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Abstract

Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by

ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic

scale, surface charge, drug release properties, and combined antibacterial and osteogenic response.

Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of

chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions

the transition from the as-precipitated amorphous calcium phosphate phase to the most

thermodynamically stable one—HAp. Embedment of 5–10 nm sized, narrowly dispersed HAp

nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model

drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics

throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier

formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading

and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of

HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial

dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of

up to 2 mg/cm2 and significantly dropped, by about 50%, at higher particle concentrations (4 and

8 mg/cm2). The gene expression of osteocalcin, a mineralization inductor, and the transcription

factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm2 HAp/chitosan

composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was

upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given

particles. The peak in the expression of osteogenic markers paralleling the osteoblastic

differentiation was also delayed most for the cell population incubated with HAp/chitosan

particles. Overall, the positive effect of chitosan coating on the drug elution profile of HAp

nanoparticles as carriers for the controlled delivery of antibiotics in the treatment of osteomyelitis

was compensated for by the lower bacteriostatic efficiency and the comparatively unviable cell

response to the composite material, especially at higher dosages.
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INTRODUCTION

Osteomyelitis, infectious inflammation of bone,1 targets a considerable number of patients,

particularly among the three most critical populations: children, elders, and inhabitants of

Third World countries. The mainstay therapy for this comparatively rare disease with the

incidence of approximately 1%–2% in the USA2 has consisted of: (1) intravenous

administration of antibiotics for 2–6 weeks depending on the severity of the infection,

frequently followed by a 6-month course of oral antibiotics in the case of chronic

osteomyelitis, and (2) surgical debridement of the portion of bone that has undergone

necrosis because of the restriction of blood flow by the formed abscesses.3,4 The immediate

downsides of this traditional therapy include: (1) the side effects and cost-ineffectiveness of

systemic administration of antibiotics; (2) low concentration of the therapeutic agent around

the site of infection consequential to obstructed vasculature, prone to induce the resistance

of the pathogen to the antibiotic therapy; and (c) irretrievable bone loss that often demands

insertion of implants or prostheses as lasting bone substitutes.

It is believed that although local and sustained release of the drug could overcome the need

for prolonged antibiotic therapies, induction of osteogenesis by the carrier itself could

accelerate the bone healing process and minimize the extent of the surgical removal of

affected bone, along with skeletal deformations and unaesthetic physical disfigurement

entailed by it. Moreover, as the surgical implantation of orthopedic substitutes presents a

major source of infection in the clinical setting, with the postoperational infection rates

ranging from 1% to 3% for primary joint replacement5 to 15% for primary knee surgeries6

to up to 50% for open fracture revisions of tibia,7 there is a great demand to develop

prophylactic materials as either intrinsic components of regular implants or space-filling

adjuvants that would facilitate surgical implantation.

Be it prophylactic or remedial, one such drug delivery platform that is simultaneously

antibiotic and osteogenic, if developed, would present a big step forward in finding ways to

improve the conventional approach to prevention and treatment of osteomyelitis. In our

previous studies, we have shown that various stoichiometric forms of calcium phosphate, the

natural constituent of bone, can be used as viable osteoinductive carriers for the delivery of

antibiotics.8 The sustained release of small molecule drugs from calcium phosphate particles

was, however, shown to be contingent on the formation of solid blocks through desiccation.9

For the fabrication of injectable nanoparticulate calcium–phosphate-based gels as drug

carriers, the dispersability of the particles is required, but it comes at the cost of accelerated

release of the drug. In this work, we attempt to overcome this issue and promote more

sustained drug release profiles by coating the drug-containing surface of hydroxyapatite

(HAp) nanoparticles with a marine fiber, chitosan. Because of their ability to (1) act as

plasticizers, (2) protect the drug depots residing on the particle surface from the premature,
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burst release, and (3) provide a stable surface that could be chemically functionalized with

various targeting, therapeutic or diagnostic ligands, polymers have been the prime choice of

additives to calcium–phosphate-based composites for bone-filling applications.10

The application of chitosan, a linear polysaccharide and a copolymer of D-glucosamine and

N-acetyl-D-glucosamine, as a potential drug and/or gene delivery carrier has been attracting

attention over the last two decades because of the facts that: (1) chitosan is a naturally

derived polymer, the second most abundant organic material next to cellulose, and easily

extractable from fungal cell walls and crustacean shells, the byproducts of the food

industry11; (2) it has a range of bioactivities ascribed to it, including antimicrobial,

antitumor, anti-inflammatory, and immunity enhancing ones12–15; (3) it is a cationic

polymer able to bind the typically negatively charged biomolecular moieties and transfect

cells,16–18 alongside finding use in water purification industry as an adsorbent of

pollutants19; (4) it is mucoadhesive and capable of increasing the permeability of epithelial

monolayers to various drugs20,21; and (5) it is approved by the US FDA and is available as a

regular fibrous supplement in diet.22 Composites of HAp with chitosan as potential drug

delivery carriers have been synthesized before in different forms: with HAp (1) coated by

the polymer,23,24 and (2) dispersed within chitosan-based polymeric matrices.25–28

Systematic analyses of the controlled release of antibiotics29–33 or other small

molecules34–36 from these composites have been far rarer, especially when coupled to the

analysis of their antibacterial and osteoconductive potencies. One such combined analysis of

drug elution profiles and antibacterial and osteogenic performance of HAp/chitosan

composites has presented the central topic of this study.

