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Abstract

Late-onset Alzheimer’s disease (LOAD) is known to have a complex, oligogenic etiology, with

considerable genetic heterogeneity. We investigated the influence of genetic interactions between

genes in the Alzheimer’s disease (AD) pathway on amyloid-beta (Aβ) deposition as measured by

PiB or AV-45 ligand positron emission tomography (PET) to aid in understanding LOAD’s

genetic etiology. Subsets of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohorts

were used for discovery and for two independent validation analyses. A significant interaction

between RYR3 and CACNA1C was confirmed in all three of the independent ADNI datasets. Both

genes encode calcium channels expressed in the brain. The results shown here support previous

animal studies implicating interactions between these calcium channels in amyloidigenesis and

suggest that the pathological cascade of this disease may be modified by interactions in the

amyloid-calcium axis. Future work focusing on the mechanisms of such relationships may inform

targets for clinical intervention.
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1. Background

The complex genetic etiology of late onset Alzheimer’s disease (LOAD) has proven difficult

to unravel, with the top ten genes associated with LOAD explaining only 35% of the

variability in disease risk (Naj et al. 2011). For complex diseases like LOAD, it is

imperative that we look beyond single marker analyses to explore biologically-plausible

interactions and that we address the considerable heterogeneity present in disease status

information by using meaningful intermediate phenotypes. In this study, we investigate the

influence of interactions between genes previously associated with Alzheimer’s Disease

(AD) on amyloid-beta (Aβ) load in an effort to better understand the genetic etiology of Aβ

deposition and, by extension, risk for LOAD.

Previous gene-gene interaction studies in LOAD have implicated interactions between: CR1

and APOE using quantified Aβ Positron Emission Tomography (PET) as the outcome

variable (Thambisetty et al. 2012); and between cholesterol trafficking genes (Rodríguez-

Rodríguez et al. 2009; 2010), and tau phosphorylation genes (Mateo et al. 2009) in case-

control analyses. These studies indicate the important information that can be garnered from

investigating higher order genetic relationships in complex diseases like LOAD. The current

study aims to conduct a more comprehensive analysis of gene-gene interactions between

variants associated with AD risk, while leveraging quantitative measurements of AD-

associated neuropathology, which can increase statistical power (Potkin et al. 2009). For

brain-based diseases, quantitative data can be derived from neuroimaging, such as PET. PET

imaging can be used to quantify levels of amyloid in the brain by utilizing a radiotracer such

as florbetapir (18F-AV-45 or AV-45) or and Pittsburgh Compound-B (PiB, N-methyl-

[11C]2-(4′-methylaminophenyl)-6-hydroxybenzothiazole). These tracers have been shown to

selectively bind Aβ in living patients, have been correlated with disease onset and

progression, have been validated post-mortem, and more recently have been included as

biomarkers for classifying patients with AD in research studies (Ikonomovic et al. 2008;

Clark et al. 2011; Albert et al. 2011; Sperling et al. 2011).

Genetic interaction studies are prone to the problem of overfitting, which can result in

spurious associations that are not replicated in independent datasets. This problem is

exaggerated when large-scale (e.g., genome-wide) explorations are conducted, since the

number of false positive findings is greatly increased. However, by focusing on interactions

between genes known to be involved in disease-related biological processes, one can

maximize a priori biological plausibility and post-hoc interpretability while reducing the

multiple testing correction threshold and computational burden (Pattin and Moore 2008). In

this study, we investigated genes from the AD pathway of the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database, which is a collection of manually curated pathways based

on published literature for metabolism, genetic and environmental information processing,

and human diseases, including AD (Kanehisa and Goto 2000; Kanehisa et al. 2012). The AD

KEGG pathway (hsa05010) includes genes related to amyloid and tau processing, apoptosis,

mitochondrial dysfunction, free radical production, and calcium homeostasis (http://

www.genome.jp/kegg/pathway/hsa/hsa05010.html).
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Another challenge for genetic interaction analysis concerns the biological “unit” or level at

which one tries to replicate or validate findings. Attempts to replicate at the SNP level are

rife with problems unrelated to verification of a true biological effect (Neale and Sham,

2004). SNP-level replication is problematic largely due to the fact that most genotyped

