor-
responding to 734 � 129 nodes; p(edge) � 0.019 � 0.012). As a
second null hypothesis, we constructed V1 permuted networks
that maintained out degree of each node but shuffled which
nodes to which those edges connected. Both null hypotheses al-
lowed us to evaluate whether circuit-specific patterns of node

connectivity were biased toward recur-
rence or feedforwardness. We analyzed
the aggregate structure of V1 graphs and
found that V1 nodes had a low ratio of in
to out degree, defined as the ratio of pre-
firing inward directed edges to postfiring
outward directed edges. This indicated a
bias toward outward flow. In contrast,
Erdős–Rényi random graphs (V1-Random)
were balanced (Fig. 2A). Because V1 micro-
circuitry demonstrated higher mean out
degree edges, we next evaluated whether
the overall topology, and all paths within
it, were biased toward a feedforward flow.
Specifically, we extended our graph anal-
ysis from path lengths of size 1, indicating
pairwise functional connections between
cells, to the largest possible path length in
a given network, encompassing all circuit
activity flow. To do this, we used the mea-
sure of flow hierarchy (Luo and Magee,
2011) that quantifies flow patterns
through the wiring diagrams. Specifically,
this metric quantifies the extent to which
the flow propagates in a unidirectional
manner. Because cycles reflect recurrent
connections in the functional wiring ar-
chitecture, we used this metric as a mea-
sure of recurrence in V1 functional graphs
with highly recurrent networks having
values close to zero, and highly feedfor-
ward networks having values close to 1.
V1 contained a moderate level of flow re-
currence compared with the null hypoth-
eses (Fig. 2B). Random networks were
entirely recurrent, probably because of
the formation of a large interconnected
network with multiple cycles (Newman et
al., 2001). Interestingly, permuted V1 net-
works, where postsynaptic targets were
randomized even as the total number of
postsynaptic partners was maintained,
were almost entirely feedforward, sug-
gesting that the underlying V1 synaptic
connections achieve a middle ground be-
tween these two extremes balancing feed-
forward structure with recurrent cycles.

We then determined whether func-
tional circuits were efficiently assembled
in the physical space of cortex by studying
functional wiring costs. To do so, we pro-
jected the functional graphs back into an-
atomical space (Fig. 2C) (Sadovsky and
MacLean, 2013) and applied a measure of

Rentian scaling (Basset et al., 2010). This measurement, origi-
nally designed to analyze very-large-scale integration circuitry,
captures how efficiently a set of fixed structures with wiring be-
tween them is assembled in a physical space. This is achieved by
creating random partitions of physical space, then measuring
how often functional connections cross these partitions. The Eu-
clidean field of view was randomly partitioned multiple times,
and the number of nodes within each partition and the number of
edges crossing each partition were counted (Fig. 2C). We found a
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linear relationship between these nodes and crossing edges on a
log–log scale consistent with a modular, or Rentian, scaling of
connectivity (Fig. 2D; linear fit across all datasets, R 2 value �
0.87 � 0.13). These data indicated that functional circuits in V1
were embedded in physical space in such a way as to generate
efficiently wired physical circuitry. Further, this result is consistent
with the likelihood of a functional connection between neurons be-
ing dependent on spatial proximity while also maintaining topolog-
ical features.

V1 is marked by a high number of differentiated circuits
characterized by a variety of spatiotemporal firing patterns
We evaluated whether the spike trains of individual neurons were
temporally stereotyped using a statistical test measuring spike
train edit distance within individual neurons aligned perievent
across multiple circuit events (Victor and Purpura, 1996; Kruskal
et al., 2013; Sadovsky and MacLean, 2013). Using this method, V1
appeared to contain only a slightly above chance number of ste-
reotyped neurons across all datasets (14 � 7% neurons were
significant at the 0.05 significance level). This indicated that in-
dividual cells fired at different times over multiple circuit activa-
tions. Thus, overall, individual neurons in V1 displayed a large
diversity in their spike trains when considered in the context of all
observed circuit events.

It seemed paradoxical that individual events were feedforward
and demonstrated reliable firing patterns between cells yet had
very little temporal stereotypy in individual neuron spike trains.
We approached this paradox by determining whether this low
amount of stereotypy indicated a large number of different
groups of active cells (clusters) in the field of view. We computed
the smallest convex region containing all active cells and found a
range of convex hull areas in V1 (0.46 � 0.08 mm), correspond-
ing to 48 � 9% of field of view size. Visually, the overall set of
active cells in individual V1 circuit events appeared distinct from
one another (Fig. 3A). We found that active circuits were inter-
digitated and they shared active neurons (average pairwise over-
lap of active neurons between any two circuits being 22 � 11% in
single fields of view). Circuits were numerically small, defined by
total number of active cells as a percentage of all cells in the field
of view (32 � 17% cells active; Fig. 3B). Because the circuits

