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Vascular remodeling is a feature of sustained inflammation in which capillaries enlarge and acquire the
phenotype of venules specialized for plasma leakage and leukocyte recruitment. We sought to determine
whether neutrophils are required for vascular remodeling in the respiratory tract by using Mycoplasma
pulmonis infection as a model of sustained inflammation in mice. The time course of vascular
remodeling coincided with the influx of neutrophils during the first few days after infection and peaked
at day 5. Depletion of neutrophils with antibody RB6-8C5 or 1A8 reduced neutrophil influx and vascular
remodeling after infection by about 90%. Similarly, vascular remodeling after infection was suppressed
in Cxcr2�/� mice, in which neutrophils adhered to the endothelium of venules but did not extravasate
into the tissue. Expression of the venular adhesion molecule P-selectin increased in endothelial cells
from day 1 to day 3 after infection, as did expression of the Cxcr2-receptor ligands Cxcl1 and Cxcl2.
Tumor necrosis factor a (TNFa) expression increased more than sixfold in the trachea of wild-type and
Cxcr2�/� mice, but intratracheal administration of TNFa did not induce vascular remodeling similar to
that seen in infection. We conclude that neutrophil influx is required for remodeling of capillaries
into venules in the airways of mice with Mycoplasma infection and that TNFa signaling is necessary
but not sufficient for vascular remodeling. (Am J Pathol 2014, 184: 1877e1889; http://dx.doi.org/
10.1016/j.ajpath.2014.02.010)
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Neutrophils are key effector cells of innate immunity that
rapidly arrive at sites of tissue injury to kill bacteria and
interact with macrophages and other cells to orchestrate a
coordinated immune cell and cytokine response to injury.1e4

Neutrophils are involved in many inflammatory diseases of
the airways and lung, including pneumonia, acute lung
injury, sepsis, asthma, cystic fibrosis, bronchitis, and chronic
obstructive lung disease,5 also contribute to tissue damage in
inflammatory conditions of other organs, and play a role in
arterial remodeling in atherosclerosis.4

The signals and events that bring neutrophils to sites
of inflammation are well characterized.6e8 These include
expression of endothelial cell adhesion molecules to induce
rolling and firm attachment, followed by extravasation into
tissues where they release cytokines and other products that
can kill bacteria and promote tissue remodeling. The dominant
mechanismdriving neutrophil influxmay be organ-specific.9,10

Blood vessels of the microcirculation undergo numerous
changes in sustained inflammation, and these include structural
stigative Pathology.

.

and functional remodeling of endothelial cells and peri-
cytes.11e14 Among these changes, capillaries transform into
venules that support plasma leakage and leukocyte influx. The
contribution of neutrophils to this remodeling is not well
understood. Circumferential vessel enlargement is a pro-
minent feature of vascular remodelingesustained airway
inflammation15e23 and is distinct from more familiar and
better-documented types of sprouting angiogenesis.24

We asked whether incoming neutrophils contribute to the
vascular remodeling, with the thought that the initial wave
of leukocyte influx could render blood vessels more efficient
for leukocyte adhesion and transmigration. Although
leukocyte influx is known to accompany blood vessel
remodeling,15,18,22 it is unknown whether there is a causal
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relationship and, if so, what is the underlying mechanism?
Neutrophils are attractive candidates for contributing to
vascular remodeling because they are among the first leu-
kocytes to enter inflamed tissues4,6,25 and can produce cy-
tokines, growth factors, proteases, and reactive oxygen
species that have profound vascular effects.2e4,26

With this background, we sought to determine whether
neutrophils are essential for the vascular remodeling that
occurs soon after Mycoplasma pulmonis infection, when
capillaries transform into venules. In particular, we asked
whether neutrophil influx coincides spatially and temporally
with vascular remodeling, can vascular remodeling be pre-
vented by neutrophil depletion, and if Cxcr2 signaling is
required for the neutrophil influx that accompanies vascular
remodeling?

To address these questions we examined the relationship
between neutrophil influx and vascular remodeling during the
first week after M. pulmonis infection of the respiratory tract
of mice. The approach was to compare the time course of
neutrophil influx and vascular remodeling in the trachea and
then determine whether the remodeling was blocked by
neutrophil depletion by either of two different antineutrophil
antibodies: RB6-8C5 or 1A8. We also tested whether
vascular remodeling was prevented by genetic deletion of
Cxcr2, which mediates the actions of the chemotactic che-
mokines Cxcl1 and Cxcl2, which bring neutrophils into
inflamed tissues. Because previous studies have shown that
vascular remodeling was inhibited by blocking tumor ne-
crosis factor a (TNFa) signaling,19 we asked whether TNFa
expression was increased in wild-type and Cxcr2�/� mice
and whether intratracheal administration of TNFa was suf-
ficient to induce vascular remodeling similar to that seen after
infection. Other studies examined the expression of the Cxcr2
ligands, Cxcl1 and Cxcl2. Together, the experiments showed
that neutrophil influx was required for vascular remodeling
after M. pulmonis infection, and that TNF signaling was
necessary but not sufficient for vascular remodeling.