SNPs are not functional and are merely tagging a putative functional element. Differences in

linkage disequilibrium patterns across samples from a single population can result in

variable efficiency of tag SNPs and even reverse directionality of effects, wherein a tag SNP

is linked to the risk allele in one sample but the reference or protective allele in another

sample (Neale and Sham, 2004). Likewise, allelic heterogeneity, in which multiple SNPs in

a gene have a similar effect, can result in reduced statistical power and a failure to confirm

an association with any particular SNP, even when all are associated with the disease of

interest (Neale and Sham, 2004). Indeed, since SNPs generally exert their effects either by

altering the structure of a protein, the probability of transcription, or the efficiency of

translation, their biological relevance is properly interpreted at the gene level (i.e., whether a

protein is functional, whether it is present in deficient or excessive levels, etc.). Thus, in this

study, we use a gene-based approach to validate significant interactions from the discovery

set in two additional independent datasets. A similar replication approach was previously

successful in validating a novel gene-gene interaction underlying high density lipoprotein

cholesterol (Ma et al. 2012; Ma et al. 2013).

2. Methods

Data used in the preparation of this article were obtained from the ADNI database

(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food

and Drug Administration (FDA), private pharmaceutical companies and non-profit

organizations, as a $60 million, 5-year public-private partnership. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging (MRI), PET, other

biological markers, and clinical and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. Determination of sensitive and specific

markers of very early AD progression is intended to aid researchers and clinicians to

develop new treatments and monitor their effectiveness, as well as lessen the time and cost

of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal

of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research,

approximately 200 cognitively normal older individuals to be followed for 3 years, 400

people with MCI to be followed for 3 years and 200 people with early stage LOAD to be

followed for 2 years. For up-to-date information, see ww.adni-info.org.

2.1 Subjects

Participants were enrolled based on the criteria outlined in the ADNI protocols (http://

www.adni-info.org/Scientists/AboutADNI.aspx; http://adni.loni.ucla.edu/wp-content/
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uploads/2008/07/ADNI2_Protocol_FINAL_20100917.pdf; http://adni.loni.ucla.edu/wp-

content/uploads/2008/07/ADNI_Go_Protocol.pdf). Only subjects in the ADNI cohorts who

had both genotype data and either PiB or AV-45 PET scans and were Caucasian (in order to

minimize population stratification) were included in analyses. Subjects from ADNI-1 with

AV-45 PET imaging data were included in the discovery data set. The Stage 1 validation

dataset included subjects from ADNI-GO and ADNI-2 with AV-45 PET imaging data,

excluding all participants who were also present in the discovery dataset. The Stage 2

validation dataset included subjects from ADNI-1 with PiB PET imaging data, while

excluding subjects from either of the previous two datasets. Demographic data are presented

in Table 1.

2.2 Genotyping

Genotyping in the ADNI-1 discovery dataset was performed using the Illumina Infinium

Human-610-Quad BeadChip. Quality control (QC) was performed using PLINK software

(version 1.07; (Purcell et al. 2007)), excluding SNPs with a genotyping efficiency < 95%,

out of Hardy Weinberg Equilibrium (p<1×10−6), or with a minor allele frequency (MAF) of

< 5%. Subjects were excluded if they had a genotyping call rate < 95%, if there was a

reported-versus-genetic sex inconsistency, or if relatedness with another subject was

established (PI_HAT > 0.5). After QC, 515,839 SNPs and 163 subjects remained available

for discovery analyses. For the Stage 1 validation dataset, DNA samples from ADNI-GO

and ADNI-2 were genotyped on the Illumina HumanOmni1-Quadv1 array. QC was

performed in PLINK with the same criteria as the discovery data set, resulting in 605,317

SNPs and 373 subjects available for validation analyses. The same QC measures were

applied to the Stage 2 validation dataset (leaving 95 subjects and 515,839 SNPs).

2.3 Effects of interactions on amyloid deposition

2.3.1 Quantification of amyloid deposition—Amyloid deposition was quantified

using the AV-45 or PiB tracers. Methods relating to PiB data acquisition and calculation

have been extensively described (Jagust et al. 2009; Jagust et al. 2010), as have methods

relating to AV-45 data acquisition (Landau and Jagust 2012). In summary, for both datasets,

Standardized Uptake Value Ratio (SUVR) images were normalized to the cerebellum (PiB)

or cerebellar gray matter (AV-45) and co-registered to the subject-specific T1-weighted

structural MRI images. A composite score was calculated as the mean normalized SUVR

across the anterior cingulate, frontal, lateral temporal, middle temporal, parietal, precuneus,

and occipital cortices (PiB) and the cingulate (anterior and posterior), frontal, lateral

temporal, middle temporal, and lateral parietal (including the precuneus and supramarginal

gyrus) cortices (AV-45). These regions were parcellated using FreeSurfer image analysis

suite (Fischl 2012). The composite score for each subject was used as the outcome measure

of amyloid deposition in all three analyses.

