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Behavioral/Cognitive

Briefly Cuing Memories Leads to Suppression of Their
Neural Representations

Jordan Poppenk and “Kenneth A. Norman

Princeton Neuroscience Institute, Princeton University, Princeton Neuroscience Institute Building, Princeton, New Jersey 08540

Previous studies have linked partial memory activation with impaired subsequent memory retrieval (e.g., Detre et al., 2013) but have not
provided an account of this phenomenon at the level of memory representations: How does partial activation change the neural pattern
subsequently elicited when the memory is cued? To address this question, we conducted a functional magnetic resonance imaging (fMRI)
experiment in which participants studied word-scene paired associates. Later, we weakly reactivated some memories by briefly present-
ing the cue word during a rapid serial visual presentation (RSVP) task; other memories were more strongly reactivated or not reactivated
at all. We tested participants’ memory for the paired associates before and after RSVP. Cues that were briefly presented during RSVP
triggered reduced levels of scene activity on the post-RSVP memory test, relative to the other conditions. We used pattern similarity
analysis to assess how representations changed as a function of the RSVP manipulation. For briefly cued pairs, we found that neural
patterns elicited by the same cue on the pre- and post-RSVP tests (preA-postA; preB-postB) were less similar than neural patterns
elicited by different cues (preA-postB; preB-postA). These similarity reductions were predicted by neural measures of memory activa-
tion during RSVP. Through simulation, we show that our pattern similarity results are consistent with a model in which partial memory

activation triggers selective weakening of the strongest parts of the memory.

Key words: fMRI; human memory; memory retrieval; memory weakening; multivoxel pattern analysis; nonmonotonic plasticity

Introduction

What factors cause memory weakening? According to the non-
monotonic plasticity hypothesis (Newman and Norman, 2010),
partial reactivation of memories causes weakening of those mem-
ories, whereas stronger reactivation causes strengthening (and no
reactivation causes no learning). This hypothesis is supported by
neurophysiological evidence showing that moderate but not high
levels of depolarization lead to synaptic weakening (Artola et al.,
1990; Hansel et al., 1996) and electroencephalography (EEG) and
fMRI results showing impaired subsequent memory for moder-
ately reactivated events (Newman and Norman, 2010; Detre et
al., 2013) (for relevant behavioral evidence, see also Keresztes and
Racsmany, 2013).

It is unclear, however, how these weakening effects arise at the
level of neural representations: How does partial activation
change the neural pattern elicited when the memory subse-
quently is cued? One possibility is that the originally activated
neural pattern will simply fade in salience relative to background
noise, in which case its instantiation in the brain may appear
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similar over time, but weaker. Another possibility, suggested by
our prior neural network simulations exploring nonmonotonic
plasticity (Norman et al., 2006a), is that the neural patterns elic-
ited by cues may change qualitatively (Fig. 1). In particular, these
simulations predict that partial activation of a cue will be suffi-
cient to trigger partial reactivation of its strongest associated
features, but weaker features will remain inactive. Partial reacti-
vation of these strongly connected features will trigger weakening
of connections into the features, whereas connections into
weaker (inactive) features will remain intact. Collectively, these
changes will result in a reversal of feature strength values, such
that the features that were previously strongest are now eclipsed
by other (previously weaker) features.

To address these possibilities, we had participants study word-
scene pairs and compared their neural representations of scene
associates before and after repeated memory reactivation. Partic-
ipants were trained to ceiling levels of performance with word-
scene associate pairs; we overtrained the pairs to ensure that word
cues would elicit a strong representation of the associated scene.
Then, as participants were scanned with fMRI, we exposed them
to the word cues under conditions designed to weakly or strongly
reactivate their scene associates. Critically, before and after this
phase, participants performed cued visualization of the scene.
This allowed us to compare visualization data across these two
sessions to assess (1) whether memory strength was altered and
(2) how the underlying neural representations changed.

To measure the extent to which scene memories were reacti-
vated throughout our experiment, we trained a pattern classifier
to detect scene-specific activation in participants’ fMRI data. To
examine how reactivation altered memory representations, we
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assessed the similarity of neural patterns elicited by a particular
memory cue before and after reactivation. We predicted that
partially reactivated memories would be recalled less well (as
measured by our pattern classifier) on the postreactivation mem-
ory test, relative to nonreactivated or more strongly reactivated
ones. We also predicted that partially reactivated memories would
show representational changes (in the pattern similarity analysis)
consistent with the distinctive “reversal” pattern predicted by our
computational model.

Materials and Methods

Overview

The experiment contained five main phases (Table 1; Fig. 2): paired-
associate training (Phase 1), memory reactivation (Phase 4), and prere-
activation and postreactivation memory tests (Phases 2 and 5). In
addition, a functional localizer was collected to assist with pattern classi-
fication analysis (Phase 3). To reactivate memories, we used a rapid serial
visual presentation (RSVP) task in which participants monitored for
target words (types of fruit) within a serial stream of nonfruit words
(Potter, 1976). The stream contained occasional short (600 ms) and long
(2000 ms) presentations of cue words (nonfruit nouns previously paired
with scenes) that were intended to reactivate associated scene memories
to differing degrees. Other cue words were omitted entirely from the
RSVP task. Our hypotheses concerned the impact on the post-RSVP
memory test of the RSVP reactivation manipulation (i.e., whether mem-
ories were partially reactivated by a short cue, more strongly reactivated
by a long cue, or not reactivated at all during RSVP).

Participants

Sixteen right-handed volunteers participated in the experiment (five fe-
male, mean age 21.2 years). All were native English-speakers between 18
and 35 years of age with normal or corrected-to-normal vision and hear-
ing. Participants were screened for neurological and psychological con-
ditions and received financial remuneration. The protocol was approved
by the Institutional Review Board for Human Subjects at Princeton
University.

