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High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image
processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues
include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated
Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces,
and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and
large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the
huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input
data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant
phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example
experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with
nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in
our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high
accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export,
management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable.

Plant bioinformatics faces the challenge of integrat-
ing information from the related “omics” fields to
elucidate the functional relationship between genotype
and observed phenotype (Edwards and Batley, 2004),
known as the genotype-phenotype map (Houle et al.,
2010). One of the main obstacles is our currently lim-
ited ability of systemic depiction and quantification of
plant phenotypes, representing the so-called pheno-
typing bottleneck phenomenon (Furbank and Tester,
2011). To get a comprehensive genotype-phenotype

map, more accurate and precise phenotyping strate-
gies are required to empower high-resolution linkage
mapping and genome-wide association studies in order
to uncover underlying genetic variants associated with
complex phenotypic traits, which aim to improve the
efficiency, effectiveness, and economy of cultivars in
plant breeding (Cobb et al., 2013). In the era of phe-
nomics, automatic high-throughput phenotyping in a
noninvasive manner is applied to identify and quantify
plant phenotypic traits. Plants are bred in fully auto-
mated greenhouses under predefined environmental
conditions with controlled temperature, watering, and
humidity. To meet the demand of data access, exchange,
and sharing, several phenomics-related projects in the
context of several consortia have been launched, such as the
International Plant Phenotyping Network (http://www.
plantphenomics.com/), the European Plant Phenotyping
Network (http://www.plant-phenotyping-network.eu/),
and the German Plant Phenotyping Network (http://
www.dppn.de/).

Thanks to the development of new imaging and
transport systems, various automated or semiautomated
high-throughput plant phenotyping systems are being
developed and used to examine plant function and
performance under controlled conditions. PHENOPSIS
(Granier et al., 2006) is one of the pioneering platforms
that was developed to dissect genotype-environment
effects on plant growth in Arabidopsis (Arabidopsis
thaliana). GROWSCREEN (Walter et al., 2007; Biskup
et al., 2009; Jansen et al., 2009; Nagel et al., 2012) was
designed for rapid optical phenotyping of different plant
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species with respect to different biological aspects. Other
systems in the context of high-throughput phenotyping
include Phenodyn/Phenoarch (Sadok et al., 2007),
TraitMill (Reuzeau et al., 2005; Reuzeau, 2007), Pheno-
scope (Tisné et al., 2013), RootReader3D (Clark et al., 2011),
GROW Map (http://www.fz-juelich.de/ibg/ibg-2/EN/
methods_jppc/methods_node.html), and LemnaTec
Scanalyzer 3D. These developments enable the phe-
notyping of specific organs (e.g. leaf, root, and shoot)
or of whole plants. Some of them are even used for
three-dimensional plant analysis (Clark et al., 2011).
Consequently, several specific software applications
(a comprehensive list can be found at http://www.
phenomics.cn/links.php), such as HYPOTrace (Wang
et al., 2009), HTPheno (Hartmann et al., 2011), LAMINA
(Bylesjö et al., 2008), PhenoPhyte (Green et al., 2012),
Rosette Tracker (De Vylder et al., 2012), LeafAnalyser
(Weight et al., 2008), RootNav (Pound et al., 2013),
SmartGrain (Tanabata et al., 2012), and LemnaGrid,
were designed to extract a wide range of measurements,
such as height/length, width, shape, projected area,
digital volume, compactness, relative growth rate,
and colorimetric analysis.
The huge amount of generated image data from

various phenotyping systems requires appropriate data
management as well as an appropriate analytical
framework for data interpretation (Fiorani and Schurr,
2013). However, most of the developed image-analysis
tools are designed for a specific task, for specific plant
species, or are not freely available to the research com-
munity. They lack flexibility in terms of needed adap-
tations to meet new analysis requirements. For example,
it would be desirable that a system could handle imaging
data from different sources (either from fully automated
high-throughput phenotyping systems or from setups
where images are acquired manually), different imaging
modalities (fluorescence, near-infrared, and thermal
imaging), and/or different species (wheat [Triticum
aestivum], barley [Hordeum vulgare], maize [Zea mays],
and Arabidopsis).
In this work, we present Integrated Analysis Platform

(IAP), a scalable open-source framework, for high-
throughput plant phenotyping data processing. IAP
handles different image sources and helps to organize
phenotypic data by retaining the metadata from the in-
put in the result data set. In order to measure phenotypic
traits in new or modified setups, users can easily create
new analysis pipelines or modify the predefined ones.
IAP provides various user-friendly interfaces at different
system levels to meet the demands of users (e.g. software
developers, bioinformaticians, and biologists) with dif-
ferent experiences in software programming.

RESULTS AND DISCUSSION

IAP as an Automated Analysis Pipeline for
High-Throughput Plant Phenotyping

IAP implements an automated workflow for high-
throughput phenotyping data analysis and can efficiently

measure plant phenotypic traits from multiple experi-
mental setups. It provides different user interfaces (com-
mand line and graphical interface) especially for users
with different levels of background skill (Fig. 1). The un-
derlying architecture of the core of the IAP system is
shown in Supplemental Figure S1. This kind of design
makes it easy to extend existing analysis pipelines or to
develop new imaging analysis tools as IAP plugins. A
typical run of the IAP system consists of three main steps:
(1) image and metadata import as well as experiment
creation; (2) parameter optimization and data analysis;
and (3) report generation and result export for post-
processing. The detailed steps of the IAP workflow are
diagrammed in Figure 2 and described in detail below.