2.3.2 SNP-SNP interaction analysis: Discovery—Genotype data that passed QC

were analyzed in an interaction analysis using the publicly available InterSNP program

(Herold et al. 2009). We tested the hypothesis that gene-gene interactions explain variance

in amyloid pathology beyond variance related to age, sex, education, disease status, and

APOE genotype. Only SNPs that were in a gene in the AD KEGG Pathway were analyzed,
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and only interactions between (not within) genes were tested. To maximize post-hoc

biological interpretability, only SNPs that were in a 5′ untranslated region (UTR), 3′ UTR,

intron, or exon of a gene (annotated using the product support files available for download at

Illumina.com) were included. 1196 SNPs that mapped to 43 genes were available in the

discovery dataset (Online Resource 1). Across all possible gene-gene pairs from the AD

KEGG Pathway, 634,864 SNP-SNP interactions were tested. All SNPs were modeled as

binary variables (minor allele absent or present) to attenuate the problem of data sparsity

commonly confronted in interaction analyses. The outcome measure was the composite

mean normalized SUVR (as described above). The covariates included were: baseline age in

years, last diagnosis recorded as of the January 2013 data release (1= Normal, 2=MCI,

3=AD), education in years, sex, and APOE status (number of ε4 risk alleles). SNP-SNP

interaction effects were explored using a genotypic model and a linear regression framework

for quantitative traits (Herold et al. 2009). Interactions were considered significant if their p-

value exceeded a moderate threshold of α < 5×10−6. A t-test statistic and R2 effect size for

each significant SNP-SNP interaction were calculated in SPSS (http://www-01.ibm.com/

software/analytics/spss/) using the same covariate, phenotype, and genotype files as used in

InterSNP. Significant effects were plotted in SPSS as well.

2.3.3 SNP-SNP interaction analysis: Stage 1 Validation—We used gene-based

replication strategy in our subsequent validation analyses (Neale and Sham, 2004), such that

only gene-gene pairs represented in significant interactions from discovery analyses were

tested in the first validation set. In order to further reduce multiple testing, within each gene,

we selected only independent SNPs using LD pruning implemented in PLINK with an r2

threshold of 0.6 (--indep-pairwise 50 5 .6), resulting in 31,068 total SNP-SNP tests. Pairwise

LD was calculated with SNAP (SNP Annotation and Proxy Search, available at http://

www.broadinstitute.org/mpg/snap/) using data from the European (CEU) population in 1000

Genomes Pilot 1. We used a conservative Bonferoni correction for gene-level multiple

comparisons based on the number of SNP-SNP interactions tested within each gene-gene

pair. SPSS was used to calculate the t-test statistic and R2 effect size and to plot the effects.

2.3.4 SNP-SNP interaction analysis: Stage 2 Validation—Further validation of the

gene-gene interaction was conducted in a post hoc analysis. We tested the SNPs that passed

correction in the discovery and Stage 1 validation datasets that corresponded to the gene-

gene interaction validated in Stage 1. Interactions between the SNPs were tested in SPSS

using the identical model with the same covariates as in the previous analyses with PiB

SUVR measure as the outcome variable. A conservative Bonferoni correction for the 4 SNP-

SNP interactions tested was employed (p<.0125). SPSS was used to calculate the t-test

statistic and R2 effect size and to plot the effects of these interactions as well.

3. Results

3.1 Discovery Dataset

The model we tested included the major AD risk factors of age, sex, education, diagnosis,

and APOE status, such that all significant interaction terms explained additional variance

beyond these strong risk factors. Six SNP-SNP pairs that mapped to four gene-gene
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interactions reached significance at α < 5×10−6: CACNA1C-ATF6 (2 SNP-SNP

interactions), NOS1-GNAQ (1 SNP-SNP interaction), PLCB1-CACNA1C (2 SNP-SNP

interactions), and RYR3-CACNA1C (1 SNP-SNP interaction).