Stimuli
Participants learned 30 word-scene pairings. Words were concrete,
imagable nouns sampled from the MRC Psycholinguistic Database

Predictions of the Norman et al. (2006a) neural network model. During training (4), both the cue and associate are
presented together. Thinner lines indicate weaker connections. As a result of this strong coactivation, connections between the cue
and features of the associate are strengthened (bottom row). Consequently, when the cue is presented in the pre-RSVP memory
test (B), features of the associate are strongly activated through spreading activation. During the RSVP phase (), the cue is
presented only briefly, leading to partial cue activation, as well as partial reactivation of its most strongly associated features
through spreading activation. As a result of this partial activation, connections between the cue and these strongly associated
features are weakened; connections between the cue and other (inactive) features are unchanged (bottom row). Consequently,
when the cue is presented in the post-RSVP memory test (D), activation preferentially spreads to features that were formerly
in the ordinal ranking of cued feature activations (in this example, the middle two features show a
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(Coltheart, 1981) (mean length = 6.3 letters;
mean concreteness = 571.5; mean imagabil-
ity = 561.3; mean Thorndike—Lorge verbal fre-
quency = 241.68) and filtered to exclude
nouns semantically related to rooms and fruit.
Paired scenes were grayscale bedroom interiors
drawn from Detre et al. (2013). Each partici-
pant received a different random pairing of
words and images. Forty additional words were
used as lures; these words were randomly sam-
pled from a pool of 7000 neutral nonfruit
nouns from the MRC Psycholinguistic Data-
base (mean length = 8.4 letters; mean con-
creteness = 471.3; mean imagability = 483.9;
mean Thorndike-Lorge verbal frequency =
191.1). Last, 28 fruit nouns were selected for
use as targets during the Phase 4 RSVP task
(mean length = 6.8 letters; mean concrete-
ness = 608.3; mean imagability = 605.0; mean
Thorndike-Lorge verbal frequency = 165.8).

Ten other scene, face, car, and word images
were presented during a functional localizer
phase. Scenes were sampled as above. Faces
were unfamiliar male faces cropped to include
the full face, excluding shoulders and hair. Cars
were lateral views of cars oriented leftwards.
Words were drawn from the word pool above
and rendered in black Arial with thick white
outlines. Backgrounds of face and car images
were removed; face, car, and word images were then placed on top of
phase-scrambled versions of the scene images to provide a complex
background.

All text in the experiment was presented in black Geneva font
(height = 0.8° visual angle) on a white background (with the exception of
text images in the localizer, which were matched to the visual properties
of other image categories). All images in the experiment were the same
size (9.0° X 9.0° visual angle) and normalized with respect to their lumi-
nance using the procedure described by Detre et al. (2013).
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memory test
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Procedure

Phase 1: learning of stimulus materials and word-scene associates. During
paired-associate training, participants were familiarized with word-scene
associates. This phase took place over 2 d: on day 1, participants com-
pleted initial study of the associates, a train-to-criterion memory task,
and an RSVP practice task in a behavioral testing room. On day 2, par-
ticipants completed the train-to-criterion memory task and RSVP prac-
tice tasks again, but from within the fMRI scanner bore.

Initial study consisted of two passes through the set of 30 word-scene
associates. All 30 pairs were presented once, then the order was random-
ized, and the 30 pairs were presented again. Participants were told that a
memory test would follow and that, to make stronger memories, they
should try to imagine the most creative, distinctive possible explanation
for how each “hotel room” got its name (i.e., the cue word). Cue words
were presented for 5500 ms; 1500 ms after each cue word onset, the scene
image also appeared below the word. A fixation cross of 750 ms duration
separated trials.

Next, participants completed a train-to-criterion memory test. Each
trial incorporated three parts (Fig. 2). First, a cue word was presented for
4000 ms, during which time participants were instructed to visualize the
associated scene in as much detail as possible. Next, they were asked to
rate their visualization on the following scale: 1, no room-related imag-
ery; 2, generic room with no distinguishing features; 3, room with a
specific distinguishing feature; 4, room with multiple specific distin-
guishing features; 5, complete image. After a subjective response was
entered, the associated scene image plus scenes from three other studied
pairings were presented in random order from left to right. Participants
had 3000 ms to select the scene associated with the presented cue word via
a button press. If a correct response was entered before the deadline,
green exclamation points were presented for 750 ms; otherwise, ared “X”
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Table 1. Schematic of main experimental phases
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Phase and purpose Day Location Participant tasks
Phase 1: learning of stimulus materials and word-scene associates 1 Testing room ® Study word-scene list (twice)
® Relearn word-scene pairs to criterion
® Familiarization with lure words in an RSVP practice task
2 Scanner (anatomical) ® Relearn word pairs to criterion
® Familiarization with lure words in an RSVP practice task
Phase 2: pre-RSVP memory test 2 Scanner (fMRI) ® (ued recall visualization ratings and multiple choice
Phase 3: category localizer 2 Scanner (fMRI) ® (One-back task using four categories of images (scenes, faces, cars, words)
Phase 4: cue-exposure manipulation (RSVP) 2 Scanner (fMRI) ® Exposure of memory cues for 600 ms (short) and 2000 ms (long) durations,
with other cues left out (omit)
Phase 5: post-RSVP memory test 2 Scanner (fMRI) ® (ued recall visualization ratings and multiple choice

was presented for 750 ms, followed by presentation of the cue word with
the correct scene image for 4000 ms. A 5000 ms fixation cross separated
each trial. Each item remained in the list until it received a correct
multiple-choice response, at which point it was dropped from the study
set. The order of the remaining pairs in the study set was randomly
shuffled after each pass through the study set.

Participants were then given a 7.7 min “practice” version of the RSVP
task they would later complete in the scanner, in which they responded to
fruit words with a button press. The practice task also served to familiar-
ize participants with 40 words to be used as lures in memory tests. These
words were presented repeatedly, with the duration of each presentation
sampled from a uniform distribution with limits of 300—750 ms. Six
target fruit word trials were presented for 1000 ms during the task, ap-
pearing at random intervals but no sooner than 8000 ms after a previous
target. Participants were given feedback on their performance at the end
of the task.

Participants repeated the train-to-criterion memory test and RSVP
practice task on day 2 inside the scanner bore while anatomical scans
were completed. Instead of viewing a computer monitor and responding
using a keyboard, participants viewed images projected into the scanner
bore using an overhead mirror and responded using a MR-safe button
box. Participants quickly learned the 30 paired associates to criterion
levels both on day 1 (mean = SD:37.0 = 7.5 trials) and on day 2 (mean *+
SD: 34.3 =+ 3.5 trials).

Phases 2 and 5: pre- and post-RSVP memory tests. In Phases 2 and 5, test
items included all 30 studied cue words plus 20 lures that had previously
been familiarized during the “practice RSVP” task. In each of the two
phases, a different set of 20 lures and a different random sequence were
used. A practice test item was shown at the start of both phases. On each
test trial (Fig. 2), participants were presented with a hotel room name
(i.e., cue word) for 5000 ms and were instructed to visualize the associ-
ated scene (if there was one). They were then presented with the text “rate
visualization” for 3000 ms; during this period, they had to enter their
visualization rating using the same 5-point rating scale that was used in
Phase 1. Next, the multiple-choice prompt appeared; as in Phase 1, four
scenes were presented, and participants had to choose which of these
scenes went with the cue word. Participants had 3000 ms to enter their
multiple-choice response. The multiple-choice period was followed by a
fixation cross for 9000 ms. No feedback was presented, and the pace of
the experiment did not vary based on participant responses. The full set
of 51 trials took 17.1 min (514 volumes) to complete.