Image data sets can be either loaded automatically
from the LemnaTec system or imported from other
sources, such as a manual plant image data set deposited
on a local file system. A new experiment will be created
based on the imported data set. If no powerful server is
available, several servers and/or personal computers
(PCs) could be utilized in order to speed up the analysis.
In this case, the analysis is performed on a grid compute
cluster. In the grid-computing mode, a MongoDB data-
base (http://www.mongodb.org/) is required to be set
up for the central storage of data and for work distribu-
tion to the computing nodes. Otherwise, the data will be
saved on a single local computer or server for analysis.
Depending on the type of the input data set, a specific
analysis pipeline template has to be specified. The ex-
periment templates can be built-in pipelines provided by
IAP (see below) or pipelines customized by users. IAP
provides tested default values for parameters of the built-
in pipelines, which could be tested and further optimized
for specific experiments. We also implemented a user-
friendly interface to help to adjust the pipeline parameters.
In general, users can choose images from a few plants at
several time points to test the pipeline. Potential adjust-
ments are automatically saved and can be exported in a
separate configuration file that can be used for future
analysis runs in similar situations. After completion of the
quality check and potential parameter optimization in a
selected pipeline, image processing can be automatically
executed on grid computers or on a local PC. The system
provides functionalities for generating an analysis report,
supporting the user in summarizing and visualizing the
calculated traits. Finally, several options are provided to
export, transfer, and archive the analysis results.

Image-Processing Pipeline

The processing pipeline is implemented in a block-
based manner. Each block fulfills a specific image-
processing task. The block-based design allows the easy
replacement of an existing block when changes are re-
quired in order to handle a new analysis task. Blocks can
even be supplied by experienced end users by imple-
menting IAP extension application program interfaces
(APIs). Users are free to disable or remove existing blocks
and to use a block several times within a pipeline. When
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creating a new pipeline to analyze image data from a
new species, users need only to change the settings of
some blocks instead of redefining the whole analysis
pipeline. For example, if the segmentation method is
needed to be changed, only the block that implements
the settings of the segmentation algorithm has to be
changed or replaced accordingly. The IAP system pro-
vides pipeline templates for the analysis of several plant
species, such as Arabidopsis, barley, and maize. There-
fore, IAP is designed as a flexible and open system for
high-throughput plant phenotyping.

A detailed overview about the class definition of
blocks is shown in Supplemental Figure S1. Generally,
blocks can be created, modified, or extended with cus-
tom algorithms. The predefined abstract classes of
blocks implement several input and output methods
that can be individually extended by the user. For a
specific experiment, the corresponding images and
metadata will be loaded automatically into the system.
Images are loaded by the block class BlLoadImages and
stored in a Java object called ImageSet. Based on the fact

that the experimental settings may be different at dif-
ferent stages of an experiment (reflected in the meta-
data), the implemented blocks are able to handle images
with the consideration of the corresponding metadata.

In the following sections, we elaborate on the four key
components in the IAP image-processing pipeline. These
key components are (1) preprocessing, (2) segmentation,
(3) feature extraction, and (4) postprocessing (Fig. 3). Each
part consists of several analysis blocks (Java classes) to
process images from visible light and near-infrared, ther-
mal, or fluorescence cameras. Examples of implemented
blocks in each component are provided in Table I.

Preprocessing

In order to reduce influences caused by different
camera systems and to further make images captured at
different plant growth stages more comparable, images
are first subjected to preprocessing. The following key
issues are considered: (1) inconsistent orientation and

Figure 1. The graphical user interface of the IAP system. Several windows can be opened by the user in parallel, as shown in the
screenshot: (1) the main window showing the overview of experiment data (browsing and processing images); (2) the moni-
toring status of analysis jobs and grid-computing nodes; (3) the panel of system settings; and (4) the buttons of the main menu.
[See online article for color version of this figure.]
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alignment of images acquired from the different cam-
eras, due to small position shifts or different zoom scales
of cameras; (2) uneven brightness of images, such as
reduced brightness in the image corners (vignetting),
caused by the camera optics (especially for near-infrared
images and images from visible light); (3) irregular illu-
mination caused by the fluctuation of the light intensity
during the imaging run or by the position of the light
sources (which are located above in the imaging cham-
ber and behind the camera, leading to shading from top
to bottom); (4) noise caused by increasing temperatures
of the camera sensors (with longer duration of the
imaging loop, the temperature of the imaging chambers
may rise by the absorption of light, leading to a higher
signal-to-noise ratio of the CDD sensor); and (5) zoom
change during the experiment (the zoom level of the
cameras may need to change to accommodate the in-
creasing size of the plant).

