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Abstract

Tissue-resident macrophages are a heterogeneous population of immune cells that fulfill tissue-

specific and niche-specific functions. These range from dedicated homeostatic functions, such as

clearance of cellular debris and iron processing, to central roles in tissue immune-surveillance,

response to infection and the resolution of inflammation. Recent studies highlight marked

heterogeneity in the origins of tissue macrophages that arise from hematopoietic versus self-

renewing embryo-derived populations. We discuss the tissue–niche-specific factors that dictate

cell phenotype, the definition of which will allow novel strategies to promote the restoration of

tissue homeostasis. Understanding the mechanisms that dictate tissue macrophage heterogeneity

should explain why simplified paradigms of macrophage activation do not explain the extent of

heterogeneity seen in vivo.

Introduction

The majority of tissues in the body contain tissue-resident macrophage populations. Often

several phenotypically distinct subsets are evident in discrete microanatomical niches.

Tissue-resident macrophages are extremely heterogeneous, which is a necessary

consequence of tissue-specific and microanatomical niche-specific functions during

development and adulthood that are integral to tissue function and homeostasis. These

unique phenotypes likely reflect the heterogeneity of their origins and influence of the tissue

environment in which they reside. However, these cells are best known for their role as

immune sentinels in the frontline of tissue defense where they are discretely positioned and

transcriptionally programmed for the encounter with pathogens or environmental challenges.

The current challenges facing the field are to identify those subsets of macrophages that are

specifically involved in various discrete functions, deciphering the major control

mechanisms governing these functions and how these roles might be influenced by distinct

macrophage origins.
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Early recognition of macrophage heterogeneity

The macrophage system was first introduced by Elie Metchnikoff in the late 19th century1,

who described its phagocytic cell activity. Macrophages were classified as part of the

reticuloendothelial system2; a tissue system comprised of reticuloendothelia (phagocytes)

and endothelial cells, which were proposed to have a common tissue origin. However, the

early methodology used to measure phagocytosis was not restricted to macrophages and

emerging morphological and functional differences between endothelial cells and

macrophages led to the conclusion that the reticuloendothelial system did not accurately

represent cell lineage. The awareness that macrophages can be of different origins (blood

monocyte versus tissue)3 and exhibit differing phenotypes in some settings (e.g. peroxidase

activity)4 provided evidence of heterogeneity among phagocytic cells, but not lineage

divergence.

In 1968 van Furth and Cohn showed that major populations of macrophages were derived

from blood monocytes5. Extension of this concept to the broader range of phagocytes

including tissue macrophages established the mononuclear phagocyte system (MPS)6. MPS

represented a linear model in which committed bone marrow precursors develop into blood

monocytes from which tissue macrophages are derived. The model was disputed at the time

due to evidence of macrophage proliferation in the tissues 7-9, the perseverance of tissue

macrophages10 and the presence of macrophage populations in the yolk sac before primitive

hematopoiesis11. More deficiencies were detected in the absolutes of the MPS11, 12,

however definitive rejection of this model was limited by technologies available.

Consequently, alternative hypotheses to explain macrophage heterogeneity and self-renewal

in tissues failed to emerge. However by 2000, accumulated evidence led to the conclusion

that embryonic phagocytes were of a separate lineage and highlighted the possibility of their

persistence into adulthood13. Recent data utilizing specific fate mapping technologies has

now provided evidence for an embryonic origin of some tissue macrophages14-16.

Prenatal origins for some tissue-resident macrophages

Initial fate-mapping studies of adult macrophages were focused on microglia and

Langerhans cells. Microglia are primarily derived from cells in the yolk sac15, while the

origin of Langerhans cells is predominantly fetal liver with a contribution from yolk sac

macrophages16, 17. Langerhans cells have been historically classified as dendritic cells,

however their M-CSF receptor (CSF1R) dependence during development (see below)18, 19,

prenatal and monocytic origins, and more recent transcriptional profiling suggest

Langerhans cells can be considered as resident macrophages20. The discovery that adult

Langerhans cells and microglia were established prenatally was a major break from the MPS

model. These findings were extended using Myb-deficient mice that lack development of

hematopoietic stem cells. Yolk sac macrophages from these mice give rise in the adult to a