Phase 3: category localizer. The goal of this phase was to obtain a clean
neural signal associated with viewing photographs of scenes, faces, cars,
and words, which we later used to train a category-specific pattern clas-
sifier. To ensure that participants paid attention to the images, they per-
formed a “one-back” task in which they pressed a button when any image
appeared twice in a row. The image sequence was divided into category-
specific blocks. Within each block, 10 different images from the same
category (scene, face, car, or word) were presented sequentially for 900
ms each with a 100 ms interstimulus interval (Fig. 2). A random six
images of the 10 were repeated within this sequence, for a total of 16
image exposures (lasting 16 s total). Each block was followed by a 10 s
interblock interval. Six blocks were presented for each image category,
for a total of 24 blocks. Participants demonstrated task engagement by

identifying nearly all item repetitions (mean = SD: 97.5 * 2.4%, mini-
mum 93.1%) with few false alarms (mean * SD: 0.8 % 0.8%, maximum
2.9%). This task took 10.5 min (315 volumes) to complete.

Phase 4: controlled memory reactivation in an RSVP task. The goal of
Phase 4 was to repeatedly elicit controlled levels of memory retrieval
using word cues. Of the 30 studied word-scene pairs, 10 pairs were as-
signed to the long presentation condition (which was designed to elicit
the strongest reactivation), 10 pairs were assigned to the short presenta-
tion condition (which was designed to elicit weaker reactivation), and 10
pairs were omitted from this phase (so they did not undergo any reacti-
vation). Our approach was to use a vigilance task that required full con-
centration, occasionally inserting memory cues into the task for short
and long durations (Fig. 2). Participants pressed a button when a fruit
word appeared. Randomly sampled concrete “filler” nouns were pre-
sented sequentially for a duration selected randomly from a continuous
distribution between 300 and 750 ms. To discourage retrieval of filler-
related memories, each filler word was used only once. Within this word
stream, “event” words were inserted every ~8000 ms. Each event word
was either a fruit word (1000 ms duration) or a memory cue. Cues as-
signed to the short presentation condition were shown for 600 ms; cues
assigned to the long presentation condition were shown for 2000 ms.
Each cue was presented eight times during Phase 4. To prevent atten-
tional blink effects from influencing processing of event words, the filler
word before an event word was always presented for 500 ms (for review,
see Dux and Marois, 2009). Together, in each functional run, ten “long”
memory cues, ten “short” cues, and six fruit words were presented. To
emphasize engagement in the fruit-detection cover task, after each run,
participants were given feedback about their performance on that task.
Participants identified most, but not all of the fruit targets in the cover
task (mean * SD: 87.5 = 8.9%, minimum 65%). Eight runs were com-
pleted, each lasting 7.7 min (231 volumes).

fMRI data collection

Scanning was performed using a 3 Tesla whole-body Skyra MRI system
(Siemens) at Princeton University in Princeton, New Jersey. T1-weighted
high-resolution MRI volumes were collected using a 3D MPRAGE pulse
sequence optimized for gray-white matter segmentation, with slices col-
lected in the AC-PC plane (176 sagittal slices; FOV = 256 mm; 256 X 256
matrix; TR = 2530 ms; TE = 3.37 ms; flip angle = 9°). All functional MRI
scans were collected using T2*-weighted echo-planar image acquisition
(34 axial oblique slices; FOV = 192 mm; 64 X 64 matrix; TR = 2000 ms;
TE = 33.0 ms; flip angle = 71° 2X IPAT acquisition; Siemens prospec-
tive motion correction). A T1 FLASH and fieldmap image were also
collected using these parameters to assist with coregistration and to cor-
rect spatial distortions.

fMRI preprocessing

We applied retrospective motion correction (Siemens) and a despiking
algorithm (3dDespike, AFNI), then coregistered data to a subject-
specific T1 FLASH image and corrected for spatial distortion with a
fieldmap image.

Segmentation was performed in a semiautomated fashion using the
Freesurfer image analysis suite, which is documented and available on-
line (version 5.1; http://surfer.nmr.mgh.harvard.edu) with details de-
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pattern classifier to be sensitive to features of
Phase 3 fMRI data that distinguish between
presentation of scenes versus other categories
of images. Then, we used the classifier to mea-
sure the presence of scene information in other
parts of the experiment. This approach has
been used in numerous studies to measure the
degree of memory reactivation (e.g., Polyn et
al., 2005; Kuhl et al., 2011, 2012; Zeithamova et
al., 2012; for a review, see Rissman and Wag-
ner, 2012; Detre et al., 2013).

We conducted our classifier analysis in
MATLAB (MathWorks) using functions from
the Princeton Multi-Voxel Pattern Analysis
Toolbox (Detre et al., 2006), available for
download at http://www.pni.princeton.edu/
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mvpa (for discussion, see also Norman et al.,
2006b). Classifier training was performed sep-
arately for each participant using a ridge re-
gression algorithm, which is sensitive to graded
signal information (such as might be associ-
ated with intermediate states of memory reac-
tivation; for other applications of ridge
regression algorithms to neural pattern classi-
fication, see Newman and Norman, 2010; Pop-
penk and Norman, 2012; Detre et al., 2013).
Ridge regression learns a 3 for each input fea-
ture (voxel) and uses the weighted sum of voxel
activation values to predict outcomes. The
ridge regression algorithm optimizes each 8 to
simultaneously minimize both the sum of the
squared prediction error across the training set
and also the sum of the squared 3 (technical
details described previously; see Hoerl and
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non-target

30to.75s
085S  106.1.0,20s

bOG ROAD

Phase 4
(reactivation)

filler

filler memory cue

or fruit target

Figure 2.

pattern classifier.

scribed previously (e.g., Fischl et al., 2004). Briefly, this processing
includes removal of nonbrain tissue using a hybrid watershed/surface
deformation procedure, automated Talairach transformation, intensity
normalization, tessellation of the gray matter white matter boundary,
automated topology correction and surface deformation following in-
tensity gradients, parcellation of cortex into units based on gyral and
sulcal structure, and creation of a variety of surface-based data, including
maps of curvature and sulcal depth. Manual quality control checks were
performed. We resampled Freesurfer segmentations of fusiform and
parahippocampal gyri to native functional image space for use as ana-
tomical masks.