MATERIALS AND METHODS

Synthesis and Characterization of HAp Nanopowders and HAp/Chitosan Composite
Nanoparticles Loaded with the Drug

Narrowly dispersed spherical HAp nanoparticles were prepared by adding 200 mL of 0.06

M aqueous solution of NH4H2PO4 containing 12.5 mL 28% NH4OH dropwise (13 mL/min)

to the same volume of 0.1 M aqueous solution of Ca(NO3)2 containing 25 mL 28% NH4OH

at 37°C, vigorously agitated in an ultrasound field using a Q700 (QSonica, New-town, CN)

ultrasonicator, a regular tip, half an inch in diameter (1.3 cm), the amplitude equal to 20 and

pulse on/off time of 2/1 s. After the addition of NH4H2PO4 was complete, the resulting

suspension was cooled down to room temperature and either clindamycin phosphate (Tokyo

Chemical Industry, Tokyo, Japan) in the amount of 100 mg or 0.2 mg fluorescein–Na

(Sigma, Dorset, UK) was added to it, followed by aging for 1 h. To coat thus-obtained HAp

nanoparticles with chitosan [poly(D-glucosamine) deacetylated chitin, Mw = 190–310 kDa;

Sigma], 10 mL of 1 mg/mL chitosan solution in 30 mM HCl was then gradually, over 10

min, added to the sol agitated using the abovementioned ultrasonication conditions. The

precipitate alongside its parent solution was left to age in the atmospheric conditions for 1 h.

After the given time, the precipitate was washed once with deionized (DI) H2O, centrifuged

(5 min at 3500 rpm), and dried in a vacuum oven (Isotemp 280A; p = −20 mmHg) at 60°C.

Prior to the ultrastructural analysis by means of the high-resolution transmission electron

microscopy (HR-TEM), the samples were dispersed in 50:50 (vol) mixture of phosphate-
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buffered saline (PBS) and ethanol, vortexed and a droplet of the resulting dispersion was

smeared on top of a carbon-coated copper grid (Ted Pella, Redding, CA). After 1 min, the

excess liquid was blotted off with filter paper, after which negative staining was performed

by depositing a droplet of 1% aqueous solution of phosphotungstic acid in 30 mM NaOH

(pH 6.7) on top of the grids. Following 1 min incubation in air, the excess liquid was blotted

off and the grids were left to dry in air. The samples were subsequently stored and then

analyzed on a (FEI, Hillsboro, OR) monochromated F20 UT Tecnai HR-TEM under the

electron acceleration voltage of 200 kV.

The phase composition of HAp particles was confirmed on a (Bruker, Billerica, MA) AXS

D4 Endeavour X-ray diffractometer. Interplanar distances (d) with strongest reflections on

X-ray diffractograms were correlated with Miller indices {hkl}, the diffraction angle (θ) and

lattice parameters for the hexagonal lattice of HAp (P63/m space group; a = 0.937 nm and c

= 0.688 nm) using the following equations:

(1)

(2)

The average crystallite diameter (r) was estimated by applying Debye–Scherrer’s equation

on the half-width of (211) diffraction peak of HAp in radians (β1/2), the diffraction angle (θ),

and 1.5418 Å as the wavelength of CuKα as the radiation source (λ):

(3)

The ξ-potential analysis was carried out on a Zetasizer Nano Series (Malvern,

Worceslershire, UK) dynamic light scattering device. The analyzed powders were initially

suspended in 20 mM Tris–HCl solution (pH 7.4). Zeta potential values were measured at

room temperature and at different pH values in the range 4.5–11.5, obtained by adding small

volumes (1–3 μL) of 1 N HCl or NaOH. The volume of each suspension was 700 μL and the

results of each measurement were averaged over 100 runs at acquisition times of

approximately 10 s. The universal dip cell (Malvern) with a removable palladium electrode

and the spacing of 2 mm in disposable glass cuvettes was used for measurements. The

voltage was automatically set to 1.2 V and the Smoluchowski model was applied for the

conversion of the electrophoretic mobility values to ξ-potentials:

(4)

where η is the viscosity coefficient of the medium, ν is the electrophoretic velocity, μ is the

electrophoretic mobility, ε is the dielectric constant of the medium, and E is the gradient of

the electric field applied.
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Drug Release

Drug release experiments were conducted by immersing 1 mg of fluorescein-loaded HAp

and HAp/chitosan powders, separately, in 300 μL of 20 mM Tris–HCl (pH 7.4) in capped

microfuge tubes, and incubating it at room temperature under mild agitation (60 rpm on a

shaker plate) for up to 3 weeks. Every 24–48 h, 100 μL aliquots were sampled out and

analyzed for fluorescence (Packard Fluorocount, λexcitation = 495 nm, λemission = 525 nm)

convertible to the concentration of the released fluorophore, before being replaced with fresh

medium to prevent its saturation. At the end of 3 weeks of release time, the remaining

powders were dissolved in 20 mM HCl. The resulting fluorescence was measured and used

to calculate the overall amount of the drug initially contained by the powders. The drug

released at each time point was then normalized to the overall amount of the released drug.

Each sample was analyzed in triplicates and the fluorescence of each experimental replica

was determined as the average of three independent measurements.