These problems can be addressed by a series of pre-
processing blocks (Table I). First, it is necessary to per-
form image normalization and to acquire calibration
values. Image normalization (removal of shading and
correction of color changes) is accomplished by (1) ver-
tical color balance, by using a linear interpolation to
correct illumination and color changes in each channel
of the RGB (red, green, and blue) color space from the
top to the bottom of images (BlColorBalanceVertical),
and (ii) circular color balancing, which is applied to
images from the middle to the outside by using a spline
interpolation (programming library provided by http://
commons.apache.org/proper/commons-math/ and
used in the block class BlColorBalanceCircular). Cor-
rection for varying zoom levels is dependent on the
detection of markers in the imaging chambers, which is
realized by applying an L*a*b* (L* for lightness, a* for
color from green to magenta, and b* for color from blue
to yellow) color filter and a cluster detection algorithm
to identify blue marker points, positioned at the sides of
the imaging chamber (BlDetectBlueMarkers). Next, the
recognized markers are used to (1) adjust the image
analysis to zoom changes, (2) get a scaling factor used to
calculate absolute values of plant features (e.g. to cal-
culate the real height of a plant in millimeters), and (3)
crop images based on marker positions as used in the
block BlCutFromSide.

Segmentation

Segmentation is a process of partitioning a digital
image into multiple context-related segments. Every
pixel in an image can be assigned to a specific label based
on the result of segmentation. Thus, image segmentation
is typically used to split the image into meaningful ob-
jects (e.g. plant parts and background objects, such as
pots, sticks, and cages) and to recognize their bound-
aries. In the segmentation step, images will be divided
into foreground (labeled as plant) and background parts.
To this end, if available, an image of the background
without the plant (reference image) is used at first for the
initial background subtraction, which is a commonly

Figure 2. A typical workflow for analyzing imaging data from high-
throughput plant phenotyping experiments with IAP. Numbers indicate
three main steps of the workflow: (1) loading/importing data set and
experiment creation; (2) parameter optimization and image data
analysis; and (3) report generation and result export.
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used method in the object-tracking application (Yilmaz
et al., 2006). During this process, the distance (com-
puted in the L*a*b* color space) of each pixel from the
same position of the currently processed image and the
reference image is calculated. Objects are then identified
based on the calculated distance utilizing automatic
thresholding methods from ImageJ. However, based on
this method, it is possible to clearly determine the
foreground objects (moving objects like plant, pot, car-
rier, etc.).

To efficiently segment color images, we implemented
an algorithm based on K-means clustering (Macqueen,
1967; Luccheseyz and Mitray, 2001), in which the color
classes generally represent the plant, background, and

other support objects. Further segmentation continues by
analyzing the fluorescence images. We estimate a
threshold by using the automated ImageJ thresholding
method based on the YEN algorithm (Yen et al., 1995).
The fluorescence reflection has a limited color charac-
teristic in the yellow and red spectral channels. Pro-
cessing of the fluorescence images is performed in the
HSV (for hue, saturation, and brightness value) color
space, which provides adequate results by using the
Hue channel to characterize the fluorescence emissions
from red to yellow. Very dark image parts, or parts that
appear green in these images, are labeled as back-
ground pixels. Processing of comparably low-resolution
near-infrared images is complicated by the fact that the

Figure 3. The workflow of the proposed image-processing pipeline. Images shown are based on the example application to a
maize data set (for summary of the data set, see Table I). Image data and metadata are imported via IAP functionalities (top) and
subjected to image processing, including (1) preprocessing, prepare the images for segmentation; (2) segmentation, divide the
image into different parts that have different meanings (foreground, plant; background, imaging chamber and machinery); (3)
feature extraction, classify the segmentation result and get a trait list (examples include images from visible-light, fluorescence,
and near-infrared [NIR] cameras); and (4) postprocessing, summarize calculated results for each plant. Optionally, analysis
results can be marked in the images. Finally, result images are exported. Numbers in parentheses indicate the percentage of
overall processing time for each analysis step.
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plant pixels at the plant border are strongly correlated
with their adjacent background pixels; therefore, seg-
mentation of near-infrared images is still a challenge. In
our pipeline, an adaptive thresholding method (Sauvola
and Pietikainen, 2000) is adopted for separating the
plant from the background (BlAdaptiveThresholdNir).
The segmentation result may still include small noise

objects and artifacts. Therefore the images are subjected
to postprocessing by image restoration methods. Filling
small gaps and holes by a morphological closing oper-
ation (BlMorphologicalOperations) reconnects discon-
nected plant structures. A median filter (adopted from
ImageJ) is applied to the fluorescence image to suppress
noise (BlMedianFilterFluo). Artifacts caused by other
background factors and reflections of the imaging
chamber are deleted based on their size, shape, and color
(BlAdaptiveRemoveSmallObjectsVisFluo). Finally, since
fluorescence images provide the best segmentation re-
sults, the segmentation mask of the fluorescence image is
slightly enlarged by a blur operation and then applied to

the visible-light image. The result is then applied back to
the fluorescence image and images from other camera
types, if needed (BlUseFluoMaskToClearOther).

Feature Extraction

Based on the segmentation result, four classes of plant
features (geometric, color, fluorescence-related, and near-
infrared-related traits) are derived from the imaging data.
Geometric traits like height, width, projected area, skele-
ton length, convex hull, and number of leaf tips (equiva-
lent to number of leaves) are calculated in the blocks
BlSkeletonize, BlCalcWidthAndHeight, BlCalcMainAxis,
BlCalcConvexHull, BlCalcAreas, and BlDetectLeafTips.
To calculate the number of leaf tips, we developed a new
method that is based on the SUSAN approach (Smith and
Brady, 1997). We modified this approach by a region-
growing-based pixel-search algorithm to enhance the
precision in estimating corner features. Color, position,
and orientation can also be derived for each detected leaf

Table I. Overview of the implemented blocks in an analysis template

+, Processed.