Materials and Methods

Mice

We used adult female wild-type C57BL/6 mice andCxcr2�/�

mice27 (C57BL/6 background, strain #006848; The Jackson
Table 1 Sequence of Primers Used for RT-qPCR

Name Forward primer

b-actin 50-GGCTGTATTCCCCTCCATCG-30

16S rRNA 50-CGGTACAGGAAACTGTTGCTAATACCG
S100a9 50-GGAGCGCAGCATAACCACCATC-30

Cxcr2 50-ATGCCCTCTATTCTGCCAGAT-30

Cxcl1 50-CCGAAGTCATAGCCACACTCAA-30

Cxcl2 50-AGACAGAAGTCATAGCCACTCTCAAG-
P-selectin 50-GCATACTCATGGAATAACTCACG-30

TNFa 50-CCACCACGCTCTTCTGTCTAC-30
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Laboratory, Bar Harbor, ME) of either sex. Mice were
genotyped by PCR analysis of genomic tail DNA, housed
under pathogen-free conditions, and had free access to food
and water. For experiments, mice were anesthetized i.m.
with 85 mg/kg ketamine and 15 mg/kg xylazine.19 The
Institutional Animal Care and Use Committee of the Uni-
versity of California at San Francisco approved all experi-
mental procedures.

M. pulmonis Infection

Anesthetized mice were infected by intranasal inoculation
of 50 mL broth containing 106 colony-forming units of
M. pulmonis organisms of strain CT7.28 Infection severity
was assayed by quantitative RT-PCR (RT-qPCR) for bac-
terial 16S bacterial rRNA.22

RT-qPCR

After perfusion of anesthetized pathogen-free or infected
mice with PBS, tracheas were removed, RNA was extracted,
and cDNA was prepared.19 Samples of 1 ng cDNA were
subjected to RT-qPCR using SYBR GreenER qPCR Super-
Mix Universal (Invitrogen, Carlsbad, CA) and measured in
duplicate with a Bio-Rad MyiQ detection system (Hercules,
CA) using gene-specific primers (Table 1). Gene expression
values were normalized to b-actin, and the results were pre-
sented as fold-changes in comparison with pathogen-free
controls or as copy number relative to b-actin.

Measurement of Tissue TNFa

Tracheas were removed from anesthetized pathogen-free or
infected mice and frozen at liquid nitrogen temperature.
Tissues were homogenized and TNFa protein levels were
determined using a mouse TNFa enzyme-linked immuno-
sorbent assay kit (eBioscience, San Diego, CA) according to
the manufacturer’s instructions. The sensitivity of the assay
was 8 pg/mL. Pilot experiments showed that the amount of
TNFa in individual tracheas was near the detection limit so
four to five tracheas were pooled for each experimental
group to yield enough protein for analysis. Amounts of
TNFa per trachea were expressed as picograms of TNFa per
milligram of protein.
Reverse primer

50-CCAGTTGGTAACAATGCCATGT-30

-30 50-CCATTTCAAAGTGAAGCAAACG-30

50-GCCATCAGCATCATACACTCCTCA-30

50-GGTGCTCCGGTTGTATAAGATGA-30

50-GCAGTCTGTCTTCTTTCTCCGTTAC-30

30 50-CCTCCTTTCCAGGTCAGTTAGC-30

50-GACGTCATTGAGGTGAGCG-30

50-AGGGTCTGGGCCATAGAACT-30
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Neutrophils in Vascular Remodeling
Intratracheal TNFa Administration

Recombinant murine TNFa (catalog #315-01A; PeproTech,
Rocky Hill, NJ) was administered daily to anesthetized mice
for 7 days at a dose of 50, 100, 200, or 500 ng per mouse in
30 mL sterile 0.9% NaCl. The aliquot was delivered via a
pipette inserted into the back of the mouth near the trachea
by a technique developed for efficient, atraumatic delivery
of substances to themouse respiratory tract.29 The dose range
of TNFa was based on published reports of TNFa adminis-
tered intratracheally to induce changes inmouse lungs.30,31At
7 days, tracheas were removed and vascular remodeling and
neutrophil influx were assessed in tissue whole mounts pro-
cessed for immunohistochemistry.

Blood Leukocyte Counting

Neutrophils in fresh peripheral blood removed via the tail
vein were counted using a Hemavet 850 automated veteri-
nary hemocytometer (Drew Scientific, Dallas, TX).

Neutrophil Depletion

Neutrophils were depleted by daily intraperitoneal injections
of 250 mg rat monoclonal anti-mouse neutrophil antibodies
1A832 or RB6-8C5,33 starting 1 day before infection and
continuing for 7 days. Changes in neutrophils in blood and
tissues were assessed by counting neutrophils in blood with
a hemocytometer or in immunohistochemically stained
whole-mount preparations of the trachea.