Myb-independent population of characteristically ‘F4/80hi macrophages’ in several tissues,

namely skin (Langerhans cell), liver (Kupffer cell), brain (microglia), pancreas, lung and

spleen (red pulp macrophage) and kidney21. In normal mice, these cells co-exist with

‘F4/80lo macrophages’, which have hematopoietic origins. Global transcriptional analysis of

multiple embryonic and fetal macrophage populations indicate that these F4/80hi cells, but
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not the F4/80lo cells, share a common gene signature with yolk sac macrophages17. It is not

yet clear, however, exactly how dominant the yolk sac macrophage versus fetal liver origins

of these populations are in the tissues of the normal adult, but the clarity over their prenatal

origins represents a significant paradigm shift.

In a subsequent fate mapping study, adult microglia, splenic red pulp macrophages, alveolar

macrophages and F4/80hi peritoneal cavity macrophages were likewise confirmed to have a

prenatal origin and do not rely on blood monocytes for their renewal, at least under steady-

state conditions22. A notable exception is the gastrointestinal tract, which contains large

populations of resident macrophages, all of which are blood monocyte derived in the steady-

state23. However, it is evident that many tissues contain diverse populations of both local

self-renewing and peripherally derived resident cells17, 22, although how functionally

distinct the latter populations are from monocytes is unclear. The heterogeneity of tissue

macrophages is summarized in Fig. 1 and Table 1. Thus the model of the MPS needs to be

extended to include not just monocytes as a major source of tissue macrophages, but to

highlight the prenatal origins of many populations, some of which have been shown to

involve cells arising from a distinct yolk sac-derived embryonic macrophage lineage.

Maintenance of prenatal macrophages after birth

One consequence of long-term maintenance of a prenatal population would be the

requirement for self-renewal via proliferation. Human Langerhans cells are known to

possess proliferative capacity9 and donor-derived Langerhans cells were still present 4.5

years after hand allograft transplantation24; similar self-renewing capacity was confirmed in

mice25. One study showed Langerhans cells in adult mice are created by the local expansion

of Langerhans cells in the neonate14. Brain microglia also renew themselves via local

proliferation26. Additional evidence suggests both microglia and Langerhans cells can

derive from blood monocytes, but only under certain conditions25-28. Similarly, we found

that even in well-vascularized tissue, the classic tissue-resident peritoneal macrophages

expand by proliferation in the neonate and adult29 with relative autonomy from concurrent

bone marrow-derived cells22. Very recently this confirmation of proliferation has been

extended to other vascularized tissues, including verification of our results in the peritoneal

cavity30.

The extent to which a self-renewing resident population is maintained throughout the life of

an individual is still an open question. Experimental ablation of resident macrophages has

demonstrated the capacity of bone marrow-derived cells to replace self-renewing resident

cells30, 31 and this may occur under certain inflammatory regimes22, 32. However, despite

exhibiting markers associated with resident macrophages, it is not known if converted cells

faithfully recapitulate the function of those they replace, and without reliable markers for

prenatal versus monocyte-derived cells, we do not know the extent to which replacement

occurs under physiological conditions. Bioinformatic analysis that compared select groups

of tissue-resident macrophages has proposed tissue-specific transcriptional signatures

associated with resident cells33. This type of analysis may allow a more refined assessment

of resident macrophage stability, origin and function as an individual ages. Critically, the
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factors that regulate the autonomous cell survival and/or the proliferative renewal of

macrophages are beginning to be identified and characterized.

Growth Factors and macrophage development and maintenance

The osteopetrotic (op/op) mouse has long been recognized as having severe defects in many

macrophage populations, which were attributed to a point mutation in the gene encoding M-

CSF, Csf134. M-CSF is known to have a broad range of actions on mature myeloid cells,

including regulation of macrophage differentiation, proliferation and survival35. The most

obvious phenotypes of the op mutation are increased bone mass (osteopetrosis), which is

attributed to loss of osteoclasts that resorb bone, and a lack of teeth, due to a failure for the

tooth buds to erupt36. The macrophage deficiencies in the op mouse impact fundamentally

on such tissue development processes, which highlights the importance of macrophages as a

component of developing and homeostatic tissue36. Distinct macrophage subsets in various

mouse tissues were found to be differentially affected by M-CSF deficiency, ranging from

marked deficiencies in gut, kidney and peritoneal macrophages and peripheral monocytes to

more mild impacts on liver and varied effects on splenic macrophages37. Importantly, M-

CSF deficiency affects macrophages with both prenatal and adult hematopoietic origins.