3.2 Stage 1 Validation Dataset

SNP-SNP pairs that mapped to the four gene-gene interactions found in discovery were

tested in the Stage 1 validation data set (31,068 total independent tests: CACNA1C-ATF6

(1,010 tests), NOS1-GNAQ (364 tests), PLCB1-CACNA1C (12,019 tests), and RYR3-

CACNA1C (17,675 tests)). One SNP-SNP interaction mapping to RYR3-CACNA1C was

significant after Bonferoni correction (Table 2). The effect of this interaction was in the

same direction for both discovery and Stage 1 validation (Table 2, βdiscovery = 0.42679 and

βvalidation = 0.24924), and as seen in Figure 1. In both the discovery and Stage 1 validation

interaction models, a minor allele in both genes corresponded to higher amyloid load (Figure

1) versus a minor allele in only one or none of the genes. This interaction explained 9% and

4% of the variance in amyloid load in the discovery and Stage 1 validation datasets,

respectively.

3.3 Stage 2 Validation Dataset

The four SNPs from the previously validated gene-gene pair (RYR3-CACNA1C) were tested

for interactions in the Stage 2 validation dataset (4 total independent tests). None of these

SNPs were in LD with each other (using a threshold of r2>0.6). One SNP-SNP interaction

(rs16972835-rs7132154) was significant after Bonferoni correction (p=.0077, Table 2,

Online Resource 2). The effect of this interaction was in the same direction as the

interactions found in the Discovery and Stage 1 validation (Table 2, βdiscovery = 0.43,

βStage1-validation = 0.25, βStage2-validation= 0.45), and as seen in Figure 1, in all three datasets,

a minor allele in both genes corresponded to higher amyloid load (Figure 1) versus a minor

allele in only one or none of the genes. This interaction explained 6% of the variance in

amyloid load in the Stage 2 validation dataset (Table 2).

4. Discussion

4.1 Calcium homeostasis and its relationship to amyloidigenesis

In the present work, a genetic interaction between the RYR3 and CACNA1C genes explained

variance in amyloid deposition above and beyond other major known risk factors for LOAD.

Such an interaction is biologically feasible given that the proteins encoded by CACNA1C

and RYR3 interact to maintain calcium homeostasis necessary for normal brain function

(Ouardouz et al. 2003; Kim et al. 2007) and that many studies outlined below have shown a

relationship between calcium homeostasis and amyloidigenesis, whereby increased

intracellular calcium levels lead to increased Aβ deposition. An increase in Aβ is considered

a key event in AD etiology (e.g., Jack et al. 2013), and calcium dysregulation is thought to

assist in amyloid formation and deposition and has been hypothesized to be very important

in the etiology of AD (Berridge 2010). Increases in intracellular calcium have been shown to

increase Aβ production in human cell lines (Querfurth and Selkoe 1994). High levels of

intracellular calcium also have been shown to induce transient phosphorylation of amyloid

precursor protein in neurons, leading to increased production of Aβ (Pierrot et al. 2006).
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Lastly, calcium ions themselves have been shown to promote the formation of neurotoxic

Aβ oligomers in vitro (Itkin et al. 2011). Our findings are further strengthened by

accumulating evidence that RYR3 modulates Aβ plaque deposition (Kelliher et al. 1999;

Supnet et al. 2006; Oulès et al. 2012) and that CACNA1C increases intracellular calcium

levels in the presence of Aβ (Mattson et al. 1992; Ueda et al. 1997; Scragg et al. 2005).

This interaction could have an important clinical application, since both proteins encoded by

these two genes are calcium channels that have FDA approved channel blocking drugs and

blocking either channel has been proposed as a therapy for AD pathology (Fruen et al. 1997;

Anekonda et al. 2011). A combination of these therapies could be investigated as an

enhanced approach to AD treatment.

4.2 RYR3 and CACNA1C

RYR3 encodes ryanodine receptor (RyR)-3, which is a receptor expressed in the brain

(Giannini 1995) located on the endoplasmic reticulum (ER) that regulates intracellular

calcium homeostasis (Berridge 2010). CACNA1C encodes the pore-forming alpha 1C

subunit of voltage-dependent L-type calcium channels (LTCCs) which are also expressed in

the brain (Perez-Reyes et al. 1990). The major characteristics of this channel, including

voltage-sensitivity, ion selectivity, and pharmacological responsivity to calcium channel

blockers, are encoded by CACNA1C (Bhat et al. 2012). This subunit forms a pore in the cell

membrane through which calcium ions flow into the cell (Bhat et al. 2012).