Bacterial Culture

A single colony of Staphylococcus aureus (subspecies aureus Rosenbach; ATCC 25923)

cultured on a blood agar plate over 48 h was stabbed with a pipette tip, which was then

placed in 5 mL of 37 mg/mL brain heart infusion (BHI) broth and kept on an incubator

shaker (Innova 44) overnight at 37°C and 225 rpm. The turbid broth was collected the

following day and 8 mL of it was added to serially diluted samples containing different

concentrations of different clindamycin-loaded powders in 1 mL of 37 mg/mL BHI broth,

for the purpose of determining the minimal inhibitory concentration (MIC) of the antibiotic-

containing powders under the given analytical conditions. The given bacterial concentration

(1:125,000 of 5 mL 37 mg/mL BHI broth inoculated overnight with a single bacterial

colony) was found to be equal to the standard concentration of 105 bacteria per milliliter

after comparing the optical density at λ = 600 nm of a range of serially diluted bacterial

broths with 0.5 M Mc-Farland solution (equivalent to approximately 108 bacteria per

milliliter) prepared by mixing 1% BaCl2 solution and 1% H2SO4 in the volume ratio of

1:200, respectively. The dilution yielding the same absorbance as that of 0.5 M McFarland

solution was diluted 103 times to yield the standard bacterial concentration of 105 bacteria

per milliliter. The series of samples was incubated overnight on the incubator shaker and

visually analyzed the following day for their turbidity and the optical density at λ = 600 nm.

Turbid broths indicated those in which the concentration of the antibiotic released from the

particles was insufficient to prevent the bacterial growth, as opposed to the transparent

broths. A parallel antibacterial test using a modified Kirby–Bauer method was repeated on

sheep blood agar plates (UCSF Cell Culture Facility). A freshly inoculated bacterial broth

was diluted to the concentration of 108 cfu/mL and 200 μL of it was added to the plate and

spread until the surface was fully covered. One milligram of the clindamycin-loaded

particles was then added onto the plate in form of separate islets. The plates were incubated

overnight at 37°C and observed for inhibition of bacterial growth around the nanoparticulate

samples the following day. All the experiments were carried out in quadruplicates and

compared with the negative controls, incubated without any added bacteria and the positive

controls, incubated with bacteria and no antibiotic-loaded particles.
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Cell Culture

Mouse calvarial preosteoblastic cell line, MC3T3-E1 subclone 4, was purchased from

American Tissue Culture Collection (ATCC; Rockville, Maryland) and cultured in Alpha

Minimum Essential Medium (α-MEM; Gibco, Carlsbad, CA) supplemented with 10% fetal

bovine serum (FBS; Invitrogen, Carls-bad, CA) and no ascorbic acid (AA). The medium

was replaced every 48 h, and the cultures were incubated at 37°C in a humidified

atmosphere containing 5% CO2. Every 7 days, the cells were detached from the surface of

the 75 cm2 cell culture flask (Greiner Bio-One, Monroe, NC) using 0.25 wt % trypsin,

washed, centrifuged (1000 rpm × 3 min), resuspended in 10 mL α-MEM and subcultured in

1:7 volume ratio. Cell passages 17–21 were used for the experiments reported hereby. The

cultures were regularly examined under an optical microscope to monitor growth and

possible contamination.

For the purpose of staining with fluorescent markers, MC3T3-E1 cells were seeded on glass

cover slips placed in 24-well plates and 500 μL of α-MEM supplemented with 10% FBS,

(Invitrogen) and no AA at the density of 6 × 104 cells per well. After 5 days of incubation,

nearly confluent cells were treated with α-MEM containing 50 μg/mL AA as the

mineralization inductor. At the same time, 2–4 mg/cm2 of particles were added to the cells.

After 5 days of incubation in the presence of the drug-containing particles, cells were stained

for f-actin and nucleus. The staining procedure began with washing the cells with PBS (pH

7.4) and fixing them for 15 min in 3.7% paraformaldehyde. The cells were then washed with

PBS 3 × 5 min and then with the blocking solution (PBT = 1% bovine serum albumin, 0.1%

Triton X-100 in PBS) 2 × 5 min. The cells were then blocked and permeabilized in PBT for

1 h, and then incubated in 20 μg/mL 4′,6-diamidino-2-phenylindole dihydrochloride nuclear

counterstain (Invitrogen), 2 μM calcein AM as HAp-particle-staining compound, and 10

μg/mL phalloidin-tetramethylrhodamine (AlexaFluor 555; Invitrogen), all in PBT for 1 h

and then washed with PBS 3 × 5 min. The cover slips containing the fixed and stained cells

were mounted onto glass slides using hard set vectashield and nail polish and were

subsequently imaged on a confocal laser scanning microscope–C1si (UCSF Nikon Imaging

Center, San Francisco, CA) at 20–100× magnification in oil. The final images were obtained

by z-stack volume-rendering 15–20 raw images spaced by 1 μm. All the experiments were

performed in triplicates.

For the purpose of MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide]

in vitro toxicological assay, MC3T3-E1 cells were seeded in 48-well plates at the density of

3 × 104 cells per well and cultured in the abovementioned AA-free medium until confluency

was reached. The AA-free medium was then substituted with the AA-supplemented medium

and, at the same time, different amounts of particles were added to the cells, in the range of

2–8 mg/cm2. At the end of the incubation period, which lasted for 24 and 96 h, 20 μL of 5

mg/mL MTT (M-5655; Sigma) in PBS were added to each well. After 4 h of incubation at

37°C, 220 μL of MTT solubilization solution (M-5655; Sigma) were added to each well.

Following an additional 2 h incubation of softly shaken wells (60 rpm) at room temperature,

100 μL aliquots from each well were analyzed for absorbance at 570 nm on a UV/Vis

spectrophotometric microplate reader (Spectra Max 190; Molecular Devices). All the
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particle types were analyzed in biological sextuplicates and the resulting absorbance values

were normalized to the negative control.