Block (Java Classes) Description
Visible Light

Image

Fluorescence

Image

Near-Infrared

Image

Preprocessing
BlRotate Align rotation + + +
BlAlign Align orientation + + +
BlDetectBlueMarkers Detect and delete blue markers +
BlCutFromSide Clear images + + +
BlColorBalanceVerticalVis Apply vertical color balancing on visible image +
BlColorBalanceVerticalFluo Apply vertical color balancing on fluorescence image +
BlColorCorrectionNir Removes shading from near-infrared image +
BlColorBalanceCircularVisNir Apply circular color balancing + +

Segmentation
BlRemoveBackground Clear background by reference image + + +
BlAdaptiveSegmentationFluo Create intensity images for red and yellow reflectance +
BlLabFilter Apply filter in L*a*b* color space + +
BlAdaptiveThresholdNir Apply adaptive threshold on near-infrared image +
BlMedianFilterFluo Apply median filter +
BlMorphologicalOperations Apply morphological operations + + +
BlAdaptiveRemoveSmallObjectsVisFluo Remove artifacts + +
BlUseFluoMaskToClearOther Remove artifacts by image comparison with

fluorescence image
+ +

Feature extraction
BlSkeletonizeVisFluo Calculate the skeleton by thinning + +
BlSkeletonizeNir Calculate the skeleton by thinning +
BlCalcWidthAndHeight Determine plant height and width +
BlCalcMainAxis Calculate the plant main axis growth orientation +
BlCalcColorHistograms Calculate overall properties (pixel count, intensities,

and plant color indices)
+ + +

BlCalcConvexHull Calculate convex hull-based shape parameters + +
BlCalcAreas Calculate plant area based on segmentation result + + +
BlCalcVolumes Estimate plant volume (digital biomass) + +
BlDetectLeafTips Detect leaf tips + +
BlTrackLeafTips Track leaf tips + +

Postprocessing
BlRunPostProcessors Draw analysis results of feature extraction blocks + + +
BlMoveMasksToImageSet Transfer images to result image set + + +
BlHighlightNullResults Mark errors and outliers in result image set + + +
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tip (Fig. 4). The block BlTrackLeafTips uses a greedy ap-
proach to track the leaf tip progression by grouping the
individual leaf tips over time based on the similarity of
their positions and orientations.

For volume estimation, four formulas are used
(BlCalcVolumes):

VIAP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

s:average 3At:average

q

VLemnaTec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As:08 3As:908 3At

p

VKeygene ¼ As:08 þ As:908 þ log
�
At

3

�

VPrism ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
At 3As:458 3As:908

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

�
A2

s:458 þ A2
s:908 2A2

s:08

23As:458 3As:908

�2
svuut

where As and At are the projected areas from side-view
(at different angles) and top-view images, respectively.
VLemnaTec is the formula used in the LemnaTec software
system to estimate plant volume, considering one top-
view image and two side-view images, which are
taken from 08 and 908 (from the LemnaTec Scanalyzer
3D documentation), whereas KeyGene uses VKeygene
for volume estimation (usually for the analysis of bar-
ley plants). The calculation formula VPrism is based on
the idea for the two-side-view LemnaTec formula but
extended to incorporate three side views. While the
LemnaTec volume calculation is based on the assump-
tion that the plant can be simplified to a cuboid shape,
the prism formula makes the assumption that the plant

shape can be generalized to a triangular prism. In our
IAP system, all of these formulas are available for vol-
ume calculation, but VIAP is used by default to calcu-
late the plant volume, as it considers and works with a
flexible number of side-view images (even in cases
where only one side-view image is available).

Color features are extracted in each color component
in the following color spaces: RGB, HSV, and L*a*b*. A
20-bin histogram is calculated for each color channel,
which provides detailed insights into the composition
of the observed plant color. Partial discoloration could
be seen as an increase in the number of pixels that fall
into the range of a specific bin (BlCalcColorHistograms).
Some of the color-dependent features could further be
used to calculate derived indicators like dark green color
index (Rorie et al., 2011) or the normalized differenced
vegetation index (Barnes et al., 2001). The calculation of
such indices also requires proper setup and calibration of
the cameras and optical filters used.

Fluorescence-related features, which are related to
the fluorescence activity of plants, are calculated from
fluorescence images (BlSkeletonizeVisFluo). Near-
infrared-related features, which are related to water
content, are measured from near-infrared images and
the derived skeleton (BlSkeletonizeNir). Please refer to
the online document (http://iap.ipk-gatersleben.de/
documentation.pdf) for a detailed description of our
defined phenotypic traits.

