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Reactive stroma co-evolves with cancer, exhibiting tumor-promoting properties. It is also evident at
sites of wound repair and fibrosis, playing a key role in tissue homeostasis. The specific cell types of
origin and the spatial/temporal patterns of reactive stroma initiation are poorly understood. In this
study, we evaluated human tumor tissue arrays by using multiple labeled, quantitative, spectral
deconvolution microscopy. We report here a novel CD34/vimentin dual-positive reactive fibroblast that
is observed in the cancer microenvironment of human breast, colon, lung, pancreas, thyroid, prostate,
and astrocytoma. Recruitment of these cells occurred in xenograft tumors and Matrigel plugs in vivo and
was also observed in stromal nodules associated with human benign prostatic hyperplasia. Because
spatial and temporal data suggested the microvasculature as a common site of origin for these cells, we
analyzed microvasculature fragments in organ culture. Interestingly, fibroblasts with identical
phenotypic properties and markers expanded radially from microvasculature explants. We propose the
concept of reactive microvasculature for the evolution of reactive stroma at sites of epithelial disruption
common in both benign and malignant disorders. Data suggest that the reactive stroma response is
conserved among tissues, in normal repair, and in different human cancers. A more clear understanding
of the nature and origin of reactive stroma is needed to identify novel therapeutic targets in cancer and
fibrosis. (Am J Pathol 2014, 184: 1860e1870; http://dx.doi.org/10.1016/j.ajpath.2014.02.021)
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Recruitment and accumulation of reactive stroma cells occurs
relatively early during the initiation of carcinoma in situ and
exhibits a focal pattern associated with some, but not all, early
carcinomas. We have reported previously that reactive stroma
initiates early during prostate cancer tumorigenesis, with foci
being observed during premalignant prostatic intraepithelial
neoplasia (PIN).1,2 Reactive stroma is characterized by the
presence of vimentin (VIM)þ stromal cells that have been
termed carcinoma-associated fibroblasts (CAFs), and myofi-
broblasts that are positive for smooth muscle alpha actin
(ACTA2) and VIM. This response is not exclusive to cancer
and occurs during normal wound repair and at sites of epithelial
damage.3,4 Accordingly, it has been proposed that tumor-
associated reactive stroma essentially serves a wound repair
function at sites of disrupted tissue homeostasis.5 CAFs
stigative Pathology.
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function to foster tumor growth in the breast,6,7 prostate,8,9 and
pancreas.10 Both myofibroblasts and CAFs remodel the extra-
cellular matrix directly via deposition of collagen type I,11e13

tenascin C,2,9,14 and expression of matrix metalloprotein-
ases.15,16 The tumor microenvironment biology affected by
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CD34þ Fibroblasts in Reactive Stroma
CAFs and myofibroblasts likely fosters the progression of
cancer via differential adhesion patterns and transient epithelial-
to-mesenchymal transition induction17e20 in addition to
modulating rates of angiogenesis.

Little is understood about initiation of reactive stroma, the
specific cell types of origin, and the biology that regulates its
activation and recruitment. Moreover, the relationship be-
tween CAFs and myofibroblasts and whether these pheno-
types represent different cells or different states of a common
cell are not understood. In addition, it is not known whether
different human tumors share a common pattern of recruit-
ment and composition of stromal cell types in their respective
microenvironments. These questions are important because
novel therapeutics designed strategically to target common
microenvironment biology may be effective treatments for
several different cancers and other proliferative disorders.

To address these issues, the National Cancer Institute
funded Tumor Microenvironment Network program initiated
a study to evaluate human tissue arrays derived from patients
with prostate, breast, colon, pancreas, lung, thyroid, and brain
cancer for common tumor microenvironment markers. We
report here that a novel population of CD34/VIM dual-
positive fibroblasts was consistently identified within the
tumor microenvironment of several different human cancers.
Moreover, similar recruitment patterns were observed in
human benign prostatic hyperplasia (BPH), in mouse models
of reactive stroma, and in the initial reactive stroma recruited
to human xenograft tumors. Additional experiments with
isolated microvasculature indicated a vessel wall origin.
Accordingly, we propose here a common reactive micro-
vasculature hypothesis for the initiation and co-evolution of
reactive stroma fibroblasts commonly observed in cancers,
benign disorders, and wound repair.