To run a real-time polymerase chain reaction (qPCR) analysis, MC3T3-E1 cells were first

seeded in 96 well plates at the density of 3 × 104 cells per well and cultured in the

abovementioned AA-free medium until confluency was reached. The AA-free medium was

then substituted with the AA-supplemented medium and, at the same time, 1 mg of particles

was added to each well. At the end of the incubation period, which lasted for either 5 or 10

days, cell lysis, reverse transcription (Bio-Rad, Harcules, CA) and qPCR (StepONEPlus;

Applied Biosystems) were performed using the Fast SYBR Green Cells-to-CT kit (Ambion)

in accordance with the manufacturer’s instructions. Each experiment was performed in

triplicates and each experimental replica was analyzed for mRNA expression in triplicates

too (n = 3 × 3). The expressions of one housekeeping gene, β-actin (ACTB), and three

osteogenic markers, osteocalcin (BGLAP), osteopontin (BSP-1), and Runx2 were analyzed.

Table 1 shows the primer pair sequences used.37–39 The real-time PCR results were

analyzed using the ΔΔCt method 40 and all the data were normalized to ACTB expression

levels.

RESULTS AND DISCUSSION

Sizes, morphologies, and phase distribution profiles for HAp nanoparticles alone and in

combination with chitosan can be seen from the transmission electron micrographs

displayed in Figure 1. Although HAp nanoparticles precipitated and dried without the

presence of chitosan formed large-scale aggregates (Figs. 1a–1c), a much greater level of

their dispersability was achieved upon coprecipitation with chitosan (Figs. 1e–1f). Round

HAp particles with relatively sharp edges, quasihexagonal shapes, and narrowly dispersed

sizes, ranging from 2 to 10 nm were detected in both samples. The ultrastructural

characterization by means of HR-TEM resulted in the discernment of individual crystal

planes with structural parameters typical for hexagonal HAp with P63/m space group. The

lattice spacing characteristic of HAp crystal symmetry is visible in Figure 1e, including that

of the hexagonal, (001) plane (d001 = 0.527 nm), and a range of similar interplanar distances

parallel with the c-axis [(001)]—(100), (110), (010), (210)—indicating random orientation

of the crystallites embedded in the chitosan matrix. As expected, the most prominent plane

on the surface of the composite corresponded to (002) plane, perpendicular to the c-axis of

hexagonal crystals, with the characteristic spacing of 0.264 nm (Fig. 1e). As a result of the

application of the ultrasound and thus-achieved good dispersability of precipitated HAp

nanoparticles, the crystalline domains appeared to be well dispersed within the amorphous

polymeric matrix (Fig. 1e). Observed were neither the areas of extensive aggregation of the

ceramic phase nor ceramic-free polymeric regions. The number of HAp particles

encapsulated by the polymer ranged widely from one (~10–20 nm in diameter; inlet of Fig.

1d) to hundreds (~300 nm in diameter; Fig. 1d). The monophasic composition of the

precipitated HAp was confirmed using X-ray diffraction (Fig. 2). The narrow half-width of

the most intensive, (211), reflection indicated comparatively high crystallinity of the ceramic

phase, considering the small, sub-10-nm particle sizes. In fact, Debye–Scherrer’s equation

applied on this peak estimated the average HAp crystallite size at 8.4 nm, indicating an

exceptionally small proportion of amorphous surface layers compared with the crystalline
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bulk of the particles. The thermal energy introduced in the system with the intense

ultrasound is expected to have been crucial in promoting both the excellent crystallinity and

dispersability of the resulting nanoparticles.

Both coating of the as-precipitated HAp particles with chitosan and adsorption of

clindamycin onto them was shown to reduce their crystallinity (Fig. 2). The average

crystallite size estimated using Eq.(3) dropped approximately 30%, down to 5.8 and 5.9 nm

upon coating with chitosan and the adsorption of clindamycin, respectively. Furthermore, as

could be seen from Figure 2a, whereas three distinct diffraction peaks are observed in the

30°–35° region of 2 θ for pure HAp, only a broad peak corresponding to the major, (211),

reflection is seen in the X-ray diffractogram of HAp coated with chitosan (Fig. 2b).

Similarly, in the 45°–55° region of 2θ, pure HAp exhibits four distinct peaks—(222), (130),

(213), and (004)—whereas only weak (213) and (004) reflections, almost merged with the

baseline, are seen in the diffractogram of HAp/chitosan (Fig. 2b). This effect is

consequential to the hindered recrystallization of as-precipitated calcium phosphate particles

with increasing their aging time in the solution. The first phase to precipitate from a solution

supersaturated with respect to calcium phosphate is an amorphous calcium phosphate

phase.41–43 Following the Ostwald–Lussac kinetic principle, which dictates sequential

progression from the least thermodynamically stable phase to the most stable one for which

the supersaturation ratio exceeds 1, this initially formed amorphous phase transforms into

the most stable calcium phosphate phase, HAp, in a process whose time scale varies from

seconds to hours, depending on the solution parameters, including, most importantly, pH,

temperature, polarity of the precipitation medium, and the concentration and identity of

foreign ions. The chitosan molecules bound to the particle surface interfere with the

dissolution/reprecipitation mechanism that conditions this transition44 and reduce the

crystallinity of the particles. The same, although less prominent effect was observed upon

the addition of clindamycin to the as-precipitated HAp particle suspension (Fig. 2c), which

is similarly explained by the rapid adsorption of the antibiotic molecules onto the particle

surface. Two diffraction peaks originating from chitosan were detected in the X-ray

diffractograms of the composites, concordant with the mainly matrix-like nature of the

latter, where sufficiently sized chitosan molecule aggregates existed to allow for the

crystalline order to be established.