Intriguingly, while all of the defects of the op mouse were evident in mice deficient in its

receptor CSF1R, there were notable differences; principally the additional loss of

Langerhans cells and microglia in Csf1r-deficient mice, which were overtly normal in the op

mouse. These tissue-specific ‘anomalies’ were explained by the alternate CSF1R ligand,

interleukin 34 (IL-34). IL-34 was found to be selectively produced by keratinocytes and

neurons, accounting for the defects in the prenatally derived Langerhans cells and microglia,

respectively18, 19. Intriguingly, IL-34 and M-CSF are expressed in different locations in the

brain, suggesting the possibility of distinct outcomes of CSF1R activation by these

ligands38, 39.

Control of macrophage survival is a well-established mechanism through which MCSF

regulates tissue-resident macrophage numbers40. Another critical role for M CSF is to

support resident cell self-renewal. For example, the low-level proliferation exhibited by

some serosal tissue-resident macrophage populations29, 41 is neutralized by anti-M-CSF in

adult mice42. In addition, studies using irradiation chimeras with donor cells that are

deficient in either Csf1r of Csf2rb have highlighted the differential requirement for M-CSF

versus GM-CSF in the reconstitution by proliferation of splenic red pulp and bone marrow

macrophages versus lung macrophages, respectively30. It will be critical to assess what roles

these different growth factors play not only in the proliferation and/or survival of tissue-

resident macrophages, but also in the local definition of their tissue-specific phenotypes and

functions.

Tissue-resident macrophage function

Frequently macrophages have been functionally grouped into two classes: the ‘M1-M2

paradigm’. This concept has often been over-interpreted as a rigid functional classification

of macrophages and not, as it was seemingly intended, a ‘simplified operational concept’43.

Adhering to this model, tissue-resident macrophages are classified as ‘M2-like’, with
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fundamental roles in tissue homeostasis that relate to the role of macrophages during

development, maintenance of homeostasis and resolution of inflammation43, 44. M2-

activation incorporates the effects of multiple mediators, such as M-CSF, TGF-β,

glucocorticoids and IL-4–IL-13 (the latter specifically defined as ‘alternative activation’ 45)

into one grouping. With respect to tissue-resident macrophages, the functional similarity

with an ‘M2-like’ phenotype probably reflects their dependence in many settings on CSF1R

and the broad availability of M-CSF in vivo, both as a macrophage survival signal and as a

necessary self-renewal signal for prenatal macrophage populations. Hence the functional

repertoire of tissue-resident macrophages may be intrinsically linked to their survival and/or

renewal factors. However, this only remains useful if interpreted loosely as it disregards the

vast diversity and specialization of function of tissue-resident macrophages in distinct

microenvironments (summarized in Table 1 and discussed in more detail below). This

diversity is most likely controlled in a tissue- and niche-specific manner and regulated by

distinct master controls, such as discretely expressed transcription factors, which would be a

useful extension to the loosely applied M1-M2 paradigm. Such factors may be induced in

specific-tissue environments or may be a legacy of cellular origins and the need for self-

renewal. These niche-specific factors are largely uncharacterized, though the complexity of

gene regulation in resting and activated macrophages is an area of substantial interest46.

Some of the functions of tissue resident macrophages are discussed below (Fig. 2), but in

many disease settings the distinction between tissue-resident and recruited inflammatory

macrophages has not yet been made. In addition, it will be of considerable interest to

determine if any of these tissue-resident functions are restricted to macrophages of prenatal

origins or whether residence in the tissue is sufficient.