Classifier training

Our analyses required an ongoing measure of memory activation. As all
cued associates were indoor scenes, our approach was to measure evi-
dence of scene processing in the fMRI data. To this end, we first trained a

fixation

APPLE o

Trial layout for phases described in Table 1. In Phase 1 (learning phase), participants studied word-scene associate
pairs and learned them to criterion. In Phases 2 and 5 (pre- and post-RSVP memory tests), we measured memory and memory-
related brain activity. In Phase 4 (RSVP), we attempted to partially or fully reactivate memories by presenting memory cues at 0.6 s
and 2.0 s durations while participants monitored for fruit words that appeared for 1.0 s. In Phase 3 (functional localizer phase),
participants viewed images of different categories while completing a one-back task, providing brain data suitable for training a

Kennard, 1970; Hastie et al., 2001). A regular-
ization parameter (A) determines how strongly
the classifier is biased toward solutions with a
low sum of squared ; when this parameter is
set to zero, ridge regression becomes identical
to multiple linear regression. The solution
found by the classifier corresponded to a B map
for each regressor describing the spatial pattern
that best distinguished that regressor’s condi-
tion from other conditions (with regulariza-
tion applied).

Following the lead of other fMRI pattern-
classification studies that have tracked scene
and face activity (Kuhl et al., 2011; Poppenk
and Norman, 2012; Detre et al., 2013; Kim et
al., 2014; Lewis-Peacock and Norman, unpub-
lished observations), we took all gray-matter
voxels from the fusiform gyrus and parahip-
pocampal gyrus (using subject-specific masks)
and fed these voxels” activation values (on a
TR-by-TR basis) into the classifier (Fig. 3). The regularization parameter
A was set to 10. To label the patterns, we took the four training regressors
that (respectively) described the presentation of scenes, faces, cars, and
words, and shifted each by 4 s (i.e., two TRs) to accommodate hemody-
namic lag effects. To assess the classifier’s effectiveness at distinguishing
among these image categories, we used a leave-one-block-out cross-
validation procedure (Kriegeskorte et al., 2009). As there were six blocks
of each image category, we left out a different block of each type (i.e., one
sixth of examples) on each of six training iterations. Mean classifier ac-
curacy across iterations was sufficiently high (mean = SD: 0.83 * 0.06,
minimum 0.72, chance 0.25) to warrant further use of the classifier.

repeat target

30s

Hits: 0.80
FA: 5 items

feedback

Classifier evidence as a dependent measure
We next used the classifier to obtain a temporal “read-out” of memory
reactivation during Phases 2 and 5 (the pre- and post-RSVP memory
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Figure3. Example anatomical masks. Because we required a classifier that could distinguish
scenes from other categories (including faces), we applied the classifier to voxels from regions of
ventral temporal cortex (fusiform gyrus and parahippocampal gyrus) that have been implicated
in category-specific processing (Kuhl et al., 2011; Detre et al., 2013). By contrast, similarity
analysis focused on within-category information (scene exemplars), so we limited our mask to
the parahippocampal gyrus, which has previously been implicated in scene-specific processing
(e.g., Epstein and Kanwisher, 1998). Anatomical masks were automatically derived in native
subject space using Freesurfer software. The extent of these regions is illustrated within one
example subject.

tests) and Phase 4 (the RSVP task). For these analyses, we trained the
classifier using all of the data from the localizer phase, and we used the
trained classifier to measure evidence of scene and face activity in each
functional volume from Phases 2, 4, and 5. We used the difference in
scene and face evidence as our estimate of memory reactivation to focus
our estimate on category-specific activity (this approach has yielded
greater sensitivity in other studies relative to just looking at scene activity;
e.g., Detreetal.,, 2013). The result was a TR-by-TR (i.e., one 2 s functional
scan a time) time series of memory reactivation. We parsed this into
events that began with cue onset (i.e., TR0) and ended with the subse-
quent cue onset. To ensure measurement of evoked signals (as opposed
to low-frequency state-based signals), we normalized each event by sub-
tracting the value at TRO from all TRs. To restrict statistical comparisons
and account for hemodynamic lag, we focused on values between TR2 (4
s after onset) and the TR marking the end of the trial. For our analyses of
Phase 2 and Phase 5 classifier evidence, we measured the change in aver-
age classifier evidence from Phase 2 to Phase 5 for each condition, and
then we compared these “change in classifier evidence” scores across
conditions. This last step (comparing across conditions) is crucial. If we
justlooked at the short-cue condition by itself and observed a pre-to-post
decrease in classifier evidence, that decrease could be caused by (1) an
effect that is selective to that condition or (2) a nonselective effect (e.g.,
people might be generally more tired during the post-test, in which case
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classifier evidence might be lower for all three conditions; also, scanner
drift could cause a global decrease in classifier evidence). Comparing
“change in classifier evidence” across conditions controls for these non-
selective effects, thereby making it possible to determine whether the
RSVP phase differentially reduces classifier evidence in the short-cue
condition (as is predicted by our theory).

To validate the classifier’s ability to detect memory retrieval, we per-
formed the following sanity checks: In the visualization task, we checked
for more scene activation for target cues than lures (Fig. 4A) and for a
positive correlation between scene activation and subjective visualization
ratings (Fig. 4B); in the RSVP task, we checked for more scene activation
for long than short cues (Fig. 5A).

Pattern similarity analysis

Our pattern classification analysis allowed us to quantify the amount of
scene activation elicited by a memory cue. By contrast, we used pattern
similarity analysis to assess whether our reactivation manipulation
caused any qualitative changes in the underlying neural representations.
To conduct this analysis, we had to extract vectors for each item charac-
terizing the item’s neural representation (1) before the RSVP reactivation
phase and (2) after the RSVP reactivation phase. All of the studied asso-
ciates were scenes; based on prior work implicating the parahippocampal
region in scene processing (Epstein and Kanwisher, 1998), we limited
this pattern similarity analysis to voxels from the parahippocampal gyrus
(Fig. 3); a qualitatively similar pattern of results was observed when using
the combined parahippocampal and fusiform gyrus mask used in our
classifier analysis. Because TR2-TR4 were most sensitive to reactivation
in our pattern classification analysis, we averaged across those volumes
for each event in each memory test; then we reshaped parahippocampal
gyrus voxels from the mean volume into a vector (for other examples of
this strategy, see Moore et al., 2013; Kim et al., 2014). To evaluate the
similarity of neural representations over time, we correlated each item’s
post-RSVP (Phase 5) feature vector with that same item’s pre-RSVP
(Phase 2) feature vector; we will refer to this measure as same-item sim-
ilarity. We also correlated each item’s feature vector from the post-RSVP
memory test with the feature vectors for all of the noncorresponding
items from the pre-RSVP memory test from the same condition (e.g., if
the item was from the short-cue condition, we would correlate its post-
RSVP feature vector with the pre-RSVP feature vectors for all of the other
short-cue items). We will refer to this measure as different-item similar-
ity. In addition to computing same-item similarity and different-item
similarity for each condition, we also correlated (across individual items)
same-item similarity with the average scene classifier evidence triggered
by that item during the RSVP phase. This allowed us to test whether the
amount of change in an item’s neural representation (indexed by same-
item similarity) was related to the degree of reactivation of that memory
during RSVP (as indexed by scene classifier evidence).

