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In this contribution, a semi-automatic segmentation algorithm for (medical) image analysis is presented.
More precise, the approach belongs to the category of interactive contouring algorithms, which provide
real-time feedback of the segmentation result. However, even with interactive real-time contouring
approaches there are always cases where the user cannot find a satisfying segmentation, e.g. due to
homogeneous appearances between the object and the background, or noise inside the object. For these
difficult cases the algorithm still needs additional user support. However, this additional user support
should be intuitive and rapid integrated into the segmentation process, without breaking the interactive
real-time segmentation feedback. I propose a solution where the user can support the algorithm by an easy
and fast placement of one or more seed points to guide the algorithm to a satisfying segmentation result also
in difficult cases. These additional seed(s) restrict(s) the calculation of the segmentation for the algorithm,
but at the same time, still enable to continue with the interactive real-time feedback segmentation. For a
practical and genuine application in translational science, the approach has been tested on medical data
from the clinical routine in 2D and 3D.

N
owadays, the most clinics – at least in the western world – have in general several medical scanners, like
computed tomography (CT) or magnetic resonance imaging (MRI), which produce every day a massive
amount of medical patient data. In addition, new scanner generations get more and more precise, and

thus produce more and more data. However, there is by far not the time and manpower for a precise manual
analysis of this important and critical data. Therefore, approximations are often used, like the estimated calcula-
tion of a tumor volume via its maximal diameter in a 2D view, which may not very accurate and can lead to
inaccurate treatment decisions1. A solution could be to support and automate medical image analysis with
segmentation algorithms, like Active Contours in 2D2 or 3D3, Active Appearance Models4, graph-based
approaches5, fuzzy-based approaches6, or neural networks7. But after observing dozen of interventions in several
clinics and different departments, I never met a physician who used any segmentation algorithm. The main
reason was, that the segmentation approaches are not stable enough and fail far too often, especially for fully
automatic algorithms. This may also be the reason that major manufacturers of medical imaging equipment don’t
really offer sophisticated segmentation options within their workstations and software packages. Additionally, the
existing approaches are often not user friendly and intuitive implemented, e.g. they need a precise definition of
‘‘mystic’’ parameters for an accurate segmentation result. A temporal solution to speed-up a segmentation task,
until (fully) automatic algorithms provide reliable results, are semi-automatic methods, like interactive segmenta-
tion approaches. Thereby, the user supports and guides the algorithm by interactive input. This can be carried out
by marking parts of the pathology and the surrounding background with a simple brush8. Thus providing the
segmentation algorithm with information about the pathology’s location in the image and information about the
texture of the pathology and background9,10. An overview about several interactive medical image segmentation
approaches has recently been published by Zhao and Xie X11, where they also classify the approaches by their type
of interactions:

. Pictorial input on an image grid, like Seeds for region growing12,

. Parameter tuning using slider, dial, or similar interface, like the maximum size of segmented regions13, or

. Menu option selection by mouse clicking, like Accept/reject the segmentation results14.
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An exciting (new) class of interactive segmentation algorithms –
which are not discussed to detailed within the review – are real-time
approaches, which are able to calculate a segmentation result within a
fraction of a second. In the meantime, this is possible because hard-
ware becomes faster and faster and therefore allows the execution of
high level segmentation approaches in an extremely short time, even
on up-to-date laptops. This opens up completely new possibilities,
where the user gets immediate feedback, instead of waiting for the
segmentation result to come back and then re-initialize and start over
again, which can be very frustrating. A real-time interactive image
segmentation approach that uses user indicated real-world seeds has
been presented by Gomes et al.15. The approach can be used for
videos or still images and because the seeds are indicated by a user,
e.g. via a laser pointer, it is possible to segment objects without any
computer interface. Armstrong et al.16 introduce interactive seg-
mentation of image volumes with live surface. In summary, Live
Surface does for 3D volumes what Intelligent Scissors17,18 did for
2D images, and allows the user to segment volumes continuously
with immediate visual feedback in the refinement of the selected
surface. A variational model for interactive shape prior segmentation
and real-time tracking has been proposed by Werlberger et al.19. The
semi-automated segmentation approach is based on minimizing the
Geodesic Active Contour20 energy incorporating a shape prior that
represents the desired structure. Additionally, the user has the pos-
sibility to make corrective during the segmentation and adapt the
shape prior position. To achieve a real-time behavior the method was
implemented on the GPU. A computer-aided design system for
refinement of segmentation errors has been introduced by
Jackowski and Goshtasby21, where a surface is interactively revised
until the desired segmentation has been achieved. Therefore, the
surface is revised by moving certain control points and the user sees
the changes in the surface in real-time. Mory et al.22 propose a real-
time 3D image segmentation method based on user-constrained
template deformation. The interactive image segmentation algo-
rithm incorporates in a first step user input as inside/outside labeled
points to drive the deformation and improve both robustness and
accuracy. In a second step, a fast implementation of non-rigid tem-
plate-to-image registration enables interactions with a real-time
visual feedback.