Immune-surveillance and the induction of inflammation

Tissue macrophages express a wide array of receptors for the recognition of PAMPs

(pathogen-associated molecular patterns) and DAMPs (danger-associated molecular

patterns): such as Toll-like receptors, NOD-like receptors, RIG-I family, lectins and

scavenger receptors47-49. However, wide variation in receptor usage from tissue to tissue is

evident (www.immgen.org) reflecting unique phenotypes in distinct microenvironments.

This heterogeneity implicates distinct macrophage subsets in the activation of different

classes of immune response to microbes and viruses. After initial recognition of microbial

challenge, resident macrophages (alongside other tissue resident cells such as mast cells,

dendritic cells and stromal cells) drive the influx of inflammatory leukocytes, classically

neutrophils, but also monocytes as a source of inflammatory macrophages. These monocyte-

derived macrophages rapidly dominate many inflammatory lesions becoming the majority of

all macrophages present. The importance of resident macrophages in initiating inflammatory

responses is illustrated by studies in which resident macrophage depletion impacts on

chemokine production and neutrophil influx in experimental inflammation50-52. However,

the role of resident macrophages in the initiation of the inflammatory response will vary

depending on the nature of the insult52 and its magnitude53, the corresponding variety and

distribution of the recognition receptors expressed, and the presence of alternate recognition

systems, cellular or humoral. Depletion of resident macrophages, such as that achieved with

clodronate liposomes, leads to varied consequences on challenge, which includes reduced
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host protection to infection, loss of inflammatory mediators, such as select chemokines,

cytokines and lipid mediators and altered inflammatory cell recruitment50, 52, 54, 55. Such

methods however, likely deplete multiple populations of macrophages, and the specific roles

of particular sub-populations need to be determined.

Fate of activated resident macrophages

The fate of resident macrophage populations and their contribution to the priming of

adaptive immunity and tissue homeostasis after insult or infection has received considerable

attention. After injury to serosal tissues such as the peritoneal cavity, recovery of activated

resident macrophages is initially low and has been characterized as a “disappearance

reaction”90. This disappearance can be due to increased tissue adherence, tissue emigration

through draining lymphatics and possibly cell death56.

We have quantified macrophage subsets in mild zymosan peritonitis. In this model, we

observe an acute neutrophilic influx, which is resolved in a day, followed by a prolonged

retention of inflammatory monocyte-derived macrophages within the lesion 29, 42, 57. During

the period of acute neutrophil influx, fewer numbers of resident F4/80hiTim4+ macrophages

can be recovered from the inflamed tissue. However, at later time points substantial numbers

of resident macrophages can be recovered, which suggests that some resident macrophages

remain at the inflammatory site, presumably not recovered earlier because of increased

adherence29. Increased adherence to the mesothelium has been reported during peritonitis,

as well as the potential for emigration to draining lymph nodes58; however these cells were

insufficiently characterized and the question of where the cells go needs to be revisited with

highly purified cells and/or specific fate mapping approaches.

A similar “disappearance” of alveolar macrophages from bronchoalveolar lavage fluid

occurs during influenza infection59. Mobilization of alveolar macrophages, detected via their

selective Siglec-F expression, to the draining lymph nodes during bacterial infection has

been reported60, suggesting a potential role in transporting antigen. Migration of alveolar

macrophages from tissue to lymph node has not been definitively proven, however, as it is

possible that phenotypically similar cells arise in the lymph nodes by alternative means.

Others have proposed that migration does not happen61 and analysis of whole tissue

indicates that resident alveolar macrophages are relatively stable in number during

inflammation62. However, in situ self-renewal of alveolar macrophages during inflammation

could mask any net cellular loss. These results indicate many resident macrophages remain

throughout inflammation. Some tissue resident macrophages may emigrate to the draining

lymphatics, but this needs specific confirmation. Thus, tissue-resident macrophages have the

potential to influence the progression of the inflammatory responses and subsequent return

to homeostasis.