4.3 RYR3 in AD pathogenesis

In animal models of AD, the relationship between RyR and Aβ has been extensively

explored. Transgenic mice which overexpress the precursor of Aβ (APP, encoding amyloid

precursor protein (APP)) have increased RyR expression in their neuroblastoma cell lines

(Oulès et al. 2012). Specifically, extracellular amyloid has been shown to selectively

increase RyR-3 (but not RyR-1 or -2) isoform expression in cortical neurons of both wild

type and AD-model mice (Supnet et al. 2006). Transgenic mice which harbor human APP

mutations have increased RyR expression in isolated cortical neurons, and this

overexpression of RyR disrupts calcium homeostasis by increasing ER calcium release

(Oulès et al. 2012). Furthermore, this relationship between RyR and Aβ has been shown to

be bi-directional, such that RyRs can also affect Aβ levels. Dantrolene is a pharmacological

agent that blocks calcium release from RyR-1 and RyR-3 and has been used in cell and

animal models to diminish cell death resulting from neuronal injury (Fruen et al. 1997).

Interestingly, when it was used to block RyR and decrease calcium release in mouse models

which either overexpressed APP or had an APP mutation, this decrease in calcium level was

shown to reduce levels of intracellular and extracellular Aβ, as well as the number of Aβ

plaques (Oulès et al. 2012). Thus, RyR-induced calcium levels seem to influence Aβ levels.

This has also been shown in human cell lines: in human neuroglioma and embryonic cell

lines transfected with APP, Aβ production increased as levels of intracellular calcium

increased and RyR-mediated calcium release increased (Querfurth and Selkoe 1994;

Buxbaum et al. 1994). In summary, the existing literature indicates that there is a bi-

directional relationship between RyR and Aβ, such that increased Aβ has been associated
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with increased RyR expression, and RyR-driven calcium release has been associated with

increased Aβ levels.

4.4 CACNA1C in AD pathogenesis

CACNA1C encodes the pore-forming subunit of voltage-dependent LTCCs. Its role in AD

etiology can be better understood through its relationship with Aβ and its effects on calcium

dysregulation. In rat cortical cell lines, the presence of Aβ increased calcium uptake by

LTCCs by almost two-fold (Ueda et al. 1997). In human cerebral cortical cell lines, Aβ

destabilized neuronal calcium regulation and rendered neurons more vulnerable to

environmental stimuli that elevate intracellular calcium levels (Mattson et al. 1992). Up-

regulation of the expression of CACNA1C was observed in human neuroblastoma cell lines

after treatment with Aβ (Anekonda et al. 2011), and Aβ promotes the insertion of the subunit

encoded by CACNA1C into the plasma membrane (Scragg et al. 2005). In summary, Aβ

modulates LTCC function to increase intracellular calcium and as described above in section

4.1, this increase in intracellular calcium can further increase Aβ production and deposition.

4.5 RYR3-CACNA1C interaction and amyloid load

Both of the products of RYR3 and CACNA1C have been shown to have a relationship with

cellular Aβ. These products have also been shown to physically interact with each other: in a

study of cerebellar granule cells, RyRs and LTCCs have been shown to be functionally

coupled, with RyRs controlling the activity of LTCCs (Chavis et al. 1996). In a separate

study in in vitro rat neuronal cell lines, immunoprecipitation revealed an association

between LTCCs and RyRs, and immunohistochemistry confirmed the co-localization of

LTCC and RyR clusters on axons (Ouardouz et al. 2003). In that same study, depolarization

sensed by LTCCs activated RyRs, which caused the release of toxic levels of calcium

(Ouardouz et al. 2003). This interaction was also demonstrated in a study of rat hippocampal

tissue, where a physical interaction between the N-terminus of the LTCC and the N-

terminus of a RyR was observed (Kim et al. 2007). Finally, an interaction between RyRs

and LTCCs has been observed in cardiac and skeletal muscle, where these proteins are also

expressed (Cannell and Soeller 1997; Squecco et al. 2004).