Materials and Methods

Tissue Arrays

All tissue arrays were generated and evaluated under
approval by institutional review boards and provided by
Baylor College of Medicine (prostate, mammary, lung),
Vanderbilt University (colon), or purchased commercially
(pancreas, thyroid, and brain) as follows. Prostate tissue array
was provided by Gustavo Ayala and Tom Wheeler, Dan L.
Duncan Cancer Center, Baylor College of Medicine (Hous-
ton, TX). The six-slide set contained samples from 50 cases
of adenocarcinoma, confirmed by histopathology, with
adjacent PIN and normal tissues from the same patients. In
total, 97 normal, 94 PIN, and 92 cancer cores provided usable
information for quantitation. The cancer cores exhibited a
Gleason sum score of 5 (5 cores), Gleason 6 (59 cores), and
Gleason 7 (30 cores), representing a range and frequency
typical of most radical prostatectomy samples. Breast tissue
array was provided by Kent Osborne, Breast Center, Dan L.
Duncan Cancer Center, Baylor College of Medicine. One
unique slide contained 4 normal and 48 cancer tissue
The American Journal of Pathology - ajp.amjpathol.org
samples. Colon tissue array was provided by Robert Coffey
and Simon Hayward, Vanderbilt Ingram Center, Vanderbilt
University Medical Center (Nashville, TN). One unique slide
contained 22 normal and 110 cancer tissue samples. Pancreas
tissue array was purchased from Biochain (catalog no.
Z7020090; Hayward, CA). One slide contained 3 normal and
45 cancer tissue samples. Lung tissue array was constructed
and provided by Xioyun Shen, Rodolfo Laucirica, and Tom
Wheeler, Department of Pathology, Baylor College of
Medicine. One unique slide contained 61 cases of adeno-
carcinoma, confirmed by diagnosis, and adjacent paired
matched normal tissue. Brain tissue array was purchased
from Biochain (catalog no. Z5070004). One slide contained 4
normal and 59 cancer tissue samples. Thyroid tissue array
was purchased from Biochain (catalog no. Z7020098). One
slide contained 3 normal and 93 cancer tissue samples
(including inflammatory diseases). Archival BPH tissue was
obtained from patients undergoing surgical treatment and
provided by the Department of Pathology, Baylor College of
Medicine, and handled as described previously.21

Animals

Athymic NCr-nu/numale homozygous nude mice, between 6
and 8 weeks of age, were obtained from Charles River
Laboratories (Wilmington, MA). Flk1-myr::mCherryþ/tg

mice were a kind gift from Dr. Mary Dickinson at Baylor
College of Medicine. Transgenic mice expressing active
transforming growth factor (TGF)-b1 targeted to prostate
epithelial cells were generated as reported previously.22 Mice
housing and manipulations followed approved protocols
from the Institutional Animal Care and Use Committee.

Cell Lines

LNCaP human prostate carcinoma cells (ATCC, Manassas,
VA) were cultured in RPMI 1640 (Life Technologies, Inc.,
Rockville, MD), which was supplemented with 10% fetal
bovine serum (Hyclone, Logan, UT), 100 U/mL penicillin, and
100mg/mLstreptomycin (SigmaChemicalCo., St. Louis,MO).

Preparation of Xenograft Tumors

Xenograft tumors were generated in NCr-nu/nu mice under
two-way (Matrigel and LNCaP cells) conditions as previ-
ously described.23e26 Briefly, 16 � 106 LNCaP cells were
resuspended in 300 mL of complete medium, incubated on
ice, and mixed with 500 mL of thawed Engelbreth-Holm-
Swarm Matrigel extracellular matrix (Becton Dickinson,
Bedford, MA). Mice were injected subcutaneously in both
lateral flanks with 100 mL of the LNCaP cell-Matrigel mix
(2 � 106 cells), using a total of three animals per experiment
(six tumors). For control Matrigel plugs, 100 mL of Matrigel
without cells was injected per site in a similar manner.

Xenografts were harvested at different time points, be-
tween 4 and 21 days, dissected from skin, and fixed in 4%
1861
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paraformaldehyde overnight at 4�C. Tissues were then
washed three times with PBS, processed for histology by
embedding in paraffin, and cut into sections at a nominal
thickness of 5 mm. After histological evaluation with H&E,
the following time points were used for further immuno-
histochemistry (IHC) experiments: day 4, day 10, and day
12 for Matrigel plugs and day 10 and day 21 for LNCaP-
Matrigel xenografts.

IHC

Tissue Arrays
All tissue arrays were evaluated with multiple-label IHC and
spectral deconvolution microscopy. Primary antibodies for
CD34 (MS-363-P 1:100; Thermo Scientific, Waltham, MA),
and VIM (MS-129-P 1:50; Thermo Scientific) were evalu-
ated for specificity, and staining conditions were optimized
empirically. IHC was conducted with a multiplex staining kit
according to the manufacturer’s instructions (Biocare Med-
ical, Concord, CA). Briefly, tissues were subjected to heat-
induced antigen retrieval, using citrate buffer, pH 6, for 25
minutes. Sections were incubated with the VIM primary
antibody for 30 minutes at room temperature, followed by
application of Mach3 probe (Biocare Medical) and Mach
poly alkaline phosphatase (AP; Biocare Medical), each for 15
minutes at room temperature. Fast Red chromogen (Biocare
Medical) was added and developed for 10 minutes at room
temperature, according to the manufacturer’s instructions.
Biocare denaturing reagent was then added for 5 minutes to
disrupt the antibody-polymer interaction. Tissues were then
incubated in the CD34 primary antibody for 25 minutes at
room temperature, followed by application of Mach3 probe
(Biocare Medical) and Mach3 Poly horseradish peroxidase
(HRP; Biocare Medical) each for 12 minutes. Slides were
incubated in diaminobenzidine for another 5 minutes, dehy-
drated, and permanently mounted for analysis.