Although an inflammatory response typically involves invasion of the tissue by monocyte-

derived macrophages, in the context of TH2 immunity, IL-4 can drive tissue-resident

macrophage populations to expand by proliferation in the absence of peripheral monocyte

recruitment41. During helminth infection IL-4, likely from TH2 T cells, causes tissue-

resident macrophages to accumulate far beyond their homeostatic numbers, without the
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damaging consequences of inflammatory cell recruitment. However, the function of IL-4–

activated macrophages is not yet fully understood, and beyond potential roles in parasite

control they may have ‘resident-like’ functions in maintaining homeostasis and tissue

integrity in the context of chronic helminth infection63. The situation in the gastrointestinal

tract provides another unique perspective, as blood monocytes are continually recruited to

this tissue where they give rise to a resident population that produces IL-10 and which are

resistant to Toll-like receptor signals. However, upon inflammatory insult, this in situ

conversion is stopped and pro-inflammatory monocytes accumulate23.

Post-inflammatory replenishment of tissue macrophages

Recent studies in the peritoneal cavity demonstrate that even during an inflammatory

response tissue-resident macrophages are maintained locally by proliferative self-renewal29.

On recovery from the inflammatory episode, tissue-resident macrophages exhibit enhanced

proliferation in response to M-CSF to repopulate inflamed tissues81. In contrast, evidence

for replenishment of tissue-resident macrophages by recruited monocytes is lacking 29, 64.

Collectively, these data demonstrate that recruited versus tissue resident macrophages can be

maintained as independent populations during inflammation and its resolution (Fig. 1). The

finding that peritoneal tissue-resident macrophages can persist during an inflammatory

response, recovering their numbers by local proliferative self-renewal, without need for

input from the periphery in a vascular tissue29, are similar to observations made in the

brain65 and lung30.

The homeostatic recovery of the resident population raises the question of the fate of the

inflammatory monocyte-derived macrophages. In the peritoneal cavity and other tissues,

these cells have been suggested to exit via the lymphatics or recirculate58, 66, 67. In

experimental acute lung injury models, many inflammatory macrophages undergo Fas-

mediated cell death, while the resident alveolar cells persist62. These observations do not

exclude the possibility that recruited bone marrow-derived cells undergo in situ phenotypic

conversion to become tissue-resident macrophages, which may occur during inflammation22

or after experimental deletion of tissue-resident macrophages (e.g. after experimental whole

body irradiation)18, 30. The functional equivalence of prenatally-derived tissue resident cells

with their hematopoietic cell replacements needs investigation and will rely on markers for

resident cell function that are more robust than the limited markers currently available such

as F4/80 expression. While many of these observations have been made in experimental

mouse models, evidence from human clinical settings in the context of kidney disease68, 69

and acute liver failure70 indicates that macrophage proliferation does occur. However, in

these settings the origins of the macrophages are not known and mouse inflammation

models have shown proliferation of both bone marrow-derived inflammatory and resident

macrophages during inflammation41, 42

Resolution of inflammation and wound healing

During the resolution of inflammation, macrophages promote the return to homeostasis by

removal of apoptotic cells and cell debris and contributing to every stage of damage

repair71. Inflammatory bone marrow-derived macrophages, are often greater in number than
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tissue-resident cells during much of the resolution phase and have been ascribed active roles

in the resolution of inflammation and wound repair72. Thus the contribution of tissue-

resident cells has largely been neglected. Nonetheless, the importance of macrophages in

wound healing is underscored by time-dependent conditional depletion of macrophages in

mice71. Depletion in the inflammatory phase demonstrated roles for macrophages in the

formation of vascularized granulation tissue, epithelialization and minimizing scar

formation. Depletion during the tissue formation stage led to hemorrhage and a failure of

wound closure. However, macrophage depletion models do not prove a direct role for

macrophages in repair but may reflect their ability to provide trophic support to, or

communicate with, other cell types that are more central to repair such as fibroblasts73 or

fibro/adipogenic progenitors74. A distinct role of tissue-resident macrophages in repair

processes are emerging in the regulation of apoptotic cell clearance during the resolution of

inflammation 75. In the CNS a better distinction between the activities of resident cells

(microglia) and recruited inflammatory macrophages has been made. Microglia, like other

tissue-resident macrophages, have well-established roles in both immune surveillance and in

clearance of cell debris, matrix and protein deposits (such as amyloid-β) as well as

homeostatic production of growth factors, that collectively promote neuronal integrity76.