With the evidence of physical interaction between the RyR and LTCC proteins and the

evidence outlined above relating RyR, LTCC, calcium release, and Aβ to each other, the

statistical genetic interaction we report herein might be reflective of causal variants in RYR3

and CACNA1C interacting to cause disruption of calcium homeostasis and to increase

intracellular calcium levels leading to increased Aβ production and deposition as detected by

PET.

4.6 Caveats

Fine-mapping and functional analysis of the SNPs identified could help clarify the

implications of these statistical genetic interactions and provide greater specificity when

attempting to leverage these results to identify targets for clinical intervention. Because we

validated our results at the gene-gene level and not the SNP-SNP level, further delving into

the function of each of these SNPs or the causal variant these SNPs are tagging would be

necessary to understand whether the discovery and validation models represent the same
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effect. For example, if each SNP increases the expression of its respective gene, we could

conclude that the effect was truly replicated and that increased expression of both genes is

associated with increased amyloid load (regardless of which SNP caused the over

expression). In summary, the effect that each SNP has on expression level or function would

have to be explored to determine true replication of effect.

The exact SNP-SNP interactions do not replicate across the samples, but we would argue (as

others have) this lack of replication does not necessarily indicate a false positive result and

may instead be due to one or several biological reasons (Neale and Sham, 2004), including

allelic heterogeneity (wherein different alleles at the same locus are each responsible for

increased disease risk in different subjects), differences in minor allele frequency, or

differences in LD structure across samples. The power to replicate at the SNP level drops

dramatically with a change in allele frequency between datasets(Greene et al. 2009).

Differences in LD structure across the two samples between each tag-SNP and the causal

variant could cause the same high-risk allele to have different patterns of association with

the marker alleles (Neale and Sham, 2004). The gene-based replication approach we

employed here attenuates these issues and has been proposed as the “gold standard” for

replication and the “natural end point for association analysis” (Neale and Sham, 2004). This

is perhaps especially important in gene-gene interaction studies where these issues are

amplified.

The present results must be interpreted within the framework of our statistical models. In all

cases, we included covariates related to disease status and progression, including age,

education, diagnosis, sex, and APOE status. Thus, all significant interactions explained

variance beyond known predictors of risk, and while the contributions of these interactions

appear to be meaningful, the implications should not be extended without considering the

variance accounted for by the other factors in our model. The interactions in this study

represent dominant effects (carriers versus non-carriers), and the results have been

interpreted accordingly. We did not test mitochondrial genes in this study. This could be

explored in a further analysis.

5. Conclusion

In this study, we have explored the relationship between genes within the AD pathway and

their relationships to Aβ plaque levels in humans. We found evidence for a statistical

association between calcium dysregulation and Aβ deposition as detected by PET amyloid

imaging. In light of prior studies associating the products of RYR3 and CACNA1C with each

other and with AD pathology, this result is certainly biologically plausible. This interaction

is of particular clinical significance because pharmacological manipulation of the two

channels involved is feasible for future AD treatment. Combined therapy, using LTCC- and

RyR-blockers, could first be tested in cell lines and animal models to determine its effect on

Aβ plaque load and neuronal cell death.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Effect of Genetic Interactions between RYR3 and CACNA1C on Amyloid
Deposition
In all three datasets, a minor allele in both genes corresponded to higher amyloid load versus

a minor allele in only one or none of the genes. Bars represent one standard error.

Fig. 1a Effect of RYR3 (rs16972835) and CACNA1C (rs2302729) on Amyloid Deposition

(measured by AV-45 ligand) in Discovery Dataset.

Fig 1b Effect of RYR3 (rs12901404) and CACNA1C (rs7132154) on Amyloid Deposition

(measured by AV-45 ligand) in Stage 1 Validation Dataset.

Fig 1c Effect of RYR3 (rs16972835) and CACNA1C (rs7132154) on Amyloid Deposition

(measured by PiB ligand) in Stage 2 Validation Dataset.
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Table 1

Sample Characteristics for Discovery and Validation Datasets

Discovery Dataset
Clinical Diagnosis

Normal Control# Mild Cognitive Impairment# Alzheimer’s Disease#

Number of Patients 67 53 43

Number of APOE-4 Carriers 14 17 28

Number of Females 33 16 15

Mean Baseline Age (SD*) 76.52 (5.171) 74.92 (7.372) 72.70 (6.383)

Mean Years of Education (SD*) 16.10 (3.036) 15.58 (3.207) 16.02 (2.866)