Postprocessing

The postprocessing steps mainly involve summa-
rizing the analysis results for each plant from different
rotation angles of imaging. Several statistical results

Figure 4. Detection of maize leaves with IAP. Input images (e.g. fluorescence images) were at first subjected to segmentation.
Two distinct methods were performed to detect maize leaves: (1) a skeleton-based method to detect the number of leaves; and
(2) the SUSAN corner detection algorithm (Smith and Brady, 1997) to detect leaf tips (marked with circles) in maize plants. By
applying a region-growing algorithm, variably sized parts of the leaf tips were extracted. Furthermore, the properties of leaf tips,
such as their colors and orientations, were calculated (as highlighted in the inset box).

512 Plant Physiol. Vol. 165, 2014

Klukas et al.

http://iap.ipk-gatersleben.de/documentation.pdf
http://iap.ipk-gatersleben.de/documentation.pdf


are computed, such as the average or maximal value of
a plant feature (e.g. projected side area). It is also possible
to visualize calculated features (e.g. the convex hull or
the skeleton) in the result images (BlRunPostProcessors;
Fig. 3). The result images are combined into an image set
(BlMoveMasksToImageSet). Errors in imaging (e.g. miss-
ing or empty images) or failed computations are marked
in the result images (BlHighlightNullResults). The final
result images containing the highlighted features are
saved by the block BlSaveResultImages.

Application Example

To test the performance and capability of the IAP
system, 33 maize cv Fernandez plants were grown in an
automated greenhouse and imaging system (LemnaTec)
for noninvasive phenotyping. The summary of the ex-
periment data set is shown in Table II. Temperature and
humidity in the greenhouse were controlled during the
whole experiment period. Images were acquired from
the side- and top-view cameras from day 18 after sow-
ing to the end of experiment by using the visible-light
(with light spectrum of 390–750 nm), fluorescence (520–
750 nm), and near-infrared (1,420–1,480 nm) cameras. In
total, we daily obtained 78 images per plant from the
three different camera systems. Starting from week 4
after sowing, we harvested four plants every week until
the end of the experiment. To test the reliability of our

system, we manually measured several traits, such as
plant height, maximal width, number of leaves, maximal
length/width of leaves, and plant fresh weight as well as
dry weight (Supplemental Table S1). We compared these
manual measurements with the corresponding image-
derived traits.

The image and annotation (meta)data were subjected
to the IAP maize pipeline for analysis. Processing images
from high-throughput phenotyping experiments is time
consuming and computationally demanding. IAP can
process large-scale imaging data in a reasonable time on
a local PC with a minimum of 6 gigabytes (GB) of system
memory and using four central processing unit (CPU)
cores (Table III). When analysis was performed using
several computers operating in the IAP grid-computing
mode, the processing time was reduced significantly. Of
the overall processing time, about 12% is spent on image
data loading (a block within the acquisition section of the
pipeline) and 6% on result image export (a pipeline block
within postprocessing). It takes 38%, 25%, 16%, and 3%
of the overall time for preprocessing, segmentation, feature
extraction, and postprocessing of images in the pipeline,
respectively (Fig. 3). The relative image-processing times
for visible (63%), fluorescence (35%), and near-infrared
(2%) images vary, due to the different image resolution
and number of extracted features.

We extracted a representative list of phenotypic
traits from the image data set. These traits are broadly

Table II. Summary of the experiment data set

Experiment Property Value

Duration 64 d + 2 weeks of cultivation
No. of plants 33
No. of images 33,798
No. of measurements 37,766
No. of side-view angles 25
Resolution of visible image (pixels) 2,056 3 2,454
Resolution of fluorescence image (pixels) 1,038 3 1,390
Resolution of near-infrared image (pixels) 254 3 320
Size (GB; images in PNG format) 108

Table III. Statistics of computational complexity based on different computing modes

Multithreading Computinga Grid Computingb

No. of Cores CPU Time No. of Cores CPU Time No. of Nodes CPU Time

h h h
2 29.0 16 4.5 1 7.4
4 15.3 20 3.8 2 4.1
6 11.5 30 3.2 3 3.3
8 7.5 40 3.1 4 3.0

12 6.3 60c 3.0 5 2.6

aThe multithreading computing tests were performed on a server with four 2.4-GHz Intel Xeon CPUs
with 10 cores each (40 cores in total), with 256 GB of memory installed (60 GB was used in the test with
the Java VM parameter of –Xmx60g), and used the Linux operating system. bThe grid-computing tests
were performed on several commonly used computers (with Windows 7 operating system installed), each
with four CPU cores (Intel i7-2600 CPU, 3.4 GHz) and 16 GB of memory on average (12 GB was used for
IAP tests with the Java VM parameter of –Xmx12g). cTests were based on the utilization of the hyper-
threading technique.
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Figure 5. Correlation of IAP measurements with experimental data. A, Scatterplots showing the correlation of digital area/volume from
IAP with manual measurement of biomass (plant fresh and dry weights). Area and volume were calculated from both visible (in green)
and fluorescence (in orange) images. The values shown represent Pearson correlation coefficients (r). B, Precision of biomass mea-
surements based on image-derived parameters. The accuracy of the biomass prediction is evaluated based on a calibration model using
data from another independent experiment (based on the volume trait calculated from fluorescence images). RMSRE denotes the root
mean squared relative error. C, Correlation of plant height frommanual measurements and IAP calculations. Note that there is a bias for
plants higher than 2.2 m, as they are out of the detection capability of the imaging system. D, Correlation of the number of leaves. The
number of leaves was estimated by two different approaches: the SUSAN-based and skeleton-based methods. The number of leaves was
calculated for each image. If a plant had multiple side-view images, the median value was used. Note that the skeleton-based approach
may fail to detect small leaves, as the estimated value was smaller than expected. [See online article for color version of this figure.]
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categorized into four categories: geometric traits, color-
related traits, fluorescence-related traits (representing
plant growth conditions and health status), and near-
infrared-related traits (characterizing plant water status;
Fig. 3). These data could be further used to assess plant
performance. For our application example, the camera
systems were not calibrated; therefore, we cannot derive
absolute values for water content or numeric indicators
such as dark green color index and normalized differ-
enced vegetation index. Determination of these features
requires the software support for calculating them but in
addition also the development of additional species-
specific experimental protocols.
To test the reliability of traits derived from the IAP