However, while microglia can be deleterious to tissue function under pathological

stimulation, they also stimulate recruitment of inflammatory macrophages from the

periphery that promote resolution of tissue injury77.

Clearance of cell debris and maintenance of homeostasis

Macrophages play fundamental homeostatic roles in the clearance of apoptotic cells in

multiple tissues and the primarily non-phlogistic response75, 78. Studies, largely involving

complement-deficiency, led to the development of the ‘waste disposal hypothesis’ of

autoimmunity, in which defective clearance of autoantigens present on apoptotic cells drives

the development of disease79. A key example is the tingible body macrophage in the spleen

(Table 1).

Recent studies in lipoxygenase-deficient mice indicate that tissue macrophages may not

leave their capture of apoptotic cells entirely to chance, having evolved strategies for

limiting apoptotic cell clearance by inflammatory macrophages80. In the peritoneal cavity,

modified lipids present on the surface of 12/15-lipoxygenase-expressing tissue-resident

macrophages act as a sink for milk fat globule-EGF factor 8 (MFGE8), sequestering this

apoptotic cell opsonin81 from the inflammatory environment. These tissue-resident

macrophages also express the phosphatidylserine receptor Tim-4 (refs82, 83) allowing

efficient phagocytosis of apoptotic cells in the absence of MFG-E8. However, inflammatory

monocyte-derived macrophages are more dependent on MFG-E8 and thus exhibit impaired

uptake of apoptotic cells as a consequence of the MFG-E8 sink on the tissue-resident

macrophages. The consequence of this restricted 12/15-lipoxygenase expression is to

effectively create a sorting system for apoptotic cells that promotes their clearance by tissue-

resident and not inflammatory bone marrow-derived macrophages. This process is

hypothesized to help maintain tolerance by the appropriate disposal of self antigen80.

However, even though inflammatory monocyte-derived macrophages are less efficient they

greatly outnumber resident cells in many inflammatory contexts, and will likely still
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phagocytose a substantial number of apoptotic cells. Such fundamental processes are

unlikely to be controlled by a single regulatory mechanism, especially considering the

diversity of apoptotic cell recognition systems that have been described78. Macrophages and

dendritic cells are proposed to differentially express the apoptotic cell receptors Mertk, Axl

and Tyro3 (ref. 84), which may further regulate these clearance processes. To exemplify,

Mertk, a receptor preferentially expressed by tissue-resident macrophages33, has an

increasingly well-defined role in apoptotic cell clearance and the prevention of

autoimmunity85.

Erythroid cells develop into mature enucleated erythrocytes during definitive erythropoiesis,

which occurs in ‘blood islands’ in the bone marrow and fetal liver. Macrophages within the

blood islands support erythropoiesis and phagocytose the expelled nuclei, which have

phosphatidyserine exposed on their surface, a clear parallel to clearance of apoptotic

cells86-88.

DNase II-deficient mice highlight the importance of the degradation of cellular debris in this

erythropoietic tissue-specific context87. DNase II deficiency is embryonically lethal due to a

severe anemia at the time of definitive hematopoeisis89. Anemia occurs because the

macrophages of the embryo contain undigested DNA in tissues where regulated cell death

occurs during development. This scenario results in abundant production of interferon-β

(IFN-β), which leads a feedback inhibition process that interrupts erythropoiesis. Critically,

DNAase II-deficient mice can be rescued from lethality when they also lack the IFN-β

receptor Ifnar190.

Macrophages, primarily in the spleen (red pulp) and liver (Kupffer cells), are also central to

iron homeostasis by recycling iron obtained from hemoglobin. Damaged or senescent

erythrocytes that display altered surface membranes are phagocytosed and proteolytically

degraded by macrophages, which release hemoglobin and ultimately iron that is stored as

ferritin complexes or exported via ferroportin91. When hemoglobin is released in the

circulation (for example, by damage to erythrocytes), it is bound to haptoglobin and

recognized by the scavenger receptor CD163 and cleared by macrophages92. A secondary

system for heme clearance exists by binding to hemopexin, which is cleared via recognition

by CD91 expressed on macrophages93.