Significance testing

To provide a random-effects statistical test of condition-level differences
in our pattern classifier, pattern similarity, and behavioral measures, we
computed these measures at the single-subject level. Group-level pair-
wise comparisons of condition means were then conducted using a non-
parametric bootstrapping analysis. For each score or time point, pairwise
differences between condition means across participants were calculated.
These computations were repeated 1000 times, each time drawing 16
samples with replacement from the group of 16 participants. The SD of
differences provided an SE estimate for each comparison. We divided the
overall mean difference by the difference bootstrap SE to obtain a boot-
strap ratio (BSR), which approximately corresponds to a z statistic. This
use of bootstrap statistics allowed us to maximize statistical power when
working with smaller samples and to avoid making normality assump-
tions associated with parametric statistics (Efron and Tibshirani, 1986;
McIntosh and Misi¢, 2013). We set our significance threshold at an ab-
solute BSR value of 1.96 (corresponding to a ~95% confidence interval).
When relating pattern similarity to classifier measures of memory acti-
vation from the RSVP phase, we computed correlations within subjects
and then compared the distribution of within-subject correlation coeffi-
cients against zero by using the same bootstrap resampling approach
described above.
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Figure 4.  Linking scene visualization to classifier evidence. In the pre-RSVP memory test
(Phase 2), participants were presented with a cue (onset marked with a solid vertical line),
performed cued visualization of scene images, then selected the correct image from four alter-
natives (onset marked with a dashed vertical line). 4, Classifier evidence is shown separately for
cue words with scene associates (targets) and familiar words without scene associates (lures).
B, Classifier evidence s shown separately for targets as a function of the amount of self-reported
visualization detail. In both, the large increase in classifier evidence of scene processing approx-
imately TR corresponds to the visual presentation of scenes during the multiple-choice part of
the trial. Ribbons around each time course in A denote 95% bootstrap confidence intervals;
these are absent in B to preserve legibility. Black dots represent a significant difference (4; see
also Table 3) or significant correlation between visualization ratings and classifier evidence (B).

Results

Overview

Our analyses focused on how the RSVP (Phase 4) cue exposure
manipulation (short, long, or no cue presentation) affected par-
ticipants’ memories for word-scene pairs. fMRI data confirmed
that, within the RSVP stream, long cue exposures elicited more
reactivation than short ones. Also, by comparing fMRI data from
the pre-RSVP (Phase 2) memory test and the post-RSVP (Phase
5) memory test, we found that short cue exposures led to (1)
weaker memory retrieval overall and (2) changes in neural rep-
resentations (from pre-RSVP to post-RSVP) that fit with our
computational model of learning (Norman et al., 2006a). We also
found that changes in the neural representations of short-cue
items were correlated with how strongly the memory reactivated
during the RSVP phase.

J. Neurosci., June 4, 2014 - 34(23):8010- 8020 * 8015

Behavioral results

As noted above, behavioral performance was normed to be at
ceiling. This was done (1) to ensure that word cues would elicit
strong recollection of the associated scene during the pre-RSVP
(Phase 2) memory test, thereby allowing us to clearly measure the
pattern of neural activity associated with the memory; and (2)
to ensure that the word cues would elicit scene retrieval during
the RSVP (Phase 4) procedure. We made this design choice with
the understanding that it would limit our ability to see effects of the
RSVP cue exposure manipulation on behavioral memory measures.
Table 2 summarizes behavioral data from the three cue exposure
conditions. In general, our analyses focused on changes from
Phase 2 (pre-RSVP) to Phase 5 (post-RSVP), which allowed each
item to serve as its own baseline; we examined whether these
pre-to-post changes in behavior varied as a function of condition
(short, long, omit; no significant differences were found within
the pre-RSVP test). We expected that memory weakening effects
would be largest in the short condition, compared with the omit
and long conditions; thus, any behavioral measure sensitive to
this effect (despite the presence of near-ceiling levels of perfor-
mance) would be expected to show a larger pre-to-post decrease
in performance in the short condition compared with the omit
and long conditions. None of our pre-to-post behavioral mea-
sures showed this pattern of effects. The only significant
condition-wise difference related to reaction times was in the
multiple-choice test: In the omit condition, participants showed
anumerical decrease in reaction times from the pre-RSVP test to
the post-RSVP test (indicating improved performance), whereas
in the short condition participants showed a numerical increase
in reaction times from the pre-RSVP test to the post-RSVP test.
The change from pre to post was significantly different between the
short and omit conditions (BSR = 4.04, p < 0.001). However, the
change from pre to post was not significantly greater in the short
than long condition (BSR = 0.69, p = not significant).

Validation of our classifier measure of memory reactivation

Because, under the conditions necessary to perform the current
experiment, overt responses were nondiscriminative of memory
signal, it was necessary to use covert memory measures that were
in fact sensitive to differences in memory strength across items
and conditions. To this end, we relied on our classifier measures
to examine variation in strength of memory recall. As a first val-
idation step, we performed cross-validation within the localizer
run and obtained a high accuracy rate (see Materials and Meth-
ods). Next, to validate the use of our classifier as a measure of
associative memory retrieval, we examined whether classifier
measures of scene activation tracked memory retrieval
strength in the pre-RSVP memory test (Phase 2). We found
significantly more classifier evidence for memory cues than
lures at TR2-TR5, corresponding to 4 to 10 s after cue onset
(Fig. 4A; Table 3). Additionally, classifier evidence at TR3 and
TR4 was positively correlated with participants’ scene visual-
ization ratings for target items (Fig. 4B; Table 3; no such cor-
relation was present for multiple-choice reaction time). These
results indicate that the classifier measure successfully tracked
associative memory retrieval during the cued visualization
task in our experiment, and they converge with other studies
that have observed a relationship between classifier activity at
test and behavioral indices of memory retrieval strength (e.g.,
Johnson et al., 2009; Kuhl et al., 2011; Gordon et al., 2014).
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Figure5. Impact of Phase 4 exposure duration on memory retrieval. A, In Phase 4, we exposed memory cues for 600 ms (short), 2000 ms (long), or not at all (omit; absent from panel). Long items

were associated with more classifier evidence of memory reactivation. B, Classifier evidence of scene processing during the visualization period of the Phase 5 post-RSVP memory test. C, The same
data after subtracting out classifier evidence from the Phase 2 pre-RSVP test. In both cases, short items were associated with less classifier evidence of scene processing than long or omit items. In
all graphs, word cue onset occurred at TRO. Ribbons around each time course denote 95% bootstrap confidence intervals. Green and red dots represent a significant difference between the short

condition and long or omit conditions, respectively (see also Table 3). Open dots represent trend-level (p << 0.1) significance.