system, we correlated the calculated phenotypic data to
the manual measurements (Fig. 5; Supplemental Fig. S2).
We found that correlations of plant biomass (fresh or dry
weight) to projected area and digital volume are suffi-
ciently high (up to r = 0.98; Fig. 5A). The digital volume
estimated from both side- and top-view images shows
relatively better estimation than the projected area. In our
tests, the fluorescence images showed the least noise and,
therefore, provided the best information to calculate
digital biomass in comparison with the visible-light im-
ages. Of the four formulas used to estimate plant volume
(see “Materials and Methods”), the digital volume cal-
culated using our defined formula (VIAP) has the best
correlation with the manually acquired measurements
(Supplemental Fig. S3). While the difference is very
small, we prefer the newly defined formula, as it works
with a flexible number of side-view images. Further-
more, when testing these formulas on other large image
data sets from several different plant species, the formula
VIAP performed better than the other formulas for the

estimated volume, demonstrating higher correlations
with manual data, indicating the robustness of our
method to predict biomass. To check the accuracy of the
biomass prediction based on volume traits, we devel-
oped a calibration model from an independent data set.
Our calibration model is based on linear regression, in
which the volume was related to plant biomass to gen-
erate a biomass prediction model. We found that the
biomass data predicted based on the developed calibra-
tion model were highly heritable (root mean squared
relative error = 0.22; Fig. 5B). In addition, we observed
that the estimated plant height reaches a very high cor-
relation of r = 0.98 (Fig. 5C).

With IAP, the number of leaves can be estimated by
two different methods (Fig. 4). The skeleton-based ap-
proach (Eberius and Lima-Guerra, 2009) is the most
straightforward way, which shows a correlation of r =
0.87 with the manual measurement (Fig. 5D). On the
other hand, the number of leaves can be derived from
the detection of the leaf tips based on the SUSAN corner
detection algorithm (Smith and Brady, 1997). We found
that the number of leaves calculated by the SUSAN-
based method achieves r = 0.95 and root mean squared
relative error = 0.09 (Fig. 5D). Although the skeleton-
based method is intuitive and quick, more parameters
can be derived from the corner-detection-based al-
gorithm. The region-growing pixel-search algorithm
can be further used to determine the color and the
direction of the identified leaf-tip regions (Fig. 4).
These parameters might be used as indicators of plant
health status and development. For example, the di-
rection of leaf tips could be important indicators for
light capture and the accumulation of leaf nitrogen for
grain filling (Sinclair and Sheehy, 1999) and has been

Table IV. Comparison of the essential functionalities of the IAP system with other related phenotyping tools

+, Supported feature; 2, not supported feature; NA, not available or status unknown.

Feature IAP HTPheno LemnaTec GROWSCREENa

License GPLv2 GPLv2 Commercial Private
Expandabilityb By plugins/addons By source code Not possible NA
Pipeline modification On block list and

pipeline settings
By source code By predefined algorithms and

visual pipeline editor
NA

Import of sensor data + — — NA
Report functionality + — — —
Support grid computing + — + +
Database support + — + +
Time-dependent analysis settings + — — NA
Documented used cases

Maize + — + +
Barley + + + +
Arabidopsis + — + +

Supported camera systems
Visible + + + +
Fluorescence + — + +
Near-infrared + — + +
Infrared + — + +

aNot available for testing and not exactly described in literature; comparison is based on the consideration of several GROWSCREEN systems
(GROWSCREEN, GROWSCREEN-root, GROWSCREEN-fluoro, GROWSCREEN Rhizo, and GROWSCREEN 3D). bRegarding the possibility of
implementing new algorithms by end users.
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used as a useful trait to dissect leaf architecture through
genome-wide association studies in maize (Tian et al.,
2011).

Comparison with Related Tools

In the field of plant phenotyping, several software tools
support high-throughput image data analysis (Cobb
et al., 2013; Fiorani and Schurr, 2013). In this section, we
compared our IAP system with LemnaGrid, HTPheno
(Hartmann et al., 2011), and the image-analysis solution
used in GROWSCREEN system collections (Walter et al.,
2007; Biskup et al., 2009; Jansen et al., 2009; Nagel et al.,
2012; Table IV).