Xenograft Tumors and Matrix Traps
Immunostaining was performed with the MicroProbe Staining
System (Fisher Biotech, Pittsburgh, PA), and capillary action
optimized reagents from Open Biosystems (Huntsville, AL) as
follows: paraffin-embedded, 5-mm sections were dewaxed by
using xylene and were hydrated through a series of graded
ethanol. Sections were then subjected to heat-induced antigen
retrieval with the use of citrate buffer, pH 6, for 20 minutes.
After cooling, endogenous peroxidase activity was blocked by
treating with 3% H2O2 in PBS for 10 minutes at room tem-
perature. Blocking was performed by subsequent incubation in
Protein Blocker (GTX30963, Gentex, Irvine, CA) for 5 mi-
nutes at 50�C, followed by 5% goat serum for 30 minutes at
room temperature. Samples were incubated overnight at 4�C
with a mixture of the primary antibodies as follows: mono-
clonal rat anti-mouse for CD34 (ab8158 1:250; Abcam,
Cambridge, MA) and monoclonal rabbit anti-mouse VIM
(ab92547 1:100; Abcam), diluted in primary antibody diluent.
For human BPH tissues, a mixture of monoclonal mouse
1862
anti-human CD34 (IR632 1:50; Dako, Carpinteria, CA) and
monoclonal rabbit anti-human VIM (ab133260 1:250;
Epitomics-Abcam, Burlingame, CA) was used.
Samples were exposed to a mixture of secondary anti-

bodies for 45 minutes at 37�C as follows: biotinylated goat
anti-rat, or mouse as needed (A10517 or A10676 1:500;
Molecular Probes, Eugene, OR) diluted in ready-to- use
HRP-conjugated, goat anti-rabbit (3051-1; Epitomics-
Abcam). Color was developed by using a combination of
AP-HPR substrates, according to the manufacturer’s in-
structions (Vector Laboratories, Burlingame, CA). First, to
detect CD34, sections were exposed to avidin-bound AP
(Vectastain ABC kit, AK-5000; Vector Laboratories) for 30
minutes, followed by 15-minute incubation in its substrate
(AP substrate Kit III, SK5300; Vector Laboratories). VIM
was detected by incubating sections in HRP substrate
ImmPACT Nova Red (SK4805; Vector Laboratories) for 10
minutes. Sections were counterstained with methyl green (H-
3402; Vector Laboratories) for 3 minutes at 60�C, dehydrated
through a series of graded ethanol, and washed for 5 minutes
in Histoclear (HS-200; National Diagnostics, Atlanta, GA).
All samples were mounted in the noneXylene-based media
Vectamount (H-5000; Vector Laboratories).

Human BPH Samples
Special consideration was given to retrieval for archival
BPH samples as follows: after deparaffinization, endoge-
nous peroxidase activity was blocked by incubating the
samples in 3% hydrogen peroxide/PBS. Slides were then
washed in water and transferred into a Coplin jar filled with
a 1% zinc sulfate solution. This jar was placed in a 500-mL
beaker that contained 150 mL of 1% zinc sulfate solution.
After sealing with vented plastic wrap, the assembly was
microwaved for 5 minutes at 50% power, stopping half way
to replenish the zinc sulfate solution in the inner chamber as
needed. Slides were then allowed to cool down, inside the
zinc sulfate solution, for 15 minutes at room temperature
before being transferred to the microprobe slide holder for
blocking and subsequent steps as listed in Xenograft Tumors
and Matrix Traps.

Antibody Validation
Antibodies were validated for specificity and dynamic con-
centration range by using normal human prostate samples as
control tissue and test slides from the prostate tissue array. The
antibodies were titered on these samples, within the manu-
facturer’s suggested range, to determine the optimal working
concentration. In all cases, antibodies chosen showed consis-
tent staining of relevant structures as positive controls (blood
vessels), or compartments (stromal cells), with decreased color
intensity at the dilute concentrations. Samples in which the
primary antibody was omitted were used as negative control
and to verify the absence of secondary antibody nonspecific
binding. Consistent staining between normal tissue samples
and the tissue microarray test slides confirmed that the anti-
bodies produced reproducible results.
ajp.amjpathol.org - The American Journal of Pathology
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Multispectral Imaging

Multispectral imaging was performed with a Nikon
Labophot-2 microscope, equipped with a Nikon PlanApo
40� objective (144756) coupled to a Nuance spectral
deconvolution camera and software (model no. N-MSI-
420F2) from PerkinElmereCaliper Biosciences (Hopkinton,
MA). The Nuance software platform version 3.0.0 was used
for all image acquisition, spectral deconvolution, and coloc-
alization analysis. With the use of the bright field capture
mode and an empty visual field as reference, a cube of images
was acquired by automatic stacking of images taken at 20-nm
increments that spanned the camera’s spectral range, from
420 to 720 nm. A clockwise, unbiased pattern of image
acquisition was used, to ensure 100% coverage of each
microarray sample at �40 magnification. After construction
of a spectral library for Fast red, Nova Red, dia-
minobenzidine, Vector blue, hematoxylin, and methyl green,
image cubes were spectrally deconvoluted for the necessary
channels and pseudo-colored for the biomarkers. Thresh-
olding of each signal was determined as the pixel density
average from all normal tissue-acquired cubes. After manu-
ally processing all normal sample cubes, frequency histo-
grams of the percentage of positive area for all normal tissues
were constructed. A reference cube whose pixel densities fell
at�2 SD from themean was chosen as the reference for batch
colocalization analysis. For all tissue arrays, percentage of
signal and colocalization, using either hematoxylin or methyl
green counterstain as a denominator for total pixel count, was
computationally determined with the Nuance software
version 3.0.0 for each multispectral cube. For microvascu-
lature culture, colocalization was determined as the percent-
age of pixels positive for blue (CD34) within pixels positive
for red (VIM), because the samples were not counterstained.