Tissue Preparation and Immunohistochemistry

Tracheas of anesthetized mice were preserved by vascular
perfusion of fixative (1% paraformaldehyde in PBS, pH 7.4)
for 2 minutes. Tracheas were removed and immersed in
fixative for 1 hour at room temperature, washed, and then
stained immunohistochemically by incubation as whole
mounts in one or more primary antibodies (Table 2) diluted at
1 mg/mL, as described previously.28 Antibodies to S100a8,
S100a9, or myeloperoxidase were confirmed to stain mouse
neutrophils and to be suitable for multiple labeling studies of
paraformaldehyde-fixed tracheal whole mounts (Supplemental
Figure S1). Primary antibodies were detected by secondary
Table 2 Antibodies Used for Immunohistochemistry

Antigen Host species Antibody t

Pecam1 (CD31) Armenian hamster Monoclona
Pecam1 (CD31) Rabbit Polyclonal
P-selectin (CD62P) Rat Monoclona
S100a8 Goat Polyclonal
S100a9 Rat Polyclonal
Myeloperoxidase Rabbit Polyclonal
Cxcl1 Rabbit Polyclonal
Cxcl2 Goat Polyclonal
E-cadherin Rat Monoclona
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antibodies labeled with Alexa488, Cy3, or Cy5 (Jackson
ImmunoResearch, West Grove, PA). Specimens were
imaged with a Zeiss (Thornwood, NY) LSM510 confocal
microscope using Zeiss AIM software version 4.0.

Morphometric Measurements

Blood vessels were measured in trachea images stained for
platelet-endothelial cell adhesionmolecule 1 (Pecam1) using a
digitizing tablet linked to a video camera on a Zeiss Axiophot
microscope.28 Blood vessels and neutrophils were measured
in regions of mucosa overlying the tracheal cartilage rings,
where the greatest changes occurred after infection.

Statistical Analysis

Normally distributed values are presented as means � SEM,
with 3 to 12 mice per group. Differences between means were
assessedbyanalysis of variance followedby theBonferroni test.
P < 0.05 was considered significant. The Pearson correlation
coefficient r was calculated to assess the relationship between
the two variables concerned. Frequency distributions were
compared with the Kolmogorov-Smirnov two-sample test.

Results

Temporal and Spatial Relationship of Neutrophil Influx
and Vascular Remodeling

In pathogen-free mice, blood vessels over tracheal cartilage
rings had a mean diameter of 9.2 � 0.3 mm and consisted of
one or two endothelial cells (Figure 1A). After infection,
these vessels were slightly larger at 3 days (Figure 1B) and
were more than twice normal size at 7 days, with a mean
diameter of 24.7 � 2.3 mm (Figure 1, C and D). Other blood
vessels in the tracheal mucosa were similarly enlarged.19

Few neutrophils were found in the tracheal mucosa of
pathogen-free mice (Figure 1A). Neutrophils were signifi-
cantly more abundant at day 3 of infection (Figure 1B), and
at day 7 were >3000-fold more abundant than at baseline
(Figure 1, C and E). The amount of vascular remodeling
correlated closely with the severity of neutrophil influx in
the trachea (R2 Z 0.8; P < 0.001) (Figure 1F). During the
first week of infection, the number of circulating neutrophils
ype Vendor Catalog number

l Thermo/Fisher MA3105
Abnova PAB11924

l BD Biosciences 550289
R&D Systems AF3059
Abcam Ab105472
Dako (Carpinteria, CA) A0398
PeproTech 500-P115
R&D Systems AF452NA

l Invitrogen 131900
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Figure 1 Time course of neutrophil influx and vascular remodeling after M. pulmonis infection. AeC: Whole mounts of mouse trachea stained for
endothelial cells (Pecam1, red) and neutrophils (S100a9, green). In a pathogen-free mouse, capillaries (arrows) span a cartilage ring and join a venule
(arrowhead) between cartilages; neutrophils are sparse (A). B: There were a moderate number of neutrophils on day 3 of infection. Capillaries were mostly
narrow but had focal enlargements (arrows) and joined a venule (arrowhead). C: Neutrophils were abundant on day 7. Vessels over cartilage were enlarged
(arrows). D and E: Values per mouse and group means show the time course after infection of enlargement of capillaries over cartilage rings (D) and influx of
S100a9-immunoreactive neutrophils (E). N Z 4 to 5 mice per group; *P < 0.05 compared with the pathogen-free group. F: Linear regression of blood vessel
size versus the number of neutrophils in the trachea from 0 to 7 days after infection. N Z 4 to 5 mice per group, P < 0.001. G: Distribution of the diameter of
blood vessels located over tracheal cartilage in pathogen-free and 7-day-infected mice. Capillaries (green) in pathogen-free mice were remodeled into larger
venules (red) by day 7 of infection. N Z 3 mice per group, P < 0.05; Kolmogorov-Smirnov test. H: Neutrophils (arrowheads) inside a venule located between
cartilage rings on day 3 of infection. Scattered extravascular neutrophils also were present. I: Size distribution of blood vessels (median, 22.5 mm) that contain
adherent neutrophils on day 3 of infection. N Z 3 mice. Scale bars: 50 mm (AeC); 20 mm (H).

Baluk et al
in blood also increased and peaked on day 5 at approximately
three times the pathogen-freevalue (Supplemental Figure S2A).
During this period, the blood vessels overlying the cartilage
were converted from capillariesdthe only type of vessels
normally found in this locationdto venules (Figure 1G).