LemnaGrid is the software solution for high-
throughput plant phenotyping provided by LemnaTec,
which is designed to process imaging data from the
Scanalyzer 3D system. This systemwas successfully used
in the prediction of biomass accumulation for Arabidopsis
(Arvidsson et al., 2011) and cereal plants (Golzarian
et al., 2011). As a commercial solution, LemnaGrid is
not intended to be further developed or significantly
modified by the user (Berger et al., 2012). Thus, only
predefined functionalities are available. HTPheno pro-
vides a specialized analysis pipeline for the analysis of
visible-light images acquired from the LemnaTec system.
Although it is published under an open-source license
for usage and further development, the HTPheno image-
analysis pipeline is solely tuned for barley plants and
calculates a limited number of traits. It neither corrects
for changing light conditions nor handles multiple zoom
levels. The GROWSCREEN system is developed by the
Jülich Plant Phenotyping Centre. It supports plenty of dif-
ferent image modalities and analysis approaches, including
GROWSCREEN, GROWSCREEN-root, GROWSCREEN-
fluoro, GROWSCREEN Rhizo, and GROWSCREEN 3D.
However, this system seems to be closely coupled to the
hardware installations, as the related software develop-
ments are not publicly available and are not reported to
be used by other institutions.

Generally, IAP supports a broad set of functionalities,
including both data management and data processing
(Table IV). IAP implements the infrastructure support-
ing the analysis of other plant species and imaging
modalities. Besides, IAP is an extensible system that al-
lows users to implement new algorithms in terms of
plugins and addons (see the development section on the
IAP Web site).

Future Perspectives

We will continue developing the IAP software with
respect to various aspects. In the near future, IAP will
include more automation of image-processing steps,
for example, to further improve image normalization
based on reference color charts or objects and the au-
tomatic alignment of images from different camera
systems, as we aim to reduce the time and effort to
configure a pipeline. We are collaborating closely with

other partners both within and outside the Leibniz
Institute of Plant Genetics and Crop Plant Research to
further develop IAP and to design new analysis pipeline
templates to extract traits from roots, flowers, or stress
symptoms and to support the analysis of more plant
species. The development of a plant three-dimensional
model could be useful to improve the accuracy and
precision of plant phenotypic measurements.

With the speeded-up development in high-throughput
plant phenotyping, the era of plant phenomics emerges.
The traditional phenotyping bottleneck (Furbank and
Tester, 2011) will be resolved in the future, but at the
same time, a bottleneck of phenotypic data analysis may
be created. It is important to interpret and integrate
phenotypic data with other omics data domains, such as
genomics, epigenomics, proteomics, transcriptomics, and
metabolic data. We aim to develop IAP as a platform
that is capable of performing integrative analysis of data
from multiple omics data domains. As IAP includes
VANTED (Junker et al., 2006) as one of its underlying
modules, it will be presented as a natural multifunctional
software for integrative analysis purposes.

CONCLUSION

We have presented IAP, an information system for
rapid, quantitative analysis of high-throughput plant
phenotyping data. IAP offers a user-friendly graphical
user interface. It provides approaches for data manage-
ment, image analysis, and result handling for large-scale
experiments. Although we tested our system on maize
plants, we already internally used the approach for other
plant species. In fact, IAP now includes image-analysis
pipelines to examine various traits for other species,
such as Arabidopsis, wheat, and barley. The use of IAP is
not limited to any image-acquisition hardware. It can be
adapted to process imaging data from different monitor-
ing systems and camera types. The provided pipeline
templates can be modified or recreated for different
analysis tasks by using the integrated pipeline editor and
by adjusting the pipeline settings. The validation results
based on the example experiment data set showed that
our system is highly reliable. In summary, our IAP system
is a flexible and powerful framework for high-throughput
plant phenotyping and plant performance evaluation.

MATERIALS AND METHODS

Data Management

The implemented data structures for handling image data and metadata are
based on HIVE (for handy integration and visualization of multimodal ex-
perimental data; Rohn et al., 2009), which was already used in our VANTED
system (Junker et al., 2006). The data structures, which have been established
in VANTED to support the development of the HIVE system, were further
extended to handle image attributes and timing information for measurements
acquired from high-throughput phenotyping applications. Details about data
management and the corresponding database system have been presented
previously (Klukas et al., 2012).

We developed a database access component for the LemnaTec system to
automatically import imaging data and related experimental metadata into the
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IAP system for analysis. This component supports the import of snapshot data,
plant annotation data, measurement labels, imaging time information, imaging
configurations, as well as climate data from the greenhouse. Meanwhile, it is
possible to import data from other sources besides the LemnaTec system, such as
manually acquired images using common commercial cameras or scanners.

For grid computing, it is currently required to set up a MongoDB database
(http://www.mongodb.org/) in order to make data accessible from distrib-
uted computing nodes.

Image-Analysis Workflow

An experiment data set is created after loading imaging data and metadata
into the system. Afterward, the analysis is ready to be started. The core of the
image processing involves several loops to handle the image data and to return
results. All images from each day and each imaged plant, which are recognized
by their identifiers, are processed using separate threads. The images of a
specific plant are sequentially processed from the first to the last experiment
day. If available, the top image is analyzed first and afterward the side images.
The analysis blocks process images from a specific camera system individually
or under consideration of all available camera images. For example, the mask
constructed from the fluorescence image can be applied to images from the
other camera systems. The order of the processing steps makes it possible to
consider analysis results from previous days. Within the processing of the side
images, the results of the top analysis are available; for example, the plant leaf
orientation in maize (Zea mays) can be used to determine a suitable image from
the side view. Finally, all analysis results for a specific plant can be post-
processed within an analysis-block function. At last, the numeric analysis
results from all blocks are combined and added to the final result data set.