Microvasculature Explant Culture

Microvasculature explants were obtained with the protocol
by Reed,27 with modifications. Briefly, the abdominal adi-
pose tissue from three Flk1-myr::mCherryþ/tg mice was
collected, rinsed thoroughly with cold PBS, and chopped
into small fragments with the use of sterile scissors, carefully
removing lymph nodes, if present. All fat was pooled into 20
mL of a solution of 2 mg/mL bovine serum albumin (Invi-
trogen, Carlsbad, CA), 2 mg/mL Collagenase (catalog no.
17018-029; Gibco, Carlsbad, CA) in Dulbecco’s modified
Eagle’s medium high glucose (catalog no. 11965167; Invi-
trogen) and allowed to digest for 40 minutes, at 37�C, with
horizontal agitation (200 rpm). The resulting digest was
centrifuged at 1000 � g for 5 minutes, and the supernatant
was discarded. The pellet was resuspended in 8 mL of
microvasculature (MV) media (Dulbecco’s modified Eagle’s
medium high glucose that contained 10% fetal bovine serum,
100 U/mL penicillin, 100 mL/mL streptomycin) and was
centrifuged again under the same conditions as before. The
second pellet was resuspended again in 8 mL of MV media
The American Journal of Pathology - ajp.amjpathol.org
and filtered through a Nitex 300-mm membrane to eliminate
tissue remnants. The filtrate was then filtered again through a
Nitex 30-mm membrane, which retains the microvasculature
fragments while allowing single cells to go through.

The membrane was inverted over a 60-mm cell culture
dish and washed thoroughly with 2 mL of MV media to
collect the microvasculature fragments. For low-density
culture, done in six-well plates, 200 mL of this extract was
seeded in coverslips that were previously coated with a thin
layer of Matrigel (BD Biosciences, Billerica, MA), diluted
to a concentration of 3 mg/mL. Five minutes after seeding, 2
mL of MV media was added to each well, and cultures were
incubated at 37�C, 5% CO2 for 24 and 48 hours. Explants
were fixed by adding 2 mL of 8% paraformaldehyde pH 7.4,
followed by 20 minutes of incubation at room temperature.
Microvasculature explant culture coverslips were then
washed with PBS, with gentle shaking, three times (5 mi-
nutes each), at room temperature to eliminate all para-
formaldehyde and were stored in PBS at 4�C.

Immunocytochemistry

Microvasculature explant culture coverslips were washed
with PBS, with gentle shaking, three times (5 minutes each),
at room temperature. Cells were permeabilized by incuba-
tion in 0.1% Triton X-100 in PBS at room temperature for 5
minutes, followed by PBS washes as before. Coverslips
were then incubated in 1% goat serum (Sigma Chemical
Co.) in PBS for 30 minutes at room temperature to block
unspecific binding. Primary antibodies were mixed together
in primary antibody diluent (Open Biosystems) as follows:
VIM rabbit anti-mouse monoclonal (ab92547 1:250;
Abcam) and CD34 rat anti-mouse monoclonal (catalog no.
8158, 1:50; BioLegend, San Diego, CA). Samples were
incubated in primary antibodies overnight, at 4�C. After
washing, endogenous peroxidase activity was blocked by
incubation in 0.3% hydrogen peroxide in methanol for 10
minutes, at room temperature, followed by a PBS wash.

Biotinylated goat anti-rat secondary antibody (A10517;
Molecular Probes) was diluted at 1:500 in goat anti-rabbit
HRP-conjugated secondary antibody (3051-1; Epitomics-
Abcam). Samples were exposed to the secondary antibody
mixture in a humidified chamber for 45 minutes at 37�C.
Color development was performed as described in IHC,
using AP-Vector Blue for CD34 detection and HRP-
ImmPACT Nova Red (Vector Laboratories) for VIM.
Finally, coverslips were washed in water and mounted,
without dehydration, with the use of Fluormount (catalog
no. F4680; Sigma Chemical Co.).

Statistical Analysis

Quantification data subsets per tissue were analyzed with
Kruskal-Wallis nonparametric analysis of variance, and
Dunn’s posttest to compare paired sets to determine sig-
nificant differences between groups (P < 0.01).
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Figure 1 The prostate tissue arrays consisted of 32 normal cores that
resulted in 420 multispectral cubes, 25 PIN cores that resulted in 333
multispectral cubes, and 27 cancer cores that resulted in 371 multispectral
cubes. A, C, and E: Representative RGB micrographs show an increase in
CD34/VIM staining that correlates with cancer progression. B, D, and F:
CD34/VIM colocalization is pseudo-colored yellow and shows epithelial
acini (asterisks), vasculature (red arrows). Shown are normal prostate (A
and B), PIN (C and D), and cancer (E and F). Original magnification: �400.
Scale bars: 20 mm (B, D, and F). RGB, red, green, and blue.