Table 2. Behavioral measures of the impact of our RSVP manipulation on memory (SD in parentheses)

Mean visualization Change in visualization Mean multiple choice Change in multiple choice Median multiple choice Change in median multiple
Condition rating post-RSVP rating pre-to-post-RSVP accuracy post-RSVP accuracy pre-to-post RSVP RT post-RSVP (ms) choice RT pre-to-post RSVP (ms)
Short 3.82(0.42) 0.12 (.18) 0.89(0.22) —0.01(0.09) 1461 (238) 30 (184)
Long 3.85(0.43) 0.19 (.36) 0.88 (0.25) 0.00(0.11) 1506 (268) —12(265)
Omit 3.79(0.46) 0.08 (.36) 0.87(0.24) —0.01(0.09) 1354 (229) —157 (181)
Lures 1.21(0.46) NA NA NA NA NA
NA, Not applicable.
Table 3. Statistical comparisons within fMRI time series (bootstrap ratio)

TR

Phase Statistical test Figure 2 3 4
2 Targets minus lures 4 5.33%%% 4.70%% 3.497%%%
2 Positive correlation with visual rating (one-way test) 4 1.21 1.89% 2.36%*
4 Long minus short items 5 2.65%* 3.34%xx 0.83
5 Long minus short items 5 0.26 1.70% 2.34%
5 Omit minus short items 5 0.22 0.53 3.05%*
52 Long minus short items (post-RSVP minus pre-RSVP) 5 0.90 1.921 217%
5,2 Omit minus short items (post-RSVP minus pre-RSVP) 5 0.58 1.51 2.35%

Significant correlations: *p << 0.05; **p < 0.01; ***p < 0.001; trends: tp < 0.1.

Classifier results: detecting memory reactivation

during RSVP

We also used our classifier to measure whether our cue exposure
manipulation was effective at modulating memory reactivation
during RSVP (Phase 4). As retrieval may be triggered automati-
cally by relevant memory cues (for discussion, see Moscovitch,
2008), we predicted that participants would retrieve scene asso-
ciates of memory cues (despite their irrelevance to the RSVP task)
and thatamount of retrieval would be influenced by the duration
of memory cue exposure (600 ms vs 2000 ms). Consistent with
this prediction, long memory cue presentations were associated
with greater scene activation than short ones (Fig. 5A; Table 3).
Also, although we could not compare classifier signal in the short
condition against a closely matched baseline, two observations
suggested that signal was present in that condition. First, al-
though “fruit” cues differed in various ways from those in the
short condition (including longer exposure duration: 1000 ms),
they had no scene associates, so no scene activity was predicted.
Consistent with this idea, more scene activation was found for
short than fruit cues at TR4 (BSR = 2.60, p < 0.01). Second, as we

will discuss later, a relationship was found between fluctuations
in the short-condition classifier signal and pattern similarity.

Classifier results: partial reactivation reduces

later reactivation

We next examined the impact of the RSVP phase on retrieval of
scene associates in the post-RSVP (Phase 5) memory test, as mea-
sured by the classifier. For each condition (short cue/long cue/
omitted cue) and each TR, we computed the change in classifier
evidence of memory activation from Phase 2 (pre-RSVP) to
Phase 5 (post-RSVP). At TR4, a significant difference was found
between the short-cue condition and the long-cue and omitted-
cue conditions; specifically, the post-minus-pre difference in
classifier evidence was more negative (i.e., classifier evidence de-
creased more) in the short-cue condition than the long-cue and
omitted-cue conditions (Fig. 5C; Table 3). This same pattern of
significance was observed when post-RSVP test data were ana-
lyzed independently of pre-RSVP test data: At TR4, there was less
classifier evidence elicited by short-cue items than by long-cue
and omitted-cue items (Fig. 5B; Table 3).
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found a reliable negative relationship be-
tween RSVP reactivation in the short con-
dition and similarity, r = —0.073, BSR =
—3.41, p < 0.001. For completeness, we
also looked at the relationship between
RSVP reactivation in the long condition
and similarity; the relationship in the long
condition was not reliable, » = —0.017,
BSR = —0.41, p = not significant. The
lack of a reliable correlation in this condi-
tion fits with the other null effects that
were observed in the long condition (i.e.,
no significant change in classifier activa-
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Figure 6.  Similarity of representations before and after RSVP. Responses of parahippocampal gyrus voxels in the pre- and

post-RSVP memory tests were extracted for each cue presentation and sorted by condition; these patterns were used to compute
a correlation matrix for each condition (i.e., short, long, and omit) showing the similarity of each pre-RSVP pattern to each
post-RSVP pattern within that condition (A). On-diagonal cells of this matrix (blue) are described here as same-item comparisons;
off-diagonal cells (red) are described here as different-item comparisons. B, Bar plot describes mean similarity of multivoxel
patterns before and after the RSVP phase, with separate condition means for same-item comparisons and different-item compar-
isons. Same-item comparison similarity was significantly greater than different-item comparison similarity for omit items, and
long items showed the same pattern numerically. By contrast, short items showed the opposite pattern. Error bars indicate 95%

random effects confidence intervals. *p << 0.05.

Pattern similarity: partial reactivation inhibits
neural representations
In our classifier analyses, we assessed overall memory activation,
whereas in our pattern similarity analysis we assessed changes in
the structure of individual memory representations. To do this,
we correlated the brain’s response to each memory cue as sam-
pled during Phases 2 and 5 (i.e., during pre- and post-RSVP
memory tests). For each item, it was possible to compare the same
item across time and also different items across time. To the
extent that memory cues trigger reinstatement of associated
items in memory, a basic prediction is that correlation coeffi-
cients should be higher for “same” than “different” comparisons.
Consistent with this prediction, “same” comparisons in the omit
condition yielded significantly higher similarity values than “dif-
ferent” comparisons in that condition (BSR = 1.98, p < 0.05; Fig.
6B). In the long condition, this difference was numerically in the
same direction but not significant (BSR = 0.45, p = not signifi-
cant). By contrast, in the short condition, there was a reversal of
this pattern, such that “same” comparisons yielded significantly
lower similarity values than “different” comparisons (BSR =
2.25, p < 0.05). Putting these results together, there was an inter-
action of same versus different similarity between the short and
long conditions (BSR = 2.84, p < 0.005) and between the short
and omit conditions (BSR = 2.71, p < 0.01). The interaction of
same versus different similarity between the long and omit con-
ditions was not significant (BSR = 0.17, p = not significant).
We next attempted to directly relate pattern similarity to the
degree of memory reactivation during RSVP (Phase 4), as mea-
sured by the pattern classifier. If the changes in pattern similarity
in the short-cue condition (relative to the omit condition) were
driven by reactivation during RSVP, then the amount of reacti-
vation in that phase should negatively predict the amount of
pattern similarity for a given cue-scene pair (i.e., more reactiva-
tion should lead to less pattern similarity for that pair). For each
item, the dependent variable was the level of scene classifier evi-
dence elicited by that item during TR2-TR4, averaging across the
eight RSVP reactivation events per item; the independent vari-
able was the corresponding similarity value for the item. We

tion relative to omit, and no significant
change in same vs different pattern simi-
larity relative to omit).