Mean AV-45 SUVR** (SD*) 1.22 (0.188) 1.35 (0.288) 1.47 (0.270)

Stage 1 Validation Dataset

Number of Patients 110 223 40

Number of APOE-4 Carriers 28 90 29

Number of Females 56 94 15

Mean Baseline Age (SD*) 74.03 (5.725) 72.10 (7.445) 73.10 (9.342)

Mean Years of Education (SD*) 16.42 (2.579) 16.12 (2.658) 15.53 (2.641)

Mean AV-45 SUVR** (SD*) 1.28 (0.237) 1.35 (0.251) 1.54 (0.225)

Stage 2 Validation Dataset

Number of Patients 17 59 19

Number of APOE-4 Carriers 4 34 11

Number of Females 6 19 7

Mean Baseline Age (SD*) 77.59 (5.161) 75.97 (8.049) 73.47 (8.746)

Mean Years of Education (SD*) 15.65 (2.668) 16.14 (2.726) 15.00 (2.828)

Mean PiB SUVR** (SD*) 1.56 (0.355) 1.81 (0.368) 1.88 (0.305)

*
SD – standard deviation

**
SUVR - Standardized uptake value ratio normalized composite score for amyloid tracer

#
Normal Control subjects had a Mini-Mental Status Examination (MMSE) score between 24 and 30, a Clinical Dementia Rating (CDR) score of 0,

and were not depressed (Geriatric Depression Scale score < 6).

Mild Cognitive Impairment subjects had a MMSE score between 24 and 30; objective memory impairment, subjective memory impairment, and a
CDR score of 0.5.

Alzheimer’s Disease subjects met clinical criteria for dementia, had an MMSE of between 20 and 26, and had CDR score of .5 or 1.

Hum Genet. Author manuscript; available in PMC 2014 July 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Koran et al. Page 16

T
ab

le
 2

Si
gn

if
ic

an
t S

N
P-

SN
P 

In
te

ra
ct

io
ns

 in
 R

Y
R

3-
C

A
C

N
A

1C
 f

ro
m

 D
is

co
ve

ry
 a

nd
 V

al
id

at
io

n 
A

na
ly

se
s

N
G

en
e

SN
P

M
A

F
†

M
ai

n 
E

ff
ec

t
In

te
ra

ct
io

n 
T

er
m

β#
P

*
β#

R
2  

##
p*

D
is

co
ve

ry
16

3
R

Y
R

3
rs

16
97

28
35

0.
09

−
0.

12
0.

04
0.

43
0.

09
2.

49
E

-0
6

C
A

C
N

A
1C

rs
23

02
72

9
0.

17
−

0.
06

0.
14

St
ag

e 
1 

V
al

id
at

io
n

37
3

R
Y

R
3

rs
12

90
14

04
0.

14
−

0.
06

0.
05

0.
25

0.
04

2.
22

E
-0

6
C

A
C

N
A

1C
rs

71
32

15
4

0.
21

−
0.

08
0.

00
3

St
ag

e 
2 

V
al

id
at

io
n

95
R

Y
R

3
rs

16
97

28
35

0.
12

−
0.

13
0.

21
0.

45
0.

06
7.

70
E

-0
3

C
A

C
N

A
1C

rs
71

32
15

4
0.

25
−

0.
18

0.
02

† M
A

F 
: M

in
or

 A
lle

le
 F

re
qu

en
cy

 f
or

 e
ac

h 
SN

P

# β 
: b

et
a 

co
ef

fi
ci

en
t i

n 
lin

ea
r 

re
gr

es
si

on
 m

od
el

 f
or

 S
N

P 
(i

n 
M

ai
n 

E
ff

ec
t)

 o
r 

SN
P-

SN
P 

in
te

ra
ct

io
n 

(i
n 

In
te

ra
ct

io
n 

T
er

m
) 

re
pr

es
en

tin
g 

ef
fe

ct
 o

n 
am

yl
oi

d 
de

po
si

tio
n

* p 
: n

om
in

al
 p

-v
al

ue
 o

f 
in

te
ra

ct
io

n 
te

rm

##
R

2  
: R

2  
(f

ul
l m

od
el

) 
−

 R
2  

(m
od

el
 w

ith
ou

t i
nt

er
ac

tio
n 

in
cl

ud
ed

)

Hum Genet. Author manuscript; available in PMC 2014 July 01.