Figure 2 The brain tumor tissue array consisted of 63 tissue cores,
resulting in 273 multispectral cubes. A, C, and E: Representative RGB mi-
crographs show an increase in CD34/VIM staining that correlates with
cancer progression. B, D, and F: CD34/VIM colocalization is pseudo-colored
yellow and shows astrocytoma cell (asterisk), vasculature (red arrows).
Shown are normal encephalon (A and B), astrocytoma grade I (C and D),
and astrocytoma grade II (E and F). Original magnification: �400 (A, C,
and E). Scale bars: 20 mm (B, D, and F). RGB, red, green, and blue.

San Martin et al
Results

CD34/VIM Dual-Positive Cells Are Associated with the
Reactive Stroma of Different Human Cancers

A total of 2200 multispectral cubes were obtained from the
prostate microarray. Dual IHC deconvolution indicated that
in normal prostate, most CD34/VIM dual-positive cells
localized to the vascular walls of blood vessels adjacent to
secretory epithelial acini (Figure 1, A and B). A vascular and
perivascular pattern was also observed at focal sites of PIN.
In contrast to normal tissues, an enrichment of single cells,
sometimes observed in sheets or clusters that exhibit dual-
positive immunoreactivity, was observed in the stroma
adjacent to PIN foci (Figure 1, C and D) and in prostatic
adenocarcinoma (Figure 1, E and F). The sheets of dual-
positive cells were not immediately associated with the
vessel wall as confirmed by platelet endothelial cell adhesion
molecule 1 (PECAM1; CD31) staining (data not shown).

A total of 273 multispectral cubes were acquired from the
human brain cancer microarray. In normal encephalon dual-
positive cells were few and were primarily associated with
vessel walls (Figure 2, A and B). In lower tumor grades,
elevated numbers of CD34/VIMþ cells were spatially
associated in a radial pattern adjacent to vascular walls
1864
(Figure 2, C and D). Similar to prostate carcinoma, CD34/
VIMþ cells appear as clusters or sheets intermingled with
astrocytoma cells. This was particularly evident in higher
grade tumors that exhibited sheets of CD34/VIM dual-
positive cells with a fibroblast-like morphology (Figure 2,
E and F). In addition, an increase in heterogeneity of
staining patterns was progressively associated with
advanced disease stages, compared with normal.
Evaluation of the pancreatic cancer array (146 spectral

cubes) showed similar patterns of distribution of CD34/
VIMþ cells with a fibroblast morphology associated with
regions of carcinoma (Figure 3, CeF) relative to control
(Figure 3, A and B).
A statistically significant enrichment of the CD34/VIM

dual-positive population was observed in prostate cancer
(P < 0.001) when the percentage of colocalization values
were compared with normal (Figure 4A). Quantitation of
data also showed that a significant enrichment of CD34/
VIM dual-positive population was associated with
increasing tumor grade in astrocytoma (P < 0.001)
(Figure 4B). In the pancreas tissue array, an increase in
heterogeneity of staining patterns and quantity was associ-
ated with more advanced grades of tumors (Figure 4C), but
the marked heterogeneity of CD34/VIM dual-positive
staining patterns in pancreatic cancer and the lack of
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 The pancreas tissue array consisted of 48 tissue cores, resulting
in 146 multispectral cubes. A, C, and E: Representative RGB micrographs
show an increase in CD34/VIM staining that correlates with cancer pro-
gression. B, D, and F: CD34/VIM colocalization is pseudo-colored yellow and
shows adenocarcinoma foci (asterisks) and vasculature (red arrows). Shown
are normal pancreas (A and B), adenocarcinoma grade I (C and D), and
adenocarcinoma grade II (E and F). Original magnification:�400 (A, C, and
E). Scale bars: 20 mm (B, D, and F). RGB, red, green, and blue.

CD34þ Fibroblasts in Reactive Stroma
sufficient normal samples in this tissue array precluded
statistical evaluation.

We also analyzed spectral cubes acquired from the colon
cancer array (206 cubes) (Supplemental Figure S1), a breast
cancer array (373 cubes) (Supplemental Figure S2), a lung
cancer array (760 cubes) (Supplemental Figure S3), and a
thyroid cancer array (Supplemental Figures S4 and S5). In
colon cancer tissues, the spatial distribution and phenotype of
CD34/VIMþ stromal cells were nearly identical to other
Figure 4 A statistically significant increase is present in the percentage of
normal tissue (A) and of astrocytoma samples compared with normal encephal
colocalization of CD34 and VIM is associated with increasing grade of cancer, prec
in the middle of each box), 75th and 25th percentiles (top and bottom borders of
below each box, respectively). ***P < 0.001 versus normal.

The American Journal of Pathology - ajp.amjpathol.org
cancer tissues. A trend toward enrichment related to cancer
grade was observed; however, it was not statistically signif-
icant (data not shown). In mammary cancer tissues, CD34/
VIMþ cells were also observed in regions associated with
focal areas of carcinoma. Interestingly, a trend toward
depletion of dual-positive cells was observed in intraductal
carcinoma; however, the absence of a sufficient normal
population in the tissue array precluded statistical analysis.
Evaluation of lung cancer samples also showed CD34/VIM
dual-positive cells with similar spatial patterns emerging in
the tumor microenvironment. Interpretation in lung tissue
was precluded by the large vessel density, low volume of
stroma, and heterogeneity relative to other tissues. Spectral
deconvolution of the 273 cubes acquired from the human
thyroid microarray also showed enrichment in dual-positive
cells that associate with all grades of thyroid cancer
compared with normal samples. However, focal areas of
thyroid cancer also exhibited some VIM and CD34 staining
in carcinoma cells, precluding a meaningful statistical eval-
uation. This appeared to be carcinoma specific and was not
observed, however, in thyroid tissues with inflammatory
phenotypes such as Hashimoto’s thyroiditis (Supplemental
Figure S4) which were included in the tissue array.