Intravascular neutrophils (diameter, 9.2 � 0.3 mm) were
most abundant in postcapillary venules and collecting venules
(median diameter, 22.5mm) (Figure 1, H and I). On days 1 and
1880
3 after infection, most of the neutrophil-containing vessels
were venules located between the cartilage and the capillaries
over the cartilage did not support neutrophil adhesion.
However, from day 5 onward, some neutrophils also were
found in vessels over the cartilage. The presence of neu-
trophils in these vessels was another indication that these
capillaries underwent remodeling into venules capable of
supporting leukocyte adhesion.
ajp.amjpathol.org - The American Journal of Pathology
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Evidence of remodeling of capillaries into venules was
supported further by the appearance of P-selectin immuno-
reactivity, which normally was absent in capillaries over
cartilage, and only present in venules between cartilage
(Figure 2A). P-selectin was present in the remodeled vessels
overlying cartilage on day 7 after infection (Figure 2B).
P-selectin staining in these vessels had a granular appear-
ance (Figure 2C), consistent with the presence of P-selectin
in Weibel-Palade bodies.34 The increase in P-selectin immu-
noreactivity coincided with increases in expression of
P-selectin mRNA assessed by RT-qPCR. P-selectin expres-
sion was twice the baseline value at 1 day after infection,
6 times baseline at 3 days, and 15 times baseline at 7 days
(Figure 2D).

The increase in P-selectin in the trachea was accompanied
by the accumulation of neutrophils in the tracheal mucosa,
reflected by increased expression of the neutrophil cytosolic
protein S100a9 (Figure 2E) and the neutrophil chemokine
receptor Cxcr2 (Figure 2F). Expression of P-selectin and
S100a9 were relatively low at baseline, increased with the
duration of infection, and correlated positively with one
another (R2 Z 0.6, P < 0.001). Expression of mRNA for
P-selectin, S100a9, and Cxcr2 peaked on day 5 after infection.
The amount of neutrophil influx, vascular remodeling, and
the expression of the earlier-mentioned adhesion molecule,
neutrophil cytosolic protein, and receptor driving neutrophil
Figure 2 Time course of expression of P-selectin and neutrophil markers after M
(red) and endothelial cells (Pecam1, green). A: In a pathogen-free mouse, P-sele
moderate in venules (arrowheads) located between cartilage rings. B: At day 7
vessels (arrows) over cartilage. C: Enlargement of boxed region in B. Most P-se
vessels. Pecam1 staining at endothelial cell borders of remodeled vessel was stron
expression of P-selectin (D), the neutrophil marker S100a9 (E), Cxcr2 (F), and th
assessed by RT-qPCR. Black circles indicate values for individual mice and the lines
the pathogen-free group. Scale bars: 50 mm in (A and B); 10 mm (C).

The American Journal of Pathology - ajp.amjpathol.org
chemotaxis all increased with the progression of infection, as
reflected by expression of M. pulmonis 16S rRNA in the
trachea (Figure 2G).

Dependence of Vascular Remodeling on Neutrophil
Influx

To determine whether the coincidence of neutrophil influx
and vascular remodeling reflected a causal relationship, we
tested the effect of two different antineutrophil antibodies,
RB6-8C5 and 1A8, on the amounts of neutrophil influx
and vascular remodeling. As documented in previous re-
ports,32,33 administration of antibody RB6-8C5 or 1A8 was
accompanied by a significant reduction in neutrophils in the
bloodstream (Supplemental Figure S2B). Similarly, fewer
neutrophils were present in tracheas of mice that received
either of the two antibodies throughout a 7-day period of
M. pulmonis infection (Figure 3, AeC). By comparison,
neutrophil influx was unimpeded after infection of mice that
received a nonspecific IgG as a control antibody. The sup-
pression of neutrophil influx in mice treated with RB6-8C5
or 1A8 during the infection was paralleled by much less
enlargement of blood vessels over cartilage rings (Figure 3,
DeF). Measurements showed 95% fewer neutrophils and
91% less vascular enlargement in tracheas of infected mice
treated with RB6-8C5, and 86% fewer neutrophils and 89%
. pulmonis infection. Whole mounts of mouse trachea stained for P-selectin
ctin immunoreactivity was faint or absent in capillaries (arrows), but was
after infection, P-selectin was moderate to strong in enlarged remodeled
lectin immunoreactivity was in granules in endothelial cells of remodeled
ger, wider, and more irregular than in capillaries (A). DeG: Time course of
e severity of infection reflected by expression of M. pulmonis 16S rRNA (G)
show the group mean. NZ 3 to 5 mice per group. *P < 0.05 compared with

1881

http://ajp.amjpathol.org


Figure 3 Effect of neutrophil-depleting antibodies on neutrophil influx and vascular remodeling after M. pulmonis infection. Whole mounts of mouse
trachea comparing the number of neutrophils (S100a8, green) (AeC) and size of blood vessels (Pecam1, red) (DeF) in mucosa over a cartilage ring in mice
given control IgG (A and D), RB6-8C5 (B and E), or 1A8 (C and F) throughout the 7-day infection. Neutrophil influx and vascular enlargement after infection
are much less after RB6-8C5 or 1A8 than after the control IgG. Measurements of neutrophils (G) and blood vessel diameter (H) in tracheal mucosa over
cartilage rings on day 7 of infection after antibody treatment. N Z 4 to 6 mice per group; *P < 0.05 compared with IgG group. I: Linear regression of blood
vessel size versus number of neutrophils on day 7 of infection for all mice in the four treatment groups. N Z 4 to 5 mice per group, P < 0.001. Capillary
enlargement was correlated positively to the number of neutrophils and was not present in the absence of neutrophil influx in pathogen-free mice or in
infected mice after neutrophil depletion. Scale bar Z 50 mm (AeF).