Successful coating of HAp particles with chitosan was confirmed using ξ-potential

measurements. As shown in Figure 3, coating of HAp particles with chitosan resulted in the

shift of ξ-potential toward more positive values, typically by 10–15 mV higher than for HAp

at any given pH. The negative charge on the surface of HAp particles at pH greater than 6.7

is an indication of their crystalline nature,45 as the transition from neutral or positive values

to negative ones reflects the amorphous-to-crystalline transition that presumably all calcium

phosphate precipitates pass en route to the final and the most thermodynamically stable,

apatite phase. As a result of cationic glycopolymeric moieties (i.e., finite degree of

protonation of 2-amino groups of D-glucosamine units at physiological pH), the building

blocks of chitosan molecules, chitosan is typified by positive zeta potentials.46–48 Not only

does this surface charge propensity make chitosan capable of opening the tight junctions

between epithelial cells,49 but it also boosts the cell penetration potency of chitosan
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particles,50 in analogy with the role played by polysaccharides residing on the surface of

gram-negative bacteria.51 The deprotonation of the amine groups (pKa 6–6.552; NH3
+ →

NH2) on the surface of chitosan particles is, however, responsible for shift to negative ξ-

potential at pH values that exceed the isoelectric point (IEP) of approximately 7.9,

approximately one unit higher than that of pure HAp (6.7). Finally, as seen from Figure 3,

following the 3-week degradation period of HAp/chitosan composite particles in the

solution, the ξ-potential at the physiological pH decreases compared with the value

characteristic of the initial, as-prepared HAp/chitosan particles (3.9 → 0.9 mV), approaching

the negative ξ-potential of pure HAp (−7 mV) and correlating with the degradation of the

polymeric layers and the exposition of the core HAp particles to the solvent.

Correspondingly, the IEP of HAp/chitosan composite decreases from 7.9 to 7.5 following

the polymer degradation and drug release, approaching the IEP of pure HAp: 6.7 (Table 2).

Comparative profiles for the drug release of fluorescein from HAp nanoparticles and HAp/

chitosan composites are presented in Figure 4a. The addition of chitosan mitigated the burst

release of the drug adsorbed on the surface of HAp. Thus, only 15% of the drug was

released from HAp/chitosan in the first 24 h and 50% in the first week of the release time, as

opposed to 60% of the drug being released from pure HAp in the first 24 h and 75% in the

first 48 h. The release from chitosan-stabilized HAp followed a very low kinetic order of

release throughout the entire 3-week release period, equaling zero for the first 4 days of

release and for the release period between days 4 and 21, though with approximately twice

higher release rate in the 0–72 h period than for the 7–21 day time range. Solid fitting of the

kinetics of fluorescein release from HAp/chitosan for the first 72 h and for the period

between 7 and 21 days to a linear regression model is also displayed in Figure 4. Different

release kinetics observed for HAp alone and HAp in combination with chitosan imply

different release mechanisms, defined by the slowest kinetic step: surface desorption in the

former case and diffusion of the drug through the polymeric network and/or degradation of

the polymer in the latter case. Depending on crystallinity, the degrees of cross-linking and

deacetylation, molecular weight (Mw), drug-to-polymer ratio, temperature and particularly

pH of the local environment, the degradation kinetics of chitosan particles, and the release

rate of the encapsulated drug could be find anywhere in the range of hours53 to days54 to

weeks55 to months56 or even longer.57 Similarly to other biopolymers, chitosan degrades in

two stages, the first of which is induced by water uptake, swelling of the polymer and

leaching of low Mw polymeric chains, typically lasting for a week, whereas the second one

involves hydrolytic degradation and on most occasions occurs no sooner than 2 weeks after

the immersion.58 Water uptake is known to result in extensive pore formation and a

consequent increase in the drug release rate.59 This may explain for the fact that although

coating with chitosan managed to suppress the burst release, it did not extend the release

timescale beyond the 3-week window provided by HAp as the drug carrier per se. The

transition from the swelling-induced degradation to the hydrolysis-controlled one

presumably corresponds to the change in the slope of the temporal drug release curve (Fig.

4) around the days 5–7.

The results of testing the particles for their antibacterial activity against S aureus in BHI

broths are shown in Figure 5. Unlike HAp particles loaded with clindamycin using the
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physisorption effect, which showed high effectiveness in suppressing the bacterial growth,

with the MIC of less than 1 mg/mL, stabilization of the given antibiotic-loaded particles

with the surface layer of chitosan markedly diminished their antibacterial activity, as

evidenced by the corresponding increase of their MIC to less than 32 mg/mL. The same tests

carried out on agar plates (Fig. 6) confirmed a gradual decrease in the antibacterial

effectiveness from pure clindamycin to clindamycin-loaded HAp to clindamycin-loaded

HAp/chitosan. Surprisingly, the addition of the same amount of clindamycin and

clindamycin-loaded HAp onto infected agar plates resulted in only approximately twice

smaller inhibition zone around clindamycin-loaded HAp compared with that around pure

clindamycin, indicating excellent antibacterial efficacy of antibiotic-loaded HAp. On the

contrary, the inhibition zone around 5 mg of HAp/chitosan loaded with clindamycin was

smaller than that around 1 mg of clindamycin-loaded HAp. The more sustained release of

the antibiotic from HAp/chitosan led not to expansion, but progressive shrinkage of the

inhibition zone, by approximately 20% between 24 and 72 h. In contrast, the inhibition zone

around clindamycin-loaded HAp increased by 40% in the same period of time. The

significantly higher antibacterial efficacy of clindamycin-loaded HAp particles compared

with clindamycin-loaded HAp/chitosan can be explained by the faster release of the