Some of the most critical roles of tissue-resident macrophages may prove to be in energy

homeostasis. For example a severe reduction in adipose tissue-resident macrophages in

Trib1-deficient mice94 contributes to insulin resistance when they are fed a high fat diet. In

addition, IL-4-activation of resident adipose tissue macrophages is responsible for PPARɣ-

dependent maintenance of insulin sensitivity95, 96. Similarly, IL-4Rα-activated Kupffer cells

regulate lipid metabolism in hepatocytes through PPARδ97, 98. Intriguingly, IL-4 stimulated

macrophages resident in adipose tissue produce catecholamines, which promote heat

generation by brown adipose tissue and lipolysis of stored fat in white adipose, thus

allowing adaptation to cold temperatures99.
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The spleen: specialization in discrete tissue niches

Spleen anatomy and, as a consequence, the heterogeneity of splenic macrophages has been

studied in relatively high detail both under homeostasis and during infectious challenges. As

a consequence it serves as a useful example to illustrate both the localization of relatively

well-characterized specific functions to distinct macrophage subsets in discrete

microanatomical niches47, 100-102 (Fig. 3) and also to consider site-specific ‘master controls’

of development and/or function. Analogous developmental control systems have been

described in other tissue-resident macrophage populations (Table 1) and it is likely that the

principles of the discretely controlled functional heterogeneity of the spleen can be

extrapolated, taking into account tissue-specific requirements, to other tissues.

In the splenic red-pulp arterial blood arrives into an ‘open system’, without endothelial

lining and then exits via venous sinuses101. Red-pulp macrophages are an example of a

macrophage subset that is seeded pre-natally22 and maintained without significant

monocytic input30. In the mouse, red-pulp macrophages are identified by their

F4/80+CD206+CD11blo/– phenotype and selectively express the transcription factor Spi-C.

A major function of red pulp macrophages is to phagocytose aged erythrocytes as they pass

through the red pulp101, 103. Their importance in iron processing is evident from the study of

Spi-C-deficient mice103. These mutant mice exhibit a very specific absence of splenic red

pulp macrophages, and thus impaired clearance of erythrocytes and a build up of iron in the

red pulp.

The splenic marginal zone is a region rich in B cells and several specialized types of

macrophages. In the ‘outer layer’ of the marginal zone, marginal zone macrophages express

abundant select scavenger and pattern recognition receptors104-107, such as CD204

(Scavenger receptor A), MARCO (Macrophage receptor with collagenous structure) and

CD209b (SIGN-R1, a DC-SIGN homologue), and are well placed microanatomically to

capture blood-borne antigens47, 101, 102, 104. Marginal zone macrophages have been shown

to regulate the retention of marginal zone B cells, a process in which MARCO is

implicated108. B cells in turn are needed to establish the architecture of the splenic marginal

zone101, 102. The development of both marginal zone and metallophilic macrophages is

regulated by the nuclear receptor LXR1α (Nr1h3)109.

The ‘metallophilic’ or ‘marginal zone metallophilic’ macrophages, present in the ‘inner

layer’ of the marginal zone are identified by discrete expression of select markers, such as

CD169 (Sialoadhesin or Siglec-1 - Sialic acid binding Ig-like lectin-1). The initial

observation that metallophilic macrophages produce type-I IFN after viral infection

suggested a role in antiviral responses110, but roles in bacterial infection have also been

proposed111. One study of vesicular stomatitis virus showed that the type-1 IFN response is

suppressed in metallophilic macrophages allowing them to become a reservoir of replicating

virus that drives an effective adaptive immune response112. Targeting of antigen to

metallophilic macrophages appears to facilitate the generation of cytotoxic T cells after

transfer of blood-borne antigen or adenovirus to CD8+ dendritic cells113. Collectively, these

studies indicate that the marginal zone and metallophilic macrophages act in immune-
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surveillance and are excellently positioned to capture blood-borne pathogens and regulate

the subsequent adaptive immune responses.