CD34/VIMþ Cells in Human BPH Periurethral Stromal
Nodules

Human BPH tissue was examined to assess whether
recruitment of CD34/VIMþ stromal cells to reactive stroma
was a common response in benign tissue remodeling in
proliferative disorders. Interestingly, hyperplastic stromal
nodules adjacent to the urethra were positive for CD34/
VIMþ cells (Figure 5, A and B) with a spatial distribution
pattern and phenotype similar to those observed in carci-
noma tissue. Notably, central regions in these nodules
exhibited an elevated density of several closely situated
blood vessels that appeared to be arterioles or small
muscular arteries (Figure 5, BeD). The spatial pattern of
CD34/VIMþ

fibroblast-appearing cells was in close
colocalization of CD34 and VIM in prostate cancer samples compared with
on (B). C: A progressive increase in heterogeneity of the percentage of
luding statistical significance. Data are expressed as median (horizontal line
each box, respectively), and 90th and 10th percentiles (whiskers above and
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Figure 5 Localization of CD34/VIM dual-positive cells in human BPH
tissue and in collagenous micronodules from the TGF-b1 transgenic mouse
ventral prostate gland. A: H&E-stained section of a stromal nodule. B:
Deconvoluted image of dual localization (yellow) within stromal nodules. C:
IHC of CD34 (blue) and VIM (red) within the stromal nodule. D: Decon-
voluted image of dual localization (yellow) within stromal nodules at
higher power shows vasculature (red arrows). E: Region-enriched VIM-only
positive and CD34/VIMþ stromal cells accumulate adjacent to a vessel at
the base of a collagenous micronodule in the TGF-b1 transgenic mouse
ventral prostate gland. F: Deconvoluted image shows CD34 (blue), VIM
(red) colocalization pseudo-colored yellow, as well as collagenous micro-
nodule (asterisk) and vasculature (red arrow). Scale bars: 200 mm (A and B);
20 mm (D and F).

San Martin et al
proximity to vascular walls with a radial distribution
(Figure 5, C and D) similar to the patterns observed in as-
trocytomas. Of interest, many fibroblast-like cells distrib-
uted more distal to vessels were VIM only and lacked CD34
immunoreactivity as observed in Figure 5D. Less regular
was the accumulation of CD34/VIM dual-positive fibro-
blast-like cells adjacent to regions of epithelial hyperplasia.
These were restricted to focal patterns in direct association
with hyperplastic epithelial acini (data not shown).
CD34/VIMþ Cells in a TGF-b1 Transgenic Mouse Model

To determine whether emergence of CD34/VIMþ
fibro-

blasts were also observed in regions of mouse reactive
stroma, we evaluated prostate glands from transgenic mice
engineered with TGF-b1 expression targeted to the prostate
gland as reported previously.22 These mice develop
collagenous micronodules due to attenuated epithelial lining
of secretory acini as a function of age and overexpression of
1866
TGF-b1. The collagenous nodules, composed of collagen
and reactive stroma, appeared to originate from vessels at
the base of epithelial acini and evolved as nodular pro-
trusions into the wall of the acini, effective closing off acini
access to the secretory duct. We have reported that this
likely occurs as an adaptive process to seal off the acini
during breach of the epithelial barrier and disrupted
epithelial homeostasis. Although the nodule was composed
primarily of collagen extracellular matrix, the cellular ele-
ments were found to be composed of both CD34/VIM dual-
positive and VIM-only stromal cells (Figure 5, E and F).
Similar to observations in human BPH, the core of these
nodules contained at least one prominent vessel with CD34-
only positive cells and dual-positive CD34/VIMþ cells
observed immediately adjacent to vessels (Figure 5F).

CD34/VIM Dual-Positive Cells at the Stromal Invasion
Front into Matrigel Plugs and Human Xenograft Tumors

To assess the recruitment of CD34/VIMþ cells during
initiation of reactive stroma, subcutaneously inoculated
Matrigel plugs and human xenograft tumors constructed
with LNCaP prostate cancer cells were evaluated in nude
mice. Fibroblast-like cells derived from the mouse host were
rapidly recruited to the Matrigel plugs and xenografts in the
initial 3 to 5 days after inoculation. Thin layers of Matrigel
could be observed in the subcutaneous space at the site of
injection in day 4 Matrigel plugs (Figure 6A). Fibroblast-
like cells that migrate into the Matrigel plugs were near
universally positive for CD34/VIM immunoreactivity
(Figure 6, B and C). A similar pattern of recruitment of
CD34/VIMþ

fibroblast-like cells was observed in the
LNCaP xenograft tumors (Figure 6, DeF) with spatial
distribution adjacent to clusters of LNCaP cells (Figure 6F).