antibiotic molecules off the particle surface in the absence of the chitosan layer that

stabilizes against the burst release. The tradeoff between a more sustained drug release

profile and a lower antibacterial efficacy can thus be immediately noticed. The released

mass of fluorescein after the 3-week period of release was the same (60 μg of drug per

milligram of carrier) for both HAp and HAp/chitosan, suggesting that antibiotic molecules

were not expelled from the HAp particle surface during the coating process and that the

lower antimicrobial efficacy of antibiotic-loaded HAp/chitosan is mainly because of the

lower initial release of the drug. In addition, (1) the drug release solution, (2) the freshly

inoculated broths, and (3) the broths in which the bacterial growth was inhibited by either of

the powders all had identical pHs (7.4), which discards the possibility of increased

entrapment of the drug because of a greater degree of protonation of chitosan amine groups

at lower pHs that favor bacterial growth. In our former study, we showed a satisfactory

antibacterial effect of clindamycin-carrying HAp nanoparticles coated with poly-lactide-co-

glycolide (PLGA), with the MIC of only 1–2 mg/mL.60 The overnight growth of S aureus in

BHI broths elevated their pH to 8.2, suggesting that alkaline residues of chitosan molecules

might have a less positive effect on suppressing the growth of this particular strain than the

acidic residues of PLGA. Unlike PLGA, whose surface the acidic monomers render

negatively charged under physiological conditions, amino-glycopolymeric chitosan is

positively charged. Adsorption of clindamycin onto HAp particles increased their ξ-potential

in water and at pH 7.4 from −7 to +7.6 mV. Consequently, from the electrostatic attraction

point of view, although the antibiotic molecules would more readily redisperse in the acidic

PLGA layer, they would tend to remain tightly bound to the core particle (HAp) surface,

which would delay their release during the polymer degradation stage. The potential

advantage of the usage of chitosan in terms of its antibacterial performance was, however,

meant to come from its positive surface charge.61–63 Yet, as demonstrated by the agar plate

experiments, chitosan-coated HAp per se did not exhibit any substantial antibacterial effect

against S aureus (Fig. 6d). Another possibility is that the synergy between the antibiotic and

its carrier, in this case HAp/chitosan, accounted for the lower antimicrobial efficacy, which,
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if true, may have been because of the retention of the drug in the surface layers of particles

formed by erosion of the composite, perhaps protected by the aforementioned strong

polymer–ceramic interaction, where it could be picked by the signal from the fluorescent

detector, yet remain unavailable to neutralize the ribosomal RNA of the bacterium.

Confocal images obtained on immunofluorescently stained osteoblastic cells incubated with

HAp and HAp/chitosan particles are shown in Figure 7. The osteoblastic cells were shown

to engage in an intimate contact with HAp particles. Single-plane images demonstrate

extensive cell spreading along the sides of microscopic particle conglomerates of pure HAp,

directly indicating osteoconductivity of the solid phase. Moreover, cytoskeletal

microfilaments adopted healthy, striated morphologies, indicating a satisfactory osteoblastic

response to the given material. Incubation of the cells with HAp/chitosan, however, induced

a less positive osteoblastic response. Cell proliferation appeared to have been somewhat

reduced and no intimate contact such as that achieved at the interface between osteoblastic

cells and pure HAp was visible for HAp/chitosan composites, suggesting their lesser

osteoconductivity compared with that of pure HAp. The elastic modulus of osteoblasts,

estimated at around 20 kPa, is larger than that of fibroblasts (3 kPa) and the

mechanoreciprocity principle dictates that osteoblast proliferation will be higher on stiffer

extracellular matrices and material surfaces.64 This may explain why a more intimate

contact was observed for osteoblastic cells on HAp particles, whose Young’s tensile

modulus was measured by nanoindentation at approximately 120 GPa,65 rather than on less

stiff chitosan (~3 GPa).66 A markedly better contact observed at the HAp/osteoblast

interface than at the one between HAp/chitosan and osteoblasts could also be explained by

the fact that the chemical composition of HAp is practically identical to the mineral phase of

bone, if we were not to account for ionic impurities present in biological apatite. The higher

roughness of the surface of HAp compared with that of chitosan can also be a factor that

contributed to the more intimate contact of osteoblasts with the former phase, as earlier

studies have demonstrated a direct proportionality between the cellular proliferation and the

nanoscale coarseness of the substrates.67,68

These insights were confirmed in the measurements of the cell mitochondrial dehydrogenase

activity, directly indicative of cell viability (Fig. 8a). Namely, incubation with moderate

particle concentrations yielded equally proliferating cells as those comprising the control

sample, but any HAp/chitosan particle concentration higher than 2–4 mg/cm2 resulted in

twofold drops in the mitochondrial activity. This concentration range corresponds to 15–30

mg/mL when normalized to the volume of the cell culture medium, the upper limit of which

was the amount required to suppress the standard concentration of S aureus colony forming

units suspended in broth (105 per milliliter; Fig. 5) from growing. This suggests that the

amount of clindamycin-loaded HAp/chitosan required to suppress the bacterial growth in

vivo would probably have a somewhat unviable effect on osteoblasts that populate the

infected milieu. In contrast, no significant changes in cell viability were detected upon

incubation of osteoblastic cells with the identical amounts of HAp particles. Increased cell

growth inhibition was previously noticed to occur in parallel with the onset of chitosan

degradation.69 Products of degradation of chitosan include glucosamine and various

oligosaccharides able to activate the production of reactive oxygen species and thus inhibit
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the proliferation of tumor cells (the category to which MC3T3-E1 cell line utilized in this

study also belongs), being one of the reasons why chitosan has been widely considered to be

anti-cancerous. By facilitating the nanoparticle uptake by the cell, the positive surface

charge of chitosan may have presented an additional factor that determined the low cell

viability outcome at higher particle concentrations.70 An earlier study has concordantly

demonstrated that chitosan nanoparticles in the same size range as the one used in our work