In this contribution, an interactive real-time segmentation algo-
rithm is introduced. The algorithm is scale-invariant and keeps its
interactive real-time segmentation behavior even if the user refines
the segmentation result with additional seeds. Thus, in principle, the
algorithm combines some basic characteristics from existing seg-
mentation methods into a novel segmentation approach which can
also handle difficult segmentation task; and to the best of the author’s
knowledge such an approach has not yet been described.

The paper is organized as follows: The Materials and Methods
section presents the details of the proposed algorithm and online
resources where medical data can be found; the Results section dis-
plays the outcomes of my experiments; and the Discussion section
concludes the paper and outlines areas for future research.

Results
Figure 1 presents the interactive refinement segmentation of a ver-
tebral body contour in 2D from a MRI acquisition. The leftmost
image shows the native scan and the second image from the left
displays the initial user-defined seed point (white) that has been
placed inside the vertebral body for the interactive segmentation.
The third image from the left presents the segmentation outcome
for the current position of the user-defined seed. However, due to the
bright region inside the vertebral body, the average gray value –
which is automatically calculated from a region around the user-
defined seed – is not detected ‘‘correctly’’, and thus the resulting
contour (red) leaks in the upper area and misses an edge in the lower
left (note: for the interactive segmentation of the vertebral body, a
rectangle was used as template to construct the graph. Thereby, the
center of the rectangle is at the position of the user-defined seed point
and the yellow crosses in the two rightmost images display the four
corners of the rectangle). Nevertheless, the rightmost image presents
the result of a refined segmentation. Therefore, the user simply
placed three additional seeds (white dots on the contour of the ver-
tebral body), and thus forced the algorithm to perform the min-cut at
these positions – which also influences the cuts along the neighboring
rays. Furthermore, additional gray value information can be
extracted around these extra seeds that the user placed on the con-
tour of the vertebral body.

Figure 2 presents the interactive refinement segmentation of the
rectum from an intraoperative gynecological 3-Tesla magnetic res-
onance imaging dataset. The leftmost image shows the native scan
and the second image from the left presents the initial seed point
(white) for the interactive segmentation placed by the user inside the
rectum. The red dots present the segmentation outcome with regard
to the current seed point position (note: for the interactive segmenta-
tion of the rectum, a triangle was used as template to construct the
graph. Thereby, the center of the rectangle is located at the user-
defined seed point and the yellow crosses display the three corners
of the triangle). In the third image from the left an additional seed
point (white) has been placed in the upper left contour of the rectum.
This additional seed forces the algorithm to perform the min-cut at
this position. In the fourth image from the left, the user has inter-
actively repositioned the initial seed point inside the rectum to find a
better segmentation outcome. However, the additional seed at the
contour stays fixed during the interactive repositioning of the initial

Figure 1 | Interactive refinement segmentation of a vertebral body contour in 2D from a magnetic resonance imaging (MRI) acquisition. The leftmost

image presents the native scan and the second image from the left shows the initial user-defined seed point (white) that has been placed inside the

vertebral body for the interactive segmentation. The third image from the left presents the segmentation outcome for the current position of the user-

defined seed. However, due to the bright region inside the vertebral body, the average gray value – which is automatically calculated from the region

around the user-defined seed – is not calculated ‘‘correctly’’, and thus the resulting contour (red) leaks in the upper area and misses an edge in the lower

left (note: for the interactive segmentation of the vertebral body, a rectangle was used as template to construct the graph. Thereby, the center of the

rectangle is the user-defined seed point and the yellow crosses in the two rightmost images display the four corners of the rectangle). Finally, the rightmost

image presents the result of the refined segmentation. Therefore, the user simply placed three additional seeds (white dots on the contour of the vertebral

body), and thus forced the algorithm to perform the min-cut at these positions – which also influences the cuts along the neighboring rays. Furthermore,

additional gray value information can be extracted around these extra seeds that the user placed on the contour of the vertebral body.
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seed and still forces the algorithm to perform the min-cut at its
position in the upper left contour of the rectum. In the rightmost
image, the user further refined the segmentation outcome with two
additional seed points.