Baluk et al
less vascular enlargement in mice treated with antibody 1A8
(Figure 3, G and H). A significant correlation between the
amounts of neutrophil influx and vascular enlargement was
evident by linear regression analysis (R2 Z 0.7, P < 0.001)
(Figure 3I).

Dependence of Neutrophil Influx on Cxcr2 Signaling

As an independent approach to test the dependency of
vascular remodeling on neutrophil influx and to elucidate
the underlying mechanism, we next asked whether one or
1882
both could be blocked by deletion of Cxcr2, a key receptor
for neutrophil chemotactic chemokines. In particular, we
compared the amount of neutrophil influx and vascular
remodeling after M. pulmonis infection in wild-type mice
and Cxcr2�/� mice, which have severely impaired neutro-
phil chemotaxis.35,36 We found that neutrophil influx in the
trachea at day 7 after infection was 97% less in Cxcr2�/�

mice than in corresponding wild-type mice (Figure 4,
AeC). Similarly, vascular enlargement after infection was
85% less in Cxcr2�/� mice than in wild-type mice (Figure 4,
DeF).
ajp.amjpathol.org - The American Journal of Pathology
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Unlike wild-type mice in which>95% of neutrophils were
extravascular on day 7 of infection (Figure 4D), a distinctive
feature of infected Cxcr2�/� mice was that most neutrophils
in the trachea were intravascular (Figure 4E). The finding of
almost no neutrophil extravasation inCxcr2�/�mice infected
withM. pulmonis was in sharp contrast to the fivefold higher
neutrophil concentration in peripheral blood than found in
wild-type mice (Supplemental Figure S2A).

Dependence of Vascular Remodeling on TNFa

Because TNFa is a key inflammatory mediator that is up-
regulated after M. pulmonis infection and is required for
vascular remodeling after infection,19 we sought to learn
whether the suppression of neutrophil influx and vascular
remodeling after infection of Cxcr2�/� mice was accompa-
nied by reduced expression of TNFa. For this purpose, we
measured TNFamRNAand protein levels.We alsomeasured
S100a9 mRNA levels as a marker of neutrophil influx.
Expression of TNFa mRNA in tracheas at day 7 of infection
was sixfold greater in wild-type mice and 15-fold greater in
Cxcr2�/� mice than in corresponding pathogen-free controls
(Figure 4G). In the same tracheas, S100a9 expression was
370-fold greater after infection in wild-type mice compared
with a 50% increase in Cxcr2�/� mice (Figure 4H). After
infection for 7 days, the amount of TNFa protein was eight-
fold greater in wild-typemice and 21-fold greater inCxcr2�/�

mice than in controls (Figure 4I). Despite the contribution of
low baseline values in pathogen-freemice to some of the large
fold increases in TNFa and S100a9 after infection, the find-
ings indicate that TNFa increased after infection in the
absence of much neutrophil influx and are consistent with
TNFa being necessary but not sufficient for vascular
remodeling after M. pulmonis infection.

To use another approach to testwhether the increase in TNFa
expression was not only necessary but also sufficient for
vascular remodeling, we determined whether local administra-
tion of recombinant mouse TNFa could mimic the neutrophil
influx and vascular remodeling accompanying M. pulmonis
infection. TNFa was administered intratracheally to pathogen-
free wild-type mice at daily doses of 50, 100, 200, or 500 ng
for 7 days, based on doses reported in the literature.30,31 The
50 ng dose had no detectable effect on vascular remodeling or
neutrophil influx (data not shown). Daily TNFa doses of 200 or
500 ng resulted in modest neutrophil influx into the trachea
but no noticeable vascular remodeling (Figure 4, J and K).
Despite the limited effect of the 500 ng TNFa dose on neutro-
phil influx and no apparent vascular remodeling in the trachea,
this dose exceeded themaximal tolerateddose because only 1 of
7 mice survived the full 7-day course of intratracheal TNFa
administration. All of the lower doses were well tolerated.

Distribution of Cxcr2 Ligands

To further explore the roles of neutrophils in vascular
remodeling, we determined the amount, location, and time
The American Journal of Pathology - ajp.amjpathol.org
course of expression of two important Cxcr2 ligands, Cxcl1
and Cxcl2, which are made by epithelial cells and other cell
types.7,8 Cxcl1 immunoreactivity increased in the tracheal
epithelium after infection (Figure 5, AeC). Similarly, RT-
qPCR measurements of Cxcl1 expression increased after
infection (Figure 5D). Cxcl1 expression at day 7 was
approximately 10-fold the baseline value in pathogen-free
mice. Staining for Cxcl2 also increased in the epithelium
after infection (Figure 5, EeG), and Cxcl2 expression at day
7 was nearly 50-fold the baseline value (Figure 5H).
Discussion

We sought to determine whether neutrophils are essential
for the vascular remodeling that occurs in sustained
inflammation and is manifested by transformation of capil-
laries into venules.15,16,23 Importantly, these changes sup-
port leukocyte trafficking and plasma leakage, which are
essential components of the inflammatory response. Our
experiments, using M. pulmonis infection of the respiratory
tract in mice as a model, produced complementary lines of
evidence linking neutrophil influx and vascular remodeling.
First, neutrophil influx coincided in timing and location with
vascular remodeling. Second, pretreatment with either of
two antineutrophil antibodies (RB6-8C5 or 1A8) reduced
neutrophils in the bloodstream and in the tissue and pre-
vented vascular remodeling. Third, neutrophil influx and
vascular remodeling both were reduced sharply in the
absence of Cxcr2, a key receptor on neutrophils mediating
actions of chemotactic chemokines.