CD34/VIM Dual-Positive Fibroblasts Originate from
Microvasculature Fragments

Microvascular fractions were isolated from mouse adipose
tissue as reported previously and evaluated for ability to
produce migratory CD34/VIMþ

fibroblasts.27 Adipose tis-
sue from Flk1-myr::mCherry transgenic mice were used
because of endothelial cell-specific expression of myr-
istoylated mCherry fluorescent protein,28,29 which was
observed in the explants from the vascular fraction
(Figure 7, A and B). Microvascular explants cultured on
Matrigel-coated coverslips exhibited a distinct tubular shape
similar to the one reported in three-dimensional collagen
gels (Figure 7C).27 In contrast to culture on collagen sub-
strates, which produces sprouting and angiogenesis, ex-
plants cultured on Matrigel exhibited a reactive stroma
phenotype. Cells with distinct fibroblast-like morphology
were observed migrating from the vascular tube segments
within 12 hours of culture (Figure 7, C and D). The initial
wave of cells was dual positive for CD34 and VIM
(Figure 7, C and D). At later time points (48 to 72 hours),
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 AeC: Representative micrographs for DRS experiments show invasion of CD34/VIM dual-positive cells into the Matrigel plugs (A, bracket) as
early as 4 days after xenograft implantation, which is maintained until day 10. DeF: Two-way DRS experiments (Matrigel and LNCaP) show an increased
migration of CD34/VIM dual-positive cells into the xenograft. A: Dual IHC CD34 (AP, blue) and VIM (HRP, red) of the Matrigel-only xenograft, 10 days after
implantation. B: Dual IHC CD34 (AP, blue) and VIM (HRP, red) of the Matrigel-only xenograft, 10 days after implantation. Higher magnification of bracketed
area from A. C: Spectrally deconvoluted image shows colocalization of dual-positive cells pseudo-colored yellow. D: Dual IHC for CD34 (AP, blue) and VIM (HRP,
red) in the 10-day-old, two-way differential reactive stroma (DRS) xenograft. E: Dual IHC for CD34 (AP, blue) and VIM (HRP, red) shows a higher magnification
of LNCaP foci within the Matrigel. Higher magnification from D. F: Spectrally deconvoluted image shows colocalization of dual-positive cells pseudo-colored
yellow. Scale bars: 50 mm (A and D); 20 mm (C and F).
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these cells exhibited attenuated CD34 expression and
remained as VIMþ

fibroblast-like cells (Figure 7, E and F).

Discussion

We report here that a unique population of CD34/VIM dual-
positive reactive stroma fibroblast-like cells is associated
with the microenvironment of different human cancers and
stromal nodules associated with BPH. In normal tissue,
CD34/VIMþ cells were restricted to the microvasculature
situated adjacent to the basal lamina of the epithelial layer.
Microvascular explants in culture produced CD34/VIMþ

cells with a fibroblast phenotype. CD34/VIMþ cells with a
fibroblast phenotype were also observed adjacent to the
central core vessels in collagenous micronodules in the aged
TGF-b1 transgenic mouse prostate gland. Similar CD34/
VIM dual-positive fibroblast-like cells were the initial cell
type recruited into Matrigel plugs in vivo and were the first
wave of cells that invade into LNCaP xenograft tumors in
nude mice. Cells with an identical phenotype were observed
in the reactive stroma and fibrous nodules in human BPH,
indicating that recruitment of this reactive stroma cell type is
not cancer specific. These cells were associated with thick-
walled microvessels commonly observed in the central core
of BPH stromal nodules. Consistent with a possible vessel
origin, in vitro studies indicated that isolated microvascu-
lature generated proliferative and migratory CD34/VIM
dual-positive fibroblast-appearing cells.

Data reported here are consistent with previous studies
that reported CD34þ stromal-like cells associated with
The American Journal of Pathology - ajp.amjpathol.org
development. During development in the 9- to 15-week-old
human fetus, CD34þ cells were observed in vessel struc-
tures and were also “distributed diffusely as fibrous tissues,”
and this was seen in the perimysium and fascia.30,p919 In
addition, that study reported CD34þ fibroblast-like cells
observed as fibrous tissue that separated and “bundled” the
myocardium. The study concluded that CD34þ stromal cells
were critically important in pattern formation of mostly
mesenchymal-derived tissues, including skeletal muscle,
synovial tissue, and “muscle/tendon-associated tissue.”30,p919

Additional studies suggested that CD34þ mesenchymal tis-
sue was involved in pattern formation in the development of
laryngeal and pharyngeal walls.31 The IHC staining pattern
in these studies showed both vessel-like structures, and more
diffuse staining described as fibrous tissues was positive for
CD34 and VIM.