(10–300 nm) were extensively internalized by the human epithelial Caco-2 cells via clathrin-

mediated endocytosis,71 imposing visible damage to the organelles and enhancing the

paracellular transport of the drug along the way.72 Other studies, particularly on nanosized

particles, could reiterate these findings of the ability of polycationic chitosan to compromise

the cell membrane integrity and promote cytotoxocity, and that on an array of cell types,

from human hepatocytes73 to human intestinal cells74–76 to human gastric cells77 to mouse

melanoma cells.78 As for in vivo tests, although the majority of studies have shown no

harmful effects of the oral consumption of chitosan79 except following long-term intake

(>12 weeks),80 reports claiming that chitosan administered orally and intraperitoneally to

mice induces hyperplasia to foreign body giant cells in the spleen81 and causes other cellular

and physiological abnormalities82,83 could be found in the literature too.

Expression of osteogenic markers typifies the onset of osteogenetic activity of bone cells

and parallels the subsequent mineralization events. Formerly, qPCR studies have

demonstrated a more elevated expression of Col I, Runx2, ALP, and BGLAP in both mouse

C3H10T1/2 and human alveolar bone-marrow-derived mesenchymal stem cells cultured on

HAp/chitosan than in those cultured on chitosan only.84,85 Our previous gene expression

studies have evidenced the ability of nanocrystalline HAp to upregulate these very same

osteogenic markers with respect to the controls grown on standard cell culture plastics.8 The

addition of the nanoparticulate HAp prepared in this study to cultured MC3T3-E1 cells,

however, did not produce statistically significant changes in the expression of two of the

osteogenic markers analyzed: BGLAP and Runx2 (Fig. 8b). BGLAP is a gene encoding for

osteocalcin, a protein that is a potent promoter for nucleation of biominerals, whereas Runx2

is a key transcription factor involved in the differentiation of osteoblasts. Studies have

shown that Runx2 knockout mice completely lose the ability to differentiate mesenchymal

cells to osteoblasts.86 Interestingly, the smaller size of HAp nanoparticles applied in this

study compared with those used earlier8—10–20 versus 20–100 nm—produced a less

favorable effect on the osteogenic activity of MC3T3-E1 cells, despite the fact that it more

closely resembled the dimensions of the apatite platelets in bone: 30 × 20 × 2 nm3.87 This

effect could be explained by a larger uptake of the particles with lower sizes. The particle

size determines the type and efficiency of the transport of nanoparticles across the cell

membrane, which, in turn, codefines the effects that they will exert on the cell.88 Although

the intracellular presence of HAp crystals similar in size and shape to those that present the

outcomes of internal mineralization may slow down the osteogenic activity of the cell, the

binding of the cell to a more stable HAp surface may produce the opposite effect. The

mRNA expression of the more ambiguous osteogenic marker, BSP-1, which encodes for

osteopontin, the protein that acts as a mineralization inhibitor, increased threefold for cells

incubated with HAp and 100-fold for cells incubated with HAp/chitosan. In addition to its

marking mineralization events, BSP-1 is also a negative regulator of proliferation and
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differentiation in MC3T3-E1 cells89 and its dramatic upregulation for cells incubated with

HAp/chitosan is in agreement with their lower viability (Fig. 8a) as well as with a 12-fold

lower expression of the housekeeping gene, ACTB, compared with the control. Moreover, as

shown in Figure 8c, the 10-to-5-day postdifferentiation ratio in the mRNA expression levels

of BGLAP and Runx2 was highest for the cells incubated with HAp/chitosan. Expression of

the two osteogenic markers in MC3T3-E1 cells is known to peak around day 5 after the

addition of differentiation agents. Any interruption of the differentiation of MC3T3-E1

fibroblasts to osteoblast-like cells becomes evident in the delayed peaking of the expression

of osteogenic markers. This all speaks in favor of a more favorable effect of HAp than HAp/

chitosan composites on the bone-forming activity of the osteoblastic cells.

CONCLUSIONS

In this study, an attempt was made to overcome the burst release of small molecules from

well-dispersed HAp nanoparticles by coating their drug-containing surface with a marine

polymer, chitosan. At the same time, the antibacterial effectiveness of the given composite

material and the osteoblastic cell response to it were analyzed. It was demonstrated that the

embedment of 2–10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric

matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to

HAp by physisorption, and promoted zero-order release kinetics throughout most of the 3

weeks of release time, the time scale that falls in the range of the clinical optimality in the

antibiotic treatment of osteomyelitis. The 24-h antibacterial efficacy against S aureus was,

however, markedly lower for clindamycin-phosphate-loaded HAp/chitosan composites

compared with the antibiotic-loaded HAp. Moreover, in sufficient concentrations, chitosan

added to HAp inhibited the proliferation of the osteoblastic MC3T3-E1 cell line and reduced

the excellent cell spreading and intimacy of the material/cell contact observed to take place

upon incubation of the osteoblastic cells with pure HAp. This imperfect response was

corroborated by the detected downregulation of osteocalcin and the transcription factor