Time Course of Neutrophil Influx and Vascular
Remodeling

Respiratory tract infection by M. pulmonis in mice results
in sustained and progressive inflammation in the airways
and lung, accompanied by infiltration by neutrophils and
mononuclear cells, exaggerated mucus production, and
fibrosis.37,38 M. pulmonis in mice resembles lung infection
by M. pneumoniae in mice,39 but M. pulmonis infection is
more prolonged, and has features ofM. pneumoniae infection
in humans, which can cause community-acquired pneumonia
and is known to exacerbate asthma and chronic obstructive
pulmonary disease.40e43

The present study showed that vascular remodeling in the
airway mucosa coincides spatially and temporally with
neutrophil influx during the first week after M. pulmonis
infection. Few, if any, neutrophils were present in the airway
mucosa under baseline conditions. Capillaries in the mucosa
over cartilage rings of the normal trachea, similar to capillaries
elsewhere, lacked endothelial P-selectin immunoreactivity
and adherent neutrophils. By comparison, after infection,
P-selectin increased in endothelial cells, neutrophils adhered
to the endothelium and migrated into the airway mucosa, and
capillaries enlarged and acquired a venular phenotype. Vessel
1883
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size, P-selectin expression, and neutrophil influx peaked
around day 7. Vascular enlargement results from endothelial
cell proliferation, which peaks at day 5 after infection.17 The
amount of neutrophil influx assessed by S100a8, S100a9, or
1884
myeloperoxidase immunoreactivity fit with RT-qPCR mea-
surements of S100a9 that were very low at baseline but
increased rapidly after infection through day 7. During this
period, the appearance of P-selectin in endothelial cells,
ajp.amjpathol.org - The American Journal of Pathology
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luminal adherence of neutrophils, and increase in vessel
size were consistent with transformation of capillaries into
venules.

Suppression of Vascular Remodeling by Neutrophil
Depletion

To test the mechanistic relevance of the spatial and temporal
coincidence of neutrophil influx and vascular remodeling, we
depleted neutrophils by using two different antineutrophil
antibodies. Initially, we used the neutrophil blocking anti-
body RB6-8C5. For confirmation of the result we then used
antibody 1A8. Both antibodies decreased neutrophils in
the bloodstream and neutrophil influx into the airways after
infection, and both also reduced vascular remodeling by
about 90%. Antibody RB6-8C5 resulted in somewhat greater
neutrophil depletion in the blood and tissue (95%) than 1A8
(86%), but is known to be less neutrophil-specific than 1A8
because RB6-8C5 also can reduce Ly6C-positive monocytes/
macrophages, dendritic cells, and lymphocytes.32 The anti-
body was injected daily, but neutrophils in blood began to
return to baseline levels toward the end of the week-long
infection, as more neutrophils were released from bone
marrow. As a result, the neutrophil depletion was more
complete at the outset than at the end. However, vascular
remodeling almost completely was prevented despite the
diminished reduction toward the end.

Suppression of Vascular Remodeling by Deletion of
Cxcr2

To extend the results of the neutrophil-depletion experi-
ments, we examined the effects of blocking neutrophil
recruitment into the tissue. The approach was to determine
the amount of vascular remodeling during the first week of
infection in mice lacking the chemotactic chemokine re-
ceptor Cxcr2. Cxcr2�/� mice are known to have defective
neutrophil chemotaxis owing to impaired responses to
Cxcr2 ligands Cxcl1 and Cxcl2.27,36 However, the Cxcr2�/�

mice had five times the normal level of neutrophils in the
bloodstream and more severe infections. This exaggeration
of disease severity reflected the adaptive value of the normal
Figure 4 Changes in TNFa and dependence of neutrophil influx and vascular re
number and distribution of neutrophils (S100a9, green) in relation to blood vesse
(A, B, D, and E). A and B: Low-magnification view comparing widespread neutrop
latter are inside venules (arrows) but not in capillaries (arrowheads). C: Measur
infection of WT mice but not of Cxcr2�/� mice. NZ 5 to 12 mice per group; *P < 0
view of boxed areas in A and B show abundant neutrophils after infection in a
ameters show prominent enlargement at day 7 of infection in WT mice but not in
pathogen-free group. G and H: TNFa (G) and S100a9 (H) mRNA expression assay
(black circles) and Cxcr2�/� mice (red circles). After infection of WT mice, th
pathogen-free controls, but in infected Cxcr2�/� mice, TNFa was greater but S100a
mice per group, *P < 0.05. I: TNFa protein levels in tracheas of pathogen-free
nosorbent assay. Tracheas were pooled (from N Z 5 to 6 mice/group) to yield e
tracheas, stained for blood vessels (Pecam1, red) and neutrophils (S100a9, gree
recombinant mouse TNFa (K) daily for 7 days by intratracheal instillation. No evi
although neutrophils were more numerous than in untreated controls. Scale bars
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inflammatory response and the health impact of impaired
neutrophil function in bacterial infections.44