Appearance of CD34þ cells in the stromal compartment
followed by appearance of myofibroblasts has been reported
in several adult cancers and tissue disorders, although these
cells have never been fully characterized. Appearance and
progressive loss of CD34þ cells and gain of smooth muscle
alpha actin (ACTA2) positive myofibroblasts have been
reported in the reactive stroma in high-grade and invasive
mammary cancer,32 during progression from benign to
malignant squamous cell carcinoma,33 and in progression
from squamous intraepithelial lesions to squamous cell
carcinoma of the cervix.34 This same scenario has also been
reported adjacent to xanthogranulomatous foci in chronic
cholecystitis.35 It is possible that CD34þ stromal cells set up
a patterning template to assist in a more complete stromal
1867
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Figure 7 CD34/VIM dual-positive cells expand from microvasculature in
culture. Isolated microvasculature explants were identified via positive
mCherry expression (B) after 12 hours of in vitro culture (A). C: Immuno-
cytochemistry for CD34 (blue) and VIM (red) from 12-hour cultures of
murine microvessels. D: Deconvolution shows dual-positive cells pseudo-
colored yellow. E: IHC for CD34 (blue) and VIM (red) from 48-hour cul-
tures of murine microvessels. F: Spectral deconvolution shows expansion of
dual-positive cells pseudo-colored yellow and VIM-only cells (red only).
Scale bars: 50 mm (A, B, D, and F).
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repair in disrupted adult tissues, analogous to what CD34
stromal cells have been reported to do during patterning in
development. It is also possible that CD34þ stromal cells
reported here are progenitors of ACTA2þ myofibroblasts.
Whether these cell phenotypes originate from different lin-
eages or represent a sequential pattern in a common cell
lineage is not understood.

Fibrocytes derived from circulating monocytes can
exhibit a fibroblast-like appearance, can express CD34, and
have been shown to differentiate to myofibroblasts.36,37 The
proliferative properties and morphology of CD34/VIM cells
observed in the microvascular fragment study reported here
would suggest these cells are not likely derived from
monocytes or fibrocytes. However, we cannot fully rule out
this possibility.

Although the precise origin is not yet understood,
considerable evidence suggests that the perivascular niche is
a site of origin for CD34/VIMþ

fibroblast-like stromal cells
observed in reactive stroma. Recent studies report that the
vessel wall contains three distinct cell types that differen-
tially express CD34. This includes a CD34þ/melanoma cell
adhesion molecule (MCAM; CD146)þ/PECAM1 (CD31)þ

endothelial cell, a CD34�/MCAMþ pericyte, and a CD34þ/
1868
MCAM�
“adventitial stromal cell-like cell.”38,p815 The

adventitial stromal cell-like cell was able to expand out,
become fibroblastoid, and acquired mesenchymal stem cell
properties: endoglinþ (ENG; CD105), MCAMþ (CD146),
and nerve growth factor receptorþ (NGFR; CD271). As
these cells began to expand out via proliferation, expression
of CD34 was reduced. In addition, pseudoangiomatous
stromal hyperplasia in mammary tissue consists of CD34þ

stromal fibroblastoid cells, termed myofibroblasts, which
form hyperplastic fibrotic lesions in the pseudo vascular
space.39,40 CD34þ stromal-like cells isolated from the
stromal vascular fraction in adipose tissue were capable of
forming spheroids, were highly proliferative, and could be
induced to differentiate to either adipocytes or PECAM1þ

endothelial cells and capillary tubes, suggesting they
exhibited stem cell capabilities.41 Another study found that
adherent CD34þ cells isolated from the stromal vascular
fraction could be induced to differentiate to different
mesenchymal cell types.42 In addition, CD34þ cells that
reside in the periendothelial site in the stromal vascular
fraction were shown to express pericyte and mesenchymal
markers and functioned to stabilize endothelial networks.43

Together, these data are consistent with the suggestion
that CD34/VIMþ

fibroblasts originate from the wall of the
local microvasculature. Moreover, these studies suggest that
the CD34þ fibroblast-like cells may exhibit mesenchymal
stem cell properties, capable of differentiation to different
stromal cell types. If true, this would be of obvious value to
regaining homeostasis at focal sites of wound repair or tis-
sue remodeling.
It is possible that the microvasculature generates a reac-

tive stroma in response to injury of an adjacent epithelial
barrier. Breach of epithelial barrier is the primary lesion in
the aged TGF-b1 transgenic mouse prostate gland, where
formation of collagenous micronodules that force closure of
the secretory acini is promoted.22 Here too, microvascula-
ture appears to be the most likely source of the emerging
CD34/VIM fibroblasts that comprise the rare cells observed
in the micronodule, which is composed mostly of extra-
cellular matrix collagen. Because a breach of epithelial
barrier function is permissive for microbial intrusion and
fluid loss, there is an obvious rationale for a rapid reactive
stroma response to restore compartmental homeostasis. Also
note that the microvasculature is highly sensitive to tissue
disruption. Postcapillary venules are particularly responsive
to histamine and other active factors associated with tissue
injury and breach of epithelial layers. We propose that the
microvasculature is a potent regulator of the reactive stroma
response in tissue disruption or loss of homeostasis as oc-
curs in cancer and benign proliferative disorders. In addi-
tion, we propose that activation and recruitment of CD34/
VIMþ

fibroblast-like cells from the microvasculature occurs
as the initial wave of first responders in disrupted tissue
homeostasis. Understanding the origin, recruitment, and
biology of the CD34/VIMþ cells in tumor tissue and in
repair tissue is important in the development of novel
ajp.amjpathol.org - The American Journal of Pathology
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therapeutic approaches designed to target the tumor micro-
environment, benign stromal disorders such as BPH, or
abnormal tissue repair disorders.
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