Simulation: pattern-similarity results
reflect weakening of strongest features
To understand which representational
changes could have produced this pattern
of similarity, we created mock patterns,
subjected them to different transforma-
tion algorithms that could plausibly be as-
sociated with memory weakening, and
correlated the resulting patterns with their initial state. We fo-
cused on five possible mechanisms: As noted in the Introduction,
our prior neural network modeling work predicts that memories
in the short-cue condition will show differential weakening of
their strongest features, inducing a reversal in the ordinal ranking
of activation strength among features (Norman et al., 2006a); we
will call this possibility reversal. Other possibilities are that fea-
tures will be weakened at random; that weakening reflects the
introduction of noise, such that memories in the short-cue con-
dition will show a reduced signal-to-noise ratio; or that memories
will become more schematic (i.e., showing a greater influence of
shared vs item-specific features). Last, recent work suggests that
univariate changes can contaminate similarity measures (Davis et
al., 2014), so we examined whether such a confound could ac-
count for the observed pattern of results.

Each simulation consisted of 100 patterns containing 1000
features that were randomly and independently assigned a value s
sampled from a uniform distribution between 0 and 1, where s
corresponds to signal strength. To simulate the fact that our
scenes contained some features that are shared across rooms and
some features that are idiosyncratic to each room, 500 of these
random features were shared across all patterns and 500 were
idiosyncratic (i.e., generated randomly for each pattern). To sim-
ulate reversal, we set s to 0 for all features exceeding a threshold of
i; this transformation had the effect of selectively weakening the
strongest features. To simulate random weakening, we set s to 0
for i random features. To simulate changes in the signal-to-noise
ratio, we added zero-mean Gaussian noise, adjusting the variance
of this noise. To simulate schematization, in which the idiosyn-
cratic part of patterns becomes less prominent than the shared
part, we specifically downscaled the amplitude of idiosyncratic
features. Finally, to simulate the effect of adding a univariate
“blob” of activation that is shared across all patterns, we set s to 4
for i random features across all patterns.

Upon reducing the threshold in our reversal simulation,
“same” similarity fell below “different” similarity (Fig. 7), as ob-
served in our fMRI results. This was the only simulation in which
this pattern emerged. Randomly weakening features, adding
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Gaussian noise, or adding a blob of uni-
variate activation to patterns, caused both
“same” and “different” similarity to as-
ymptote toward zero, never reversing
their order. When patterns were “schema-
tized,” “same” similarity decreased be-
cause patterns were distorted, whereas
“different” similarity increased because
the portion of the variance accounted for
by the shared part of the pattern grew;
however, reversal never occurred.

Discussion

We obtained behavioral and neural evi-
dence that representations of memory as-
sociates were suppressed following brief
cuing, relative to conditions where cues
were presented for a longer duration or
not presented. Using a classifier trained to
be sensitive to scene information in fMRI
data, we found that brief cuing during the
RSVP phase led to lower levels of scene
activation on a later memory test. Using
pattern similarity analysis, we found that
neural representations of briefly cued
memories bore less resemblance to their
own initial state than to the initial states of
other patterns. Moreover, this reduction
in similarity in the short-cue condition
was directly predicted by the extent to
which scene associates were reactivated
during the RSVP phase (as estimated by
our classifier).

Our simulations showed these pattern
similarity results were consistent with a
“reversal” dynamic whereby the strongest
features drop out of the pattern, leaving
previously weaker ones to become domi-
nant. We also showed that these results
were inconsistent with other hypotheses
about how representations might be
altered (e.g., weakening of randomly se-
lected features). As described in the Intro-
duction, a reversal dynamic is predicted
by our neural network model of learning
(Norman et al., 2006a). In the model, ini-
tially stronger features suffer more weak-
ening because they partially activate in
response to brief cues, triggering weaken-
ing of connections into these features; ini-
tially weaker features do not activate and
thus do not suffer weakening. The execu-
tive control theory proposed by Anderson (2003) makes a similar
prediction: According to this theory, greater activation of irrele-
vant features triggers greater executive control and thus more
inhibition.

Figure7.

short-cue condition (Fig. 6).

Effects of short versus long RSVP cues

In addition to predicting that partial activation causes weakening,
our theory also predicts that strong activation should cause
strengthening (Norman et al., 2006a). Past research has shown
that, under some circumstances, memory retrieval can elicit ac-
tivation strong enough to cause further strengthening (Detre et
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Impact of different simulated pattern transformations on pattern similarity. To understand how various mechanisms
acting on neural representations would impact similarity scores, we generated starting patterns that featured shared and idiosyn-
cratic parts (4). We then applied different transformation algorithms (B—F) and measured the impact on similarity (plotted on
right). The y-intercept corresponds to a null transformation and is equivalent across plots. The reversal transformation (B) was the
only one to generate the “similarity reversal” pattern (“same” similarity << “different” similarity) that was observed in the

al., 2013). Based on this, one might have expected long RSVP cues
to cause strengthening, but we did not obtain any significant
differences for long cues versus omitted cues. One possible expla-
nation is that, because participants were distracted by the fruit-
detection task, memories triggered by long RSVP cues may have
straddled the moderate-activity zone (associated with weakening)
and the strong-activity zone (associated with strengthening), instead
of falling clearly into the strong-activity zone; strengthening and
weakening may have, on average, cancelled each other out.