Figure 3 presents the interactive segmentation of a stented lumen
and the thrombus from a postoperative computed tomography
angiography (CTA) scan from a patient with an abdominal aortic
aneurysm (AAA)23,24. The leftmost image shows the original scan and
the second image from the left presents the segmentation of the
stented lumen (red) with the initial user-defined seed point (green)
placed inside the lumen (note: for the interactive segmentation a
circle was used as template to construct the graph). The following
three images show how the user places a second seed point and
interactively drags it to the contour of the thrombus. However, the
graph is still constructed from the initial seed point that has been
placed at first inside the lumen. The second seed point forces the
algorithm to perform the min-cut at its position and therefore also
influences the positions of the min-cut in the neighboring rays.
During the interactive dragging of the second seed inside the throm-
bus (images three and four from the left), the algorithm tries to adapt
to other structures appearing in the thrombus. In this example, con-
trast enhanced blood from an endoleak25 is visible (elongated bright
area inside the thrombus), and the resulting contour partly fits to this
endoleak in the third and the fourth image in the lower right area:
once to the left contour of the endoleak (third image) and once to the
right contour of the endoleak (fourth image). In the rightmost image,
the segmentation outcome has furthermore been refined by an addi-
tional seed point placed by the user on the contour of the thrombus in
the lower left.

Figure 4 presents the interactive segmentation of the prostate
central gland (PCG) in 3D with a spherical template. The leftmost

images show the original scan in axial (top), coronal (middle) and
sagittal (bottom) views. The second image from the left presents the
segmentation outcome (red) for a user-defined seed point (blue)
placed inside the prostate (note: the seed point has been placed in
the axial view, even if it is also displayed in the coronal and sagittal
views). For comparison, the green masks display the outcome of a
manual slice-by-slice segmentation from an expert. However, as the
initial seed point is placed close to the right border of the prostate, the
algorithm missed the contours on the left side of the PCG (axial and
coronal views). Though, the interactive real-time behavior of the
approach makes a repositioning easy, and thus it is also easy to find
a good segmentation outcome for the axial, coronal and sagittal views
(third image from the left). In the rightmost image, the segmentation
result has been further refined with an additional seed that has been
placed by the user in the lower right within the sagittal view.

Figure 5 presents different views – axial (top), coronal (middle)
and sagittal (bottom) – of the 3D segmentation outcome from
Figure 4. The left images show the last nodes (red) that still belong
to the foreground (PCG) after the min-cut, and therefore defining
the prostate central gland. In the images displayed in the middle
column, the segmentation result has been superimposed with the
manual mask (green) from the slice-by-slice expert segmentation.
Finally, the rightmost images present a closed surface form the
graph’s nodes, which can be used to generate a solid mask of the
segmentation outcome for further processing.

In addition, performance tests have been carried out with a square
template for vertebral body segmentation26 on a laptop with Intel
Core i5-750 CPU, 4 3 2.66 GHz, 8 GB RAM running Windows 7
Professional x64 Version. Thereby, the computation time included
the graph construction (sending out the rays from the user-defined
seed point, sampling the nodes along these rays and constructing the

Figure 2 | Interactive refinement segmentation of the rectum from an intraoperative gynecological 3-Tesla magnetic resonance imaging dataset. The

leftmost image shows the native scan and the second image from the left presents the initial seed point (white) for the interactive segmentation placed by

the user inside the rectum. The red dots present the segmentation outcome with regard to the current seed point position (note: for the interactive

segmentation of the rectum, a triangle was used as template to construct the graph. Thereby, the center of the rectangle is the user-defined seed point and

the yellow crosses display the three corners of the triangle). In the third image from the left, an additional seed point (white) has been placed in the upper

left contour of the rectum. This additional seed forces the algorithm to perform the min-cut at this position. In the fourth image from the left, the user has

interactively repositioned the initial seed point inside the rectum to find a better segmentation outcome. However, the additional seed at the contour stays

fixed during the interactive repositioning of the initial seed and still forces the algorithm to perform the min-cut at its position in the upper left contour of

the rectum. In the rightmost image, the user further refined the segmentation outcome with two additional seed points.