appeared varied, we wished to see how they clustered into groups.
We applied a fuzzy clustering metric (Sadovsky and MacLean,
2013) by observing separate, individual circuit activations (n �
104 total activations in n � 11 slices) and then determined
whether there were groups of neurons that best described these
circuits in the X-Y dimension. These groups can be thought of as
neuronal event centroids, clusters, or a set of cells that best over-
lap across multiple circuit events. Every individual circuit event is
assigned to one cluster, whereas the cells that make up that event
can be part of multiple clusters. For a given field of view, N circuit
events could be grouped into 1 to N clusters depending on the
proportion overlap of cells active in each event. Our analysis
demonstrated that V1 had more fuzzy groups, or circuits, in a
single field of view than would be expected by random chance
when conserving total spike count (Fig. 3C). The fact that even
randomized, rate-matched, firing resulted in fewer fuzzy circuits
than the real data suggested that the extent of the circuit variance
we found in V1 did not simply reflect spiking properties of V1,
but rather a specific property of network activation in this cortical
region.

Spatiotemporal activation reveals distinct, stereotyped
circuits in V1
With these results in mind, we reevaluated our estimation of
temporal stereotypy within individual neurons. While a small
percentage of cells (12%) exhibited firing patterns that were sim-
ilar across all circuit activations, we observed a greater number
that appeared to fire more similarly within their unique fuzzy
clustered circuits. To account for single-cell temporal stereotypy
while taking into account these emergent spatial patterns, we
determined temporal spiking similarity within spatially identi-
fied clusters, or circuits. We measured spike time precision
within those spatially defined groups using the same spike dis-
tance metric that we used to measure temporal precision within
individual neurons across all circuit activations. These results
were significantly different from those that we arrived at with
spatially agnostic designation of activity. V1 cells were signifi-
cantly more stereotyped when spikes were assigned to one spa-
tially defined circuit or another as appropriate. There was a
significant increase in stereotyped neuronal spikes within each
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clustered circuit over nonclustered results (nonclustered signifi-
cance � 13 � 8%, clustered significance � 84 � 9%, p � 5.5 �
10	05). In the context of their numerous circuit clusters, V1 neu-
rons spiked precisely. These analyses indicate that, whereas a
small percentage of neurons showed temporally precise spikes
regardless of which circuit was active, the majority of V1 neurons
exhibit stereotyped and temporally precise activity that was spe-
cific to the active circuit. We next considered how stereotyped
temporal spiking activity manifested across all cells active in a
cluster (Fig. 4A). Again, circuit events were first clustered spa-
tially and then active cells were ordered according to their mean
first spike time across all circuit events within a cluster relative to
the onset of event activity. Following this ordering, a structured
sequence of neuronal activation became clear in each active clus-
ter (Fig. 4B). Despite sharing a large number of neurons, each
sequence was specific to each cluster. When neurons common to
two spatially defined clusters were ordered by the mean first spike
times corresponding to the alternate cluster, we found that the
structured sequential activation was disrupted (Fig. 4C). Thus,
individual circuit events have unique, overlapping spatial struc-
ture, and cells are capable of unique temporal firing dynamics
dependent upon the circuit active. Spike times that were unique
to one cluster or another are potentially dictated by other spa-
tially patterned coactive cells.

Discussion
The dynamics exhibited by neuronal cir-
cuits provide insight into the operational
regimen of circuitry (Beggs and Plenz,
2003), the underlying topology (Roxin et
al., 2011; Litwin-Kumar and Doiron,
2012; Vlachos et al., 2012), and informa-
tion processing (Honey et al., 2007). Us-
ing multiphoton imaging, we studied
emergent V1 microcircuit dynamics.
These dynamics scaled linearly across cir-
cuit activations. We found that traditional
anatomical boundaries did not strongly
determine or shape the flow of circuit ac-
tivity. Instead, V1 was fractionated into a
number of functional circuits that were
interdigitated and shared a number of
neurons. We generated functional circuit
wiring diagrams: graphs with nodes being
neurons and directed connections being
lagged correlated activity between neu-
rons. Functional V1 microcircuit graph
metrics were marked by a balanced prev-
alence of cycles and feedforward connec-
tions (Lamme and Roelfsema, 2000).
These circuits are small world (Watts and
Strogatz, 1998) and have short path
lengths, which are embedded efficiently in
anatomical space according to a measure
of Rentian scaling (Bassett et al., 2010). It
appears that circuits must balance mini-
mization of wiring with topological struc-
ture, and the Rentian scaling relationship
of functional graphs suggests that this is
achieved with a modular circuit structure.
We also evaluated the extent of tempo-
rally precise patterned activity in V1 mi-
crocircuitry. If we considered all circuit
activations within an imaged field of view,

a very small subset of neurons showed temporally consistent
perievent spiking activity across all circuit activations. However,
if we first considered the spatially defined circuit identity, we
found a significant and substantial increase in the number of
neurons that were temporally precise. In aggregate, this resulted
in patterned multineuronal activations specific to each spatially
defined functional circuit. Together, these data suggest that V1
microcircuitry has substantial potential for encoding multiple
patterns of activity, which may be a beneficial strategy given rel-
atively few total neurons in this brain region in the mouse species.