We had no way of knowing a priori which exposure durations
would lead to moderate activation (causing weakening) and
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which exposure durations would lead to strong activation (caus-
ing strengthening). Accordingly, we used conditions designed to
trigger a range of activation values, hoping that these sampled a
wide enough range to delineate the distinctive “u” shape of the
curve predicted by the nonmonotonic plasticity hypothesis (i.e.,
with increasing activation, we should first see weakening and
then strengthening). We appear to have succeeded: The RSVP
manipulation had a more negative effect on our classifier mea-
sure of memory recall for the 600 ms (short-cue) condition than
for the 0 ms (omitted-cue) or 2000 ms (long-cue) condition.
Likewise, the distinctive pattern changes our model predicts after
memory weakening (same-item similarity < different-item sim-
ilarity) were more evident for the short-exposure condition than
the omitted-cue or long-exposure condition. Our only “miss”
was that we incorrectly predicted 2000 ms exposures would be
adequate to cause strengthening. Regardless, 2000 ms exposures
were still long enough to mitigate the weakening effects associ-
ated with 600 ms exposures, allowing us to demonstrate non-
monotonic effects of exposure time on learning.

Relationship to prior work

Our results complement recent work from our laboratory show-
ing that partial activation of memories reduces subsequent acces-
sibility of those memories (Newman and Norman, 2010; Detre et
al., 2013; Kim et al., 2014; Lewis-Peacock and Norman, unpub-
lished observations). These studies used a variety of methods to
elicit partial activation: For example, participants in Detre et al.
(2013) learned word-scene paired associates like those used here;
later, participants were given cue words but asked to not think of
the studied associate. Scene activation during these “no think”
trials, as measured using an fMRI pattern classifier, showed that
moderate (but not high or low) levels of retrieval were associated
with subsequently impaired recall of scene associates.

The present study makes three main novel contributions:
First, we replicated memory-weakening effects using novel
means of eliciting partial activation (i.e., brief cues embedded in
an RSVP stream). Second, although previous studies have re-
vealed behavioral evidence of memory weakening arising from
partial memory reactivation, ours is the first to show neural evi-
dence of the same (via our classifier measure). Third, and most
importantly, this study examined how partial activation qualita-
tively changes the neural pattern elicited by subsequent retrieval;
the studies listed above only measured quantitative changes in
memory strength.

Are neural pattern changes attributable to formation of
new associations?
As discussed, our preferred explanation of our results is that
briefly cued memories were weakened. However, we should con-
sider the possibility that impaired memory was caused by forma-
tion of additional, interfering associations during RSVP. When
cues were briefly presented during RSVP, they may have accrued
new associations with whatever the participant was thinking (via
Hebbian plasticity); later, when cues were presented again during
the Phase 5 test, these new associations may have competed with
the correct associate, impairing its retrieval. This could occur
even without successful cued recall during RSVP; the only re-
quirement is cue activation (so they can be linked to new associ-
ates; for a similar account of forgetting in the think-no think
paradigm, see Tomlinson et al., 2009).

Importantly, this account fails to explain our pattern-
similarity results. If short cues were linked to other information
during RSVP (e.g., fruit words), this would introduce random
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noise to the pattern similarity analysis (akin to Fig. 7D). This
would reduce both “same” and “different” pattern similarity but
would not induce the reversal (different-similarity > same-
similarity) observed in our data. Even if short cues became linked
to scenes activated by long cues earlier in the RSVP stream, no
reversal would occur (for short-cue items, “different” similarity
describes similarity to other short-cue items, so increased simi-
larity to long-cue items would not boost “different” similarity).
Finally, as noted above, same-cue pattern similarity in the short-
cue condition was predicted by evoked scene activity during
RSVP (i.e., changes relative to a pretrial baseline). This fits with
the idea that changes in pattern similarity were caused by retrieval
of associated scene memories, as opposed to incorporation of
new information from the RSVP phase. For these reasons, it is
unlikely that retroactive interference caused our pattern similar-
ity results.

Key design features

Our design incorporated several features important for providing
insight into neural pattern change. The first of these was the
inclusion of both pre- and post-RSVP cued recall memory tests;
this pre-post design allowed us to measure changes in specific
representations as a function of memory reactivation. An impor-
tant goal for future research is to apply a similar pre-post design
to other paradigms that have been used to examine memory in-
hibition effects: for example, the think/no-think paradigm (An-
derson and Green, 2001) and the retrieval-induced forgetting
paradigm (Anderson et al., 1994). Our working hypothesis is that
the pattern-similarity reversal observed here (same-item similar-
ity < different-item similarity) reflects a general neural signature of
memory suppression that will generalize to other paradigms known
to induce forgetting.

Although no one has yet attempted a pre-post design with the
think/no-think paradigm, Gagnepain et al. (2014) ran a pattern
similarity analyses on data collected during the “think” and “no
think” trials. Specifically, they took a snapshot of each item’s
pattern and computed the pairwise similarities of all item pat-
terns. Like us, they ran simulations to see which models best fit
the data. The models they considered encompassed a wide range
of hypotheses about effects of the no-think procedure, including
random suppression of features (akin to “random weakening” in
Fig. 7C) and targeted suppression of the strongest features (akin
to “reversal” in Fig. 7B). As in our study, the model positing
targeted suppression of the strongest features best explained
the data. The results of Gagnepain et al. (2014) show targeted
suppression can be observed without a pre-post design; how-
ever, we contend that a pre-post design is preferable because it
yields a qualitative signature of suppression (same-item simi-
larity < different-item similarity). By contrast, Gagnepain et
al. (2014) had to rely on quantitative differences in model fit.

Another key design feature was our use of cued recall instead
of recognition. If we had instead used a recognition memory test
(i.e., with participants directly viewing word-scene associates),
detailed bottom-up information arising from repeated scene pre-
sentations in Phases 2 and 5 likely would have anchored associ-
ated neural representations, keeping them similar. In this
situation, we would have been unlikely to observe a similarity
reversal whereby (in the short-cue condition) “same” similarity
was lower than “different” similarity. By contrast, in cued recall,
there are fewer bottom-up constraints on the representation (the
cue is repeated, but participants are free to imagine different
things in response), thereby making it easier to detect effects of
learning on memory representations.
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In conclusion, we examined the impact of brief memory cue
exposures on subsequent memory for word-scene paired associ-
ates. Our pattern similarity analyses revealed a similarity reversal,
such that neural patterns in the short-cue condition became less
similar to their own original state than that of other items. This
was not observed for items in the long-cue or omitted-cue con-
dition. On an item-by-item basis, the degree to which an item’s
pattern changed from pre- to post-RSVP was correlated with the
amount of scene reactivation elicited by the brief cue during the
RSVP phase. Together, these results support the hypothesis that
partial memory activation in response to brief cues induced qual-
itative representational changes responsible for subsequent
changes in the accessibility of scene memory associates. Overall,
these results converge with prior findings showing that partial
activation leads to forgetting, and they provide an initial glimpse
into how weakened memory representations are altered.
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