Data Export

For further analysis, we provide some functionality along with the IAP
system to summarize and visualize the myriad numeric properties of the re-
sult data. To this end, IAP included an automated report generator based on
the statistical programming language R (http://www.r-project.org/) and
LaTeX (a document preparation system; http://www.latex-project.org/). The
user can specify which data should be included in the result diagrams. Various
experiment factors, such as species, genotype, variety, or treatment, could be
considered in the report generation. The report functionality generates dif-
ferent types of diagrams (such as box plot, line plot, and staked bar plot) in a
PDF to present the result. Finally, the numeric data can be exported in com-
mon data formats like .cvs or .xlsx for further analysis purposes.

Implementation

The IAP system is implemented in Java, taking advantage of its platform
independence and the availability of numerous libraries and tools. We ex-
tended a set of analysis functionalities based on ImageJ functions (Schneider
et al., 2012) and implemented various newly developed algorithms for image
processing (detailed in “Results and Discussion”). Specific image-analysis
tasks can be defined in independent blocks, which consist of several related,
sequential image-processing operations. We provide a broad set of predefined
blocks and pipeline templates for image analysis and APIs to extend IAP.

To support the development of new image-analysis procedures or novel
analysis pipelines, the plugin development APIs in VANTED (GenericPlugin)
have been incorporated into IAP and have been extended with a new inter-
face, IAPplugin (Supplemental Fig. S1). By implementing this interface, it is
possible to add new image-processing blocks, analysis pipelines, and experi-
ment data manipulation commands within the user interface. The source code
repository of IAP contains code for an example addon as a showcase for this
functionality. The initially implemented blocks, pipelines, and commands are
incorporated as individual plugins to the core system. Once a set of extensions
has been developed by external users, they can be supplied to other users of
IAP in the form of a single Java archive file, which bundles the newly de-
veloped plugins as a system addon.

The analysis procedures can run on a single computer by saving input and
result images on the local file system. Analysis can also be performed using a
parallel grid-computing approach. As high-throughput phenotyping often
contains hundreds of thousands of image files, the utilization of multiple
computers or servers can be desired to speed up the analysis and to calculate
result data sets in a timely manner. To support the distribution of analysis tasks
and to store the results in that case, the MongoDB database is needed to be

installed on the PC or server. Input and output images and numeric analysis
results are stored within the database using the MongoDB GridFS file storage
API. As an alternative, if the database server has a limited amount of storage
space, files can also be loaded and stored on a separate file server using the
FTP, SCP, or other protocols. This flexibility is implemented by utilizing a
technique called the virtual file system, which has its implementation in the
Apache Commons Virtual File System API and library.

The number of compute threads used for analysis on an individual com-
puter is user configurable and initially set according to the number of CPU
cores in the system. The processing is performed using the so-called thread
pool pattern, where a set of worker threads processes a central task queue.

Application Example: Image Acquisition

As an example shown in this study, we performed a phenotyping experiment
on 33 maize (Zea mays ‘Fernandez’) plants. This energy maize cultivar was cul-
tivated by the KWS SAAT AG. Plant images were captured using the Scanalyzer
3D (LemnaTec) at the Leibniz Institute of Plant Genetics and Crop Plant Research.
Seventy-eight images were taken of every plant, of which 26 images were cap-
tured using three kinds of cameras. For each camera system, images were taken
from both top view (one image) and side view (25 images). The result images
were stored in PNG format. The three cameras used in the automated system are
as follows: (1) visible-light camera (Basler Pilot piA2400-17gc, with resolution of
2,454 3 2,056 pixels), (2) fluorescence camera (Basler Scout scA1400-17gc, with
resolution of 1,390 3 1,038 pixels), and (3) near-infrared camera (Nir 300 with
resolution of 320 3 256 pixels). Images were acquired daily for 9 weeks. We
obtained approximately 34,000 images in total. Image data were analyzed using
IAP version 1.1 (release of November 22, 2013).

Availability and Requirements

The source code and binaries of the IAP software and the full example data
set are freely available for download at http://iap.ipk-gatersleben.de/ or from
SourceForge (http://sourceforge.net/projects/iapg2p/). IAP is implemented
in Java and runs on Linux, Mac, and Microsoft Windows. Specific require-
ments are as follows: (1) run time requirements, Java JRE or JDK version 1.7 or
higher; (2) operating system(s), platform independent (tested on Windows 7,
Linux [Scientific Linux 6.4], and Mac OS X [10.8, Mountain Lion]); and (3)
license, GPLv2 (for software) and CCA3 (for experimental data set).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. UML diagram depicting the architecture of the
IAP system.

Supplemental Figure S2. Correlation analysis of phenotypic traits.

Supplemental Figure S3. Correlation of the digital volume with experi-
mental measurements of biomass (fresh and dry weight).

Supplemental Table S1. Manual measurements and image-derived pa-
rameters for the 32 plants investigated in this study.
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