The use of staining for S100a8 or S100a9 and Pecam1 in
tracheal whole mounts showed that some neutrophils were
present in the airways of Cxcr2�/� mice, but they were
intravascular and did not migrate into the tissue. The absence
of vascular remodeling in these mice suggests that adherent
intravascular neutrophils were not sufficient to promote the
transformation of capillaries into venules. The two comple-
mentary experimental approaches, antibody depletion of
neutrophils and prevention of neutrophil chemotaxis, both
had the same overall effect of blocking vascular remodeling,
but by different actions on neutrophils. In the antibody-
blocking studies, the overall number of neutrophils was
reduced greatly, but those present were able to migrate into
the tissue. In contrast, in Cxcr2�/� mice neutrophils were
increased greatly in number in the blood, but could not
migrate into the tissue. We interpret these findings to indicate
that neutrophil accumulation is necessary for vascular re-
modeling to occur.

Potential Mechanisms of Neutrophil-Mediated Vascular
Remodeling

As innate immune effectors and early responders to bacterial
infection, neutrophils producemany inflammatorymediators.
In addition to proteases,2,45 neutrophils produce leukotriene
LTB4,7,46 free radicals, and histamine.47 TNFa is also among
the attractive candidates for mediators involved in vascular
remodeling that are produced by neutrophils. Although many
types of cells can secrete TNFa,48 neutrophils have been re-
ported as a major source in sustained inflammation.2,49 The
abundance of neutrophils at the sites of vascular remodeling
would position these cells strategically for delivery of medi-
ators to the remodeling vessels. TNFa up-regulates the
expression ofmany adhesionmolecules, including P-selectin,
E-selectin, intercellular adhesion molecule 1, vascular cell
adhesion molecule 1, and Cxcl1 and Cxcl2 ligands for Cxcr2
receptors.50,51 TNFa also promotes phosphorylation of
vascular endothelial cadherin, loosens endothelial junctions
to increase endothelial permeability,52 and promotes endo-
thelial proliferation.53 Involvement of TNFa in vascular
modeling on Cxcr2 signaling. Whole mounts of mouse trachea comparing the
ls (Pecam1, red) in wild-type (WT) and Cxcr2�/� mice at day 7 of infection
hils in a WT mouse and sparse neutrophils in a Cxcr2�/� mouse. Most of the
ements per mouse and group means show extensive neutrophil influx after
.05 compared with the pathogen-free group. D and E: Higher magnification
WT mouse and sparse neutrophils in a Cxcr2�/� mouse. F: Blood vessel di-
Cxcr2�/� mice. N Z 5 to 12 mice per group; *P < 0.05 compared with the
ed by RT-qPCR in pathogen-free and 7-day M. pulmoniseinfected WT mice
e expression of both TNFa and S100a9 were significantly greater than in
9 was not different from the corresponding pathogen-free value. NZ 4 to 6
mice and M. pulmoniseinfected WT mice assayed by enzyme-linked immu-
nough protein for analysis. J and K: Confocal images of whole mounts of
n), from pathogen-free mice that were untreated (J) or given 500 ng of
dence for vascular remodeling was evident in the TNFa-challenged trachea,
: 200 mm (A, B, J, and K); 50 mm (D and E).
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Figure 5 Cxcl1 and Cxcl2 expression in trachea after M. pulmonis infection. AeC: Cross-sections of mouse trachea stained for Cxcl1 (red), neutrophils
(S100a8, green), and epithelial cells (E-cadherin, blue). A: No epithelial Cxcl1 staining or neutrophils in pathogen-free trachea. B: Scattered epithelial cells
with Cxcl1 staining (arrows) and some neutrophils at day 3 of infection. C: More epithelial cells with Cxcl1 staining (arrows) and abundant neutrophils on day
7 of infection. D: Time course of Cxcl1 expression after infection measured in trachea by RT-qPCR. N Z 3 to 5 mice per group; *P < 0.05 compared with the
pathogen-free group. EeG: Cross-sections of mouse trachea stained for Cxcl2 (red), neutrophils (myeloperoxidase, green), and epithelial cells (E-cadherin,
blue). E: No epithelial Cxcl2 staining was visible in pathogen-free trachea. F: No Cxcl2 staining and few neutrophils in mucosa were visible on day 3 of
infection. G: Cxcl2 staining in epithelium (arrows) and abundant neutrophils at day 7 of infection. H: Time course of Cxcl2 expression after infection measured
in trachea by RT-qPCR. N Z 3 to 5 mice per group; *P < 0.05 compared with the pathogen-free group. Scale bars: 50 mm (AeC, EeG).
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remodeling after M. pulmonis is evident from the significant
reduction in remodeling after pharmacologic inhibition of
TNFa or genetic deletion of TNF receptor-1.19 TNFa
expression increases rapidly after infection before the peak of
vascular remodeling occurs.19