Figure 3 | Interactive segmentation of a stented lumen and the thrombus from a postoperative computed tomography angiography (CTA) scan from a
patient with an abdominal aortic aneurysm (AAA). The leftmost image shows the original scan and the second image from the left presents the

segmentation of the stented lumen (red) with the initial user-defined seed point (green) that has been placed inside the lumen (note: for the interactive

segmentation a circle was used as template to construct the graph). The following three images show how the user places a second seed point and

interactively drags it to the contour of the thrombus. However, the graph is still constructed from the initial seed point that has been placed inside the

lumen. In addition, the second seed point forces the algorithm to perform the min-cut at its position and therefore also influences the positions of the

min-cut in the neighboring rays. During the interactive dragging of the second seed point inside the thrombus (image three and image four from the left),

the algorithm tries to adapt to other structures visible in the thrombus. In this example, contrast enhanced blood from an endoleak is visible (elongated

bright area inside the thrombus), and the resulting contour adapts to this endoleak in the third and the fourth image in the lower right area: once to the left

contour of the endoleak (third image) and once to the right contour of the endoleak (fourth image). In the rightmost image, the segmentation outcome

has been furthermore refined by an additional seed point placed on the contour of the thrombus in the lower left.
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Figure 4 | Interactive segmentation of the prostate central gland (PCG) in 3D with a spherical template. The leftmost images show the original scan in

axial (top), coronal (middle) and sagittal (bottom) views. The second image from the left presents the segmentation outcome (red) for a user-defined

seed point (blue) that has been placed inside the prostate (note: the seed point has been placed in the axial view, but it is also displayed in the

coronal and sagittal views). For comparison, the green masks display the outcome of a manual slice-by-slice segmentation from an expert. However, as the

initial seed point is placed close to the right border of the prostate, the algorithm missed the contours of the PCG on the left (axial and coronal views).

Though, the interactive real-time behavior of the approach makes a repositioning easy, and thus it is also easy finding a good segmentation outcome

for the axial, coronal and sagittal views (third image from the left). In the rightmost image, the segmentation result has been further refined with an

additional seed that has been placed in the lower right within the sagittal view.

Figure 5 | Different views – axial (top), coronal (middle) and sagittal (bottom) – of the 3D segmentation outcome from Figure 4. The left images

present the last nodes (red) that still belong to the foreground after the min-cut, and therefore they define the segmented prostate central gland contour. In

the images of the middle column, the segmentation result has been superimposed with the manual mask (green) from the slice-by-slice expert

segmentation. Finally, the rightmost images present a closed surface form the graph’s nodes, which can be used to generate a solid mask of the

segmentation outcome for further processing.
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edges), analyzing the average gray value around the user-defined seed
point (which is incorporated into weights of the graph’s edges) and
the optimal mincut calculation to separate the background from the
foreground. The diameter of the square template was set to 80 mm
and the delta value was set to 2. For 900 nodes (coming from 30 rays
and 30 nodes per ray), an average interactive segmentation time of
30 ms could be achieved. For 9.000 nodes (300 rays, 30 nodes per
ray), the segmentation time was in general still under 100 ms, which
is still acceptable and within the time range from current smartphone
touchscreens27.

However, for 90.000 nodes (3.000 rays and 30 nodes per ray, or 300
rays and 300 nodes per ray) the average time was around 130 ms,
where a minor latency time could already been recognized. That
would mean the approach is not real-time anymore, but from a user
point of view this is still acceptable for an interactive segmentation
process. In contrast, 900.000 nodes (30.000 rays, 30 nodes per ray)
were too slow for a convenient interactive segmentation, because the
computation time went up to one second.

The outcome of the final segmentations for the presented inter-
active approach is heavily dependent on the manually placed seed
points. However, in previous publications the segmentation of med-
ical pathologies (like Glioblastoma Multiforme, Pituitary Adenomas,
Cerebral Aneurysms, Prostate Central Glands and Vertebral Bodies)
have already been evaluated via one fixed user-defined seed point,
and the summary of these results have been presented here28. There,
it could already show that a DSC around 80% is possible with only
one seed point. However, in principle a user can get very close to the
ground truth (manual segmentation) if enough manual seed points
are added. Figure 6 presents an example of the prostate where several
seed points (white) have been placed to get a segmentation result
(red) that matches almost perfect with the manual segmentation
(green).