Runx2 in cells incubated in the presence of HAp/chitosan composites. The peak in the

expression of osteogenic markers paralleling the osteoblastic differentiation was also

delayed most for the cell population incubated with HAp/chitosan particles. All in all, the

positive effect of chitosan on the antibiotic elution profile of HAp nanoparticles as carriers

for the controlled delivery of antibiotics in the treatment of osteomyelitis has had its

drawbacks in terms of the lower bacteriostatic efficiency and the comparatively unviable

osteoblastic cell response to the composite material, especially at higher dosages. Finally, as

moderate inflammation is essential for normal regeneration,90–92 regardless of the type of

tissue in question, room should be left for the supposition that the relatively unviable

response observed hereby with respect to HAp/chitosan in vitro may be reversed and even

prove to be favorable in fostering bone regeneration in a more complex, in vivo biological

setting.
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Figure 1.
Transmission electron micrographs of pure HAp (a–c) and of HAp/chitosan composites (d–

f) at different magnifications. Outlines of some of the crystalline domains interspersed

within the amorphous polymeric phase are shown in (e).
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Figure 2.
X-ray diffractograms of HAp (a), HAp/chitosan (b), and clindamycin-loaded HAp (c)

powders synthesized in this study, along with {hkl}indices ascribed to the most intensive

reflections of crystalline HAp. Diffraction peaks originating from chitosan are labeled with

“Ch.” The two inlets show magnified 2θ = 30°–35° and 45°–55° regions.
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Figure 3.
Comparative ξ-potential versus pH curves for HAp and HAp/chitosan nanoparticles in 20

mM Tris–HCl, alongside different ξ-potential values at pH 7.4 and IEPs for pure HAp, as-

prepared HAp/chitosan composites, and HAp/chitosan composites following the 3-week

degradation period.
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Figure 4.
Comparative profiles for the cumulative drug release of fluorescein from HAp nanoparticles

(-●-) and HAp/chitosan composites (-▲-), and fitting of the release curve of fluorescein

from HAp/chitosan composites (-▲-) for the first 72 h and for the period between 7 and 21

days to the zero-order kinetics (dashed red lines).
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Figure 5.
Optical transparence at λ = 600 nm (a) and visual appearance (b) of BHI broths inoculated

with S aureus (105 bacteria per milliliter) and different amounts of clindamycin-loaded HAp

(-●-) and HAp/chitosan (-▲-) powders, following 24 h incubation at 37°C. C− dashed line

denotes the absorbance of the negative control, incubated without any added bacteria,

whereas C+ dashed line indicates the absorbance of the positive control, incubated with 105

bacteria per milliliter and no antibiotic-loaded particles.
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Figure 6.
Inhibition zones formed around 1 mg of clindamycin (a), 1 mg of clindamycin-loaded HAp

particles (b), 5 mg of clindamycin-loaded HAp/chitosan particles (c), and 50 mg of HAp/

chitosan particles (d) on sheep blood agar plates seeded with 7 × 103 S aureus bacteria per

mm2 following an overnight incubation. The area around the deposited powders is encircled

with a dashed line.
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Figure 7.
Single-plane confocal optical micrographs of fluorescently stained osteoblastic MC3T3-E1

cells [cytoskeletal f-actin (a–c) or type I collagen (d–f)—red; nucleus—blue] of the control

sample (a and d) and of those incubated with HAp nanoparticles (b and e) and HAp/chitosan

composites (c and f) (both green), following 5 days of incubation. The sizes of the images

are 270 × 270 μm2 (a–d and f) or 450 × 450 μm2 (e).
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Figure 8.
(a) Mitochondrial dehydrogenase activity indicative of cell viability normalized to the

negative control (C−) and determined by the MTT assay after 96 h of incubation with

different HAp/chitosan particle concentrations normalized to surface area of confluent

MC3T3-E1 osteoblastic cells (mg/cm2) and to the volume of the cell culture medium (mg/

mL). Data normalized to the optical density at λ = 570 nm of the negative control are shown

as arithmetic means with error bars representing SD. Samples with significantly (p < 0.05

with respect to the control group) higher cell viability with respect to the control are marked

with a*, whereas those with significantly lower cell viability are marked with a+. (b) The

comparative effect of HAp and HAp/chitosan nanoparticulate powders on the mRNA

expression of osteogenic markers BGLAP and Runx2 in osteoblastic MC3T3-E1 cells.

mRNA expression was detected by quantitative real-time PCR relative to the housekeeping

gene ACTB. Data normalized to expression of ACTB are shown as averages with error bars

USKOKOVIĆ and DESAI Page 26

J Pharm Sci. Author manuscript; available in PMC 2014 June 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



representing SD. Genes significantly (p < 0.05) downregulated with respect to the control

group are marked with *. (c) 10-to-5-day postdifferentiation ratio in the mRNA expression

level detected by quantitative real-time PCR relative to the housekeeping gene ACTB. All

data groups are significantly different (p < 0.05) from the control.
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Table 1

Primer Pair Sequences Used for the qPCR Analysis

Gene Forward 5′–3′Primer Reverse 5′–3′ Primer

ACTB GGCCCAGAGCAAGAGAGGTATCC ACGCACGATTTCCCTCTCAGC

BSP-1 AGGAGGAGGCAGAGCACA CTGGTATGGCACAGGTGATG

BGLAP CTCACAGATGCCAAGCCCA CCAAGGTAGCGCCGGAGTCT

Runx2 AAATGCCTCCGCTGTTATGAA GCTCCGGCCCACAAATCT
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Table 2

The Measured ξ -Potential and IEP Values for Pure HAp and HAp/Chitosan Composites Before and After the

Drug Release Experiment

HAp As-Prepared HAp/Chitosan Postdegradation HAp/Chitosan

ξ -Potential (mV) −7.0 3.9 0.9

IEP 6.7 7.9 7.5
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