Consistent with our previous findings,19 TNFa mRNA
expression and protein were increased significantly in the
trachea after M. pulmonis infection, both in wild-type mice
and in Cxcr2�/� mice. This finding is consistent with the
known role of TNFa in the pathophysiology of airway
changes after mycoplasmal infection.19 However, because
the large increase in TNFa after infection was accompanied
by little or no vascular remodeling in Cxcr2�/� mice, TNFa
appears to be necessary but not sufficient to promote
vascular remodeling. The angiopoietins are among the other
factors that can contribute to vascular remodeling after
M. pulmonis infection.20,21

Daily administration of recombinant mouse TNFa for 7
days resulted in mild neutrophil influx but no apparent
vascular remodeling, even though the 500-ng daily dose had
lethal consequences in most mice over the 7-day period. This
could be explained by only a small fraction of the dose
penetrating into the tracheal wall en route to the lungs.
However, vascular remodeling afterM. pulmonis infection is
likely to result from the combined actions of multiple cyto-
kines acting synergistically. The finding that TNFa increased
after infection at least as much in Cxcr2�/� mice as in wild-
type mice, regardless of whether vascular remodeling oc-
curred, is consistent with a multihit mechanism, in which
other factors are required in addition to TNFa.
1886
The effects of CXC chemokines and CXCR2 signaling
have long been recognized in other forms of angiogenesis,
including in tumors,54 but have not been associated previ-
ously with the type of vascular remodeling studied here. The
dependence of mouse neutrophil chemotaxis on Cxcr2
signaling provides a ready explanation for why Cxcr2�/�

mice have less vascular remodeling and point to a key role
of neutrophils in driving the changes. Although the factors
that drive the vascular remodeling are yet to be defined,
angiopoietin-2 is another attractive candidate,55 although
vascular endothelial growth factor does not seem to be
involved.28 Angiopoietin-2 increases after M. pulmonis
infection, with a time course that parallels vascular remod-
eling21,22 and promotes blood vessel destabilization during
the remodeling process.55,56 TNFa could serve as a link be-
tween neutrophils and the effects of angiopoietin-2 in vascular
remodeling56 by up-regulating angiopoietin-2 expression in
endothelial cells.57e59

Vascular Remodeling as a Feature of Sustained
Inflammation

A prominent feature of vascular remodeling after M. pul-
monis infection is the transformation of capillaries into ve-
nules. This change involves endothelial cell proliferation,
circumferential vessel enlargement, and structural and
functional alterations in endothelial cell phenotype.15e17

Accordingly, vascular remodeling differs from vasodilata-
tion and other physiological changes in vessel caliber12,14,17

and is distinct from sprouting angiogenesis, where new
ajp.amjpathol.org - The American Journal of Pathology
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vessels grow from existing ones.24 However, angiogenesis
and vascular remodeling occur together in conditions in
which expansion of the vascular network accompanies the
change in vessel phenotype.60

Vascular remodeling is found inmany settings of sustained
inflammation,60e63 albeit the relevant literature is challenging
to decipher because the term is used to describe different
phenomena, and capillary to venule transformation is not al-
ways designated as vascular remodeling. Historically,
enlarged dilated or congested capillaries, as the remodeled
vessels have been described, were recognized features of
asthma.64 Vascular remodeling also has been described in
inflammatory bowel disease, psoriasis,65 gingivitis,66 and
sterile necrosis, in which blood vessels expand in response to
nearby dying cells.13,14 Vascular remodeling observed in
mouse tracheas also occurs in intrapulmonary airways sup-
plied by the bronchial circulation (unpublished data), but
different mechanisms are likely to apply to the specialized
vasculature of the pulmonary circulation.67

The population of venules in inflamed tissues expands as a
consequence of vascular remodeling, which similarly expands
the part of the microvasculature specialized for plasma leakage
and leukocyte influx.68,69 From a therapeutic perspective, the
vascular remodeling after M. pulmonis infection resolves after
treatment with anti-inflammatory steroids or antibiotics is
important.22

In summary, this study showed that neutrophils are
required for the vascular remodeling that occurs in early
stages of the inflammatory response to M. pulmonis infec-
tion of mouse airways. The vascular remodeling is sup-
pressed either by depletion of neutrophils from the blood or
by impairment of Cxcr2-mediated neutrophil chemotaxis
into airway tissues. Findings of increased TNFa, which is
known to be essential for vascular remodeling, in infected
Cxcr2�/� null mice that lacked vascular remodeling fit with
the concept that the cytokine is necessary but not sufficient
for vascular remodeling under these conditions. These
findings build on earlier evidence elucidating the links be-
tween the initial inflammatory response and vascular
remodeling that enables the response to become sustained.
Remodeled capillaries acquire the phenotype of venules that
support plasma leakage and leukocyte influx typical of
established inflammation. This work highlights neutrophils
as potential therapeutic targets for suppression of vascular
remodeling as a key step in the progression of the inflam-
matory response. Elucidation of the consequences of airway
and lung infection by M. pulmonis in mice provides insight
into the complex pathophysiology of M. pneumoniae
infection in humans.
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