V1 circuitry has been described as a dichotomy between feed-
forward excitation and lateral inhibition, often in the context of
orientation selectivity (Ringach et al., 1997). Our data suggest
that the underlying connectivity of V1 expresses a combination of
features from both of these classes. The reliability, stereotypical
timing, and network average firing trajectories, together with
flow topology metrics, indicate a strong feedforward drive, as
previously described in juvenile mouse V1 (Ko et al., 2013). Yet
this feedforward drive is also balanced with recurrence, as evi-
denced by V1 topology data falling midway between the random
topology and the permuted topology in the calculation of flow
hierarchy. This is consistent with the postulate that a minimal
amount of recurrence is necessary to sustain multineuronal pat-
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terned activity or trajectories (Helias et al., 2013). Strict spatial
constraints are not found in these networks, suggesting that mul-
ticolumnar processing is a major paradigm of network activation.
As our activity was not matched to specific stimuli, it is unknown
whether these functional circuits are the manifestation of orien-
tation tuning or rather reflections of other processes. If the mouse
functional columnar structure has been transformed into onto-
genetic columns (Li et al., 2012; Ohtsuki et al., 2012), this would
explain the rich dispersed, yet structured, activity which we ob-
served in our data.

A theoretical study has suggested that anatomically structured
connectivity is not necessary for the emergence of orientation
selectivity in the visual cortex (Hansel and van Vreeswijk, 2012).
Instead, the balance of inhibition and excitation can give rise to
selective spike activity. Our data indicate that, although neurons
with orientation selectivity are not spatially organized in mouse
V1, functional microcircuitry has consistent and structured sta-
tistical features of organization. A previous study has demon-
strated that neurons that exhibit correlated activity driven by
natural scenes are more likely to be connected, consistent with a
strong link between structure and function (Ko et al., 2011, 2013;
Harris and Mrsic-Flogel, 2013). The tight link between function
and synaptic connectivity suggests that the structure found in the
functional graphs reflects structure in the underlying connectiv-
ity and is consistent with pairwise rules of connectivity in V1
(Harris and Mrsic-Flogel, 2013). The implication is that mouse
V1 microcircuitry is highly nonrandom (Song et al., 2005).

We consider the slice preparation to be a self-contained sys-
tem that allows us to isolate and then study the local connectivity
that defines the cortical microcircuit. Future work toward under-
standing the role of connectivity in cortical dynamics and behav-
ior will require a combination of research at the in vitro and in
vivo level. Experiments using fluorescent beads as fiduciary
markers (Ko et al., 2011, 2013) have already allowed research-
ers to make important headway combining these two levels of
investigation.

Information processing is at least in part mediated by the
spatiotemporal sequence of activation in neuronal circuits. Per-
haps unsurprisingly, the identity and sequence of spiking in the
preceding neuronal pool determine the time at which a neuron
achieves threshold for action potential generation. We find that,
although neurons are shared between multiple circuits, only a
small subset of neurons show invariant peri-event spiking. In-
stead, the majority of neurons exhibit peri-event spiking activity
that is unique to the circuit cluster that is active. Thus, circuit
identity, rather than neuronal identity, dictates spike times. The
ability for a neuron to participate appropriately in multiple cir-
cuit trajectories provides the potential for a large dynamic range
of temporal patterns given a limited neuronal population to en-
code information.
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Folias SE, Yu S, Snyder A, Nikolić D, Rubin JE (2013) Synchronisation hubs
in the visual cortex may arise from strong rhythmic inhibition during
gamma oscillations. Eur J Neurosci 38:2864 –2883. CrossRef Medline

Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of action
potentials: analysis and functional interpretation. Science 164:828 – 830.
CrossRef Medline

Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of func-
tionally related neural assemblies. Brain Res 140:43– 62. CrossRef
Medline

Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical
network activity in vivo is generated through a dynamic balance of exci-
tation and inhibition. J Neurosci 26:4535– 4545. CrossRef Medline

Hansel D, van Vreeswijk C (2012) The mechanism of orientation selectivity
in primary visual cortex without a functional map. J Neurosci 32:4049 –
4064. CrossRef Medline

Harris KD, Mrsic-Flogel TD (2013) Cortical connectivity and sensory cod-
ing. Nature 503:51–58. CrossRef Medline

Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal
cortex during a virtual-navigation decision task. Nature 484:62– 68.
CrossRef Medline

Helias M, Tetzlaff T, Diesmann M (2013) The correlation structure of local
cortical networks intrinsically results from recurrent dynamics. PLoS
Comput Biol 10:e1003428. CrossRef Medline

Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of
cerebral cortex shapes functional connectivity on multiple time scales.
Proc Natl Acad Sci U S A 104:10240 –10245. CrossRef Medline

Kaschube M (2014) Neural maps versus salt-and-pepper organization in
visual cortex. Curr Opin Neurobiol 24:95–102. CrossRef Medline

Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD
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