Discussion
In this study, an interactive contouring algorithm for image seg-
mentation, with a strong focus on medical data, has been introduced.
More specific, the presented algorithm belongs to the class of inter-
active contouring approaches, which provide immediate feedback of

the segmentation result to the user. Thus, allowing the user to inter-
fere easily and intuitive into the algorithms calculation of the seg-
mentation result. Nevertheless, there are always cases where the user
cannot find a satisfying segmentation, when an algorithm has to
detect the majority of the objects contour. This can have several
reasons, the most frequent are in general homogeneous appearances
between the object and the background, noise within the object
to segment, or ‘‘complex’’ shapes of the object. For these difficult
cases an algorithm requires additional support. This support
should be intuitive and fast accomplishable by the user, and further-
more allows to continue the interactive segmentation. The proposed
solution in this contribution is an easy and fast interactive placement
of additional seed points in case of an unsatisfying segmentation
outcome. Moreover, the approach allows to come back to an inter-
active refinement of the initial seed point, even under the new restric-
tions of the additional seeds. Furthermore, the additional seeds can
provide the algorithm with broader geometrical and textural
information and therefore restrict the possible segmentation calcula-
tion even more. For an initial feasibility evaluation, the approach has
been implemented within a medical prototyping platform and tested
mainly two- and three-dimensional medical data from the clinical
routine, with the ultimate goal to assist pure manual slice-by-slice
outlining.

The novelty within this study lies in the combination of several
pre-developed segmentation techniques26,28–32, resulting in an
advanced interactive real-time contouring algorithm for (medical)
data. More specific, the presented work extends and incorporates a
refinement option29,30 – introduced only for fixed seed points and a
spherical shape31 – into the recently published Interactive-Cut28 algo-
rithm that can handle arbitrary shapes32, but had no refinement
option. In sum, the achieved research highlights of the study are:

. An novel interactive contouring algorithm has been designed;

. The algorithm combines shape-based segmentation with user
refinement;

. The user refinement is intuitive and fast, with immediate feed-
back;

. The segmentation works on 2D and 3D image data;

. The evaluation has been performed on medical data from the
clinical routine.

There are several areas for future work: in particular, supporting
manual strokes from the user which have been drawn along the
border of the object to segment – instead of ‘‘only’’ single seed points.
Albeit, this may ‘‘break’’ the real-time feedback you get from single
seed points even if these are dragged on the image. As shown in the
result section, a single seed point can still be moved around to find a
better segmentation result, this is not so easy and intuitive anymore if
the user has once drawn a stroke. Though, a solution may be an
iterative adaption to the manually sketched parts of the user33.

Furthermore, a detailed study for the end user (which are prim-
arily physicians in case of medical data) is necessary. Even if several
physicians from different fields already tested the approach and
responded positively, it’s of course not certain that they will use it
for own research (e.g. for a time-consuming analysis of medical data
for own research purpose) or even in the clinical routine. However,
after carrying out several studies with a typical stroke-based
approach9,10,34, it is clear that they would only accept such a course
of action (the initialization) if the segmentation outcome is after-
wards always satisfying (note: for the automatic segmentation the
participating physicians had only to mark parts of the fore- and
background with a simple brush; no other settings or parameters
had to be defined). However, a long-term end user study regarding
the presented approach already has been started within two
European funded projects ClinicIMPPACT (www.clinicimppact.
eu/) and GoSmart (www.gosmart-project.eu), where post-interven-
tional radiofrequency ablation (RFA) zones are segmented35.

Figure 6 | Semi-automatic segmentation of the prostate where several
seed points (white) have been placed to get a segmentation result (red)
that matches almost perfect with a pure manual segmentation (green).
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Methods
Data. For a practical and genuine application in translational science, the elaborated
approach has been tested with two-dimensional and three-dimensional medical data
from the clinical routine. Intraoperative gynecological 3-Tesla magnetic resonance
imaging datasets that have been used for this study can be found here36,37,38. MRI
datasets of the spine, which are public available for research purposes, can be
downloaded here39,40,41. Pre- and intra-procedural MR-guided prostate biopsy
datasets with manual segmentations are freely available here42,43,44.

Software. The presented approach has been implemented as own C11 module
within the medical prototyping platform MeVisLab (www.mevislab.de, Version 2.3,
Date of access: 28/04/2014) under the 64-bit version of Windows 7 Professional.
Thereby, basic functionalities provided by MeVisLab, like loading medical data, e.g. in
the DICOM format (OpenImage module), viewing and navigating through 2D slices
(View2D module), displaying data and results in 3D (View3D module) and placing
seed points (SoView2DMarkerEditor module) have been used. To calculate the max-
flow/min-cut on graphs, the public available source code from Yuri Boykov and
Vladimir Kolmogorov has been used (http://vision.csd.uwo.ca/code/, Version 3, Date
of access: 28/04/2014)45:

Algorithm. The core algorithm has been implemented as own MeVisLab C11

module and is a combination and extension of the Template-Cut32 and the
Interactive-Cut28 approaches, and the refinement method introduced in29,30. The new
algorithm (Refinement-Cut), as well as the predecessor methods it builds up, belong
to the graph-based approaches. Here, an image is interpreted as graph G(V,E) which
consists of nodes n[V sampled in the image and edges e[E establishing connections
between nodes. After graph construction a minimal s-t-cut45 is calculated on the
graph, dividing the nodes into two disjoint sets, whereby one set the segmented
objects and one set the background represents – note: for the calculation of the
minimal s-t-cut, two additional virtual nodes s[V (called source) and t[V (called sink)
are used. The minimal s-t-cut returns the global optimum on a constructed graph, in
contrast to iterative approaches, like the Active Contours, which in general find a
solution stepwise, and thus can get stuck during this process in a local minimum.
However, the immediate calculation of a global optimum, like the minimal s-t-cut,
makes graph-based approaches in particular eligible for an interactive real-time
application. First of all, for the graph construction, the nodes n[V are sampled along
rays which are sent out from one single seed point and with regards to a certain
template. This template represents the basic shape of the segmented object, like
described in the Template-Cut approach. Examples are

. A rectangle shape for vertebra segmentation in 2D26;

. A circle template for prostate central gland segmentation in 2D28;

. A cubic shape for vertebral body segmentation in 3D46,47;

. A spherical shape for prostate central gland or brain tumor segmentation in
3D31,43;

. Or even a user-defined shape for objects that vary too much to be predefined by a
simple shape48.

After the nodes and the underlying texture values within the image have been
sampled, the graph’s edges E are generated, that establish the connections between the
(virtual) nodes, and an edge vi,vj

� �
[E defines the connection between the two nodes

vi, vj. Taking over the notation of Li et al.49, there are two types of ‘-weighted edges:

. Intra-edges which connect nodes along the same ray to ensure that the minimal s-
t-cut runs through only one edge within this ray;

. Inter-edges which connect nodes from different rays under a smoothness value
delta Dr, which influences the number of possible s-t-cuts and therefore the
flexibility of the resulting segmentation.

Furthermore, there are edges between the sampled nodes and the virtual nodes (s
and t) for the graph construction established, and the weights of these edges depend
on the sampled texture values within the image and a cost function. For more detail
about the graph construction the reader is referred at this point to the previous
Template-Cut publication32. However, the specific graph construction, which basic-
ally starts from one single seed point inside the segmentation object, is particularly
suitable for an interactive real-time segmentation, because the user has only to drag
this one single seed point over the image – in contrast, to approaches where more
input like information about fore- and background or strokes are needed. Moreover,
the user can easily add more seed points on the object’s contour, which modify the
graph and force the minimal s-t-cut to go through this additional seeds. Thereto, the
algorithm search for the graph’s node that is closest to the additional seed point
provided by the user (note: In general, the additional seed’s position will not match
100% with the position of a sample node, especially for a low density of rays and
sampled nodes, rather the closest graph’s node c is chosen). In a next step, the minimal
s-t-cut has to be forced to be at this position. In order to ensure that, the graph’s node c
and all its predecessors within the same ray are connected via ‘-weighted edges to the
source s, and all successor of c within the same ray are connected via ‘-weighted edges
to the sink t. Furthermore, the intra-edge between c and its direct successor node
within the same ray is removed. That this course of action works, has already been
shown in an initial study with fixed seeds point for the segmentation of glioblastoma
multiforme (GBM)30, where the Dice Similarity Score (DSC)50 could be improved
from 77.72% to 83.91%. However, the possibility to drag an additional seed around an
image and at the same time getting the updated segmentation result, makes this

approach much more powerful and therefore the finding of a satisfying segmentation
result much more convenient. Nevertheless, during dragging the closest graph’s node
c will most likely change, and has to be re-calculated as soon as the graph is re-
constructed. But this allows the user to drag the additional seed points to arbitrary
positions on the image and even works if a seed point is outside the predefined
template. The additional user-defined seed points also influence the position of the
minimal s-t-cuts on the neighboring rays. This influence gets even stronger for lower
delta values, which restricts the flexibility of the resulting segmentation. Hence, there
are many things going on ‘‘under the hood’’ (and hidden for the user) but still have to
be handled in real-time during the interactive dragging of the seeds on the image.
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