In the splenic white pulp, macrophages can be identified by their expression of the pan-

macrophage marker CD68. Among these, tingible body macrophages present in the germinal

centers were named because of their histochemical staining pattern. Their ‘unique’ staining

results from apoptotic cell debris and associated chromatin, which is derived from the

phagocytic clearance of dead, activated lymphocytes that result from the germinal center

reaction100. MFG-E8 and the receptor tyrosine kinase Mertk114 are important for the

clearance of apoptotic cells by tingible body macrophages. In this setting, germinal center

defects in apoptotic cell clearance have been suggested to cause alterations in B cell

tolerance and lead to the production of autoantibodies81, 114.

Conclusions

Transcriptional profiling of macrophages from different tissue locations, from the embryo to

the adult has identified, and will continue to identify, core features of tissue resident

macrophages17, 33. Clear validation of this approach can be seen by the identification of Spi-

C transcriptional networks in splenic red pulp macrophages after the discovery that Spi-C

plays a critical role in red pulp macrophage development103. It is reasonable to assume that

there will be many discrete transcriptional controls for individual tissue resident macrophage

populations. Transcription factors and epigenetic regulators will be identified that are not

just important for the development of tissue resident macrophage populations, but that

regulate key functional characteristics of those cells and without which their characteristic

phenotype would be markedly altered. This will begin to explain the extreme diversity and

heterogeneity seen both between and within distinct tissue resident macrophage populations.

Furthermore, understanding the distinct developmental origins of many tissue resident

macrophage populations, including their need for renewal during homeostasis and disease,

will provide insights into fundamental differences between inflammatory monocyte-derived

macrophages and their tissue resident ‘cousins’. At this time it is not known whether the

distinct origins of tissue macrophages (for example yolk sac versus hematopoietic) has any

impact on the function of the resultant tissue macrophages. At the very least, one may expect

that the requirement for the mature prenatal derived cells to exist in a seemingly quiescent

state and yet remain competent to proliferate as a mature cell (during homeostasis or

inflammation) must be under defined transcriptional control. This control, which itself will

be refined by local environment-specific factors, will undoubtedly impact on the function

and phenotype of the cell. Defining key transcriptional control elements should provide

opportunities to manipulate one branch of the ‘family’ preferentially, for example to

modulate the activity of inflammatory monocyte-derived macrophages whilst limiting

impact on homeostatic tissue resident macrophage functions, and vice versa. A herculean

effort will be needed to extrapolate the novel findings from global transcriptomic and

elegant fate mapping studies to discrete clinically relevant settings, in specific tissues.

Ultimately this will identify novel mechanisms through which tissue-resident macrophages

may be manipulated for therapeutic benefit, not simply in the context of immune disease,

but in regulation of tissue physiology in general.
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Figure 1. Origins and renewal of tissue-resident macrophages.
Recent fate mapping studies and single cell analyses in the mouse indicate that macrophages

derived early in embryogenesis from the yolk sac can contribute to adult pools of tissue

‘macrophages’, such as Langerhans cells and microglia. Other tissues may be similarly

seeded or established after definitive hematopoiesis in the fetal liver or bone marrow.

Proliferative local-expansion of tissue macrophages in the neonatal period, followed by low-

level self-renewal during adulthood appears sufficient to maintain many tissue resident

populations. During the resolution of acute inflammation, local-proliferation can be

enhanced to help restore homeostatic tissue resident macrophage populations. In the context

of the TH2 environment associated with parasite infection, substantial IL-4-dependent

proliferation can expand tissue resident macrophage numbers beyond that normally seen

within the tissue. The exact contribution of bone marrow-derived inflammatory

macrophages to these tissue resident pools is still unclear, but it appears likely to happen,

although perhaps with tissue-specific variation.
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Figure 2. Functions of tissue-resident macrophages.
Tissue-resident macrophages have broad roles in clearance (degradation of erythroid nuclei,

senescent erythrocytes, apoptotic cells and pulmonary surfactant), development (bone

degradation and angiogenesis) and the regulation of metabolism (regulation of insulin

sensitivity and adaptive thermogenesis in adipose tissue). They also play a fundamental role

as an immune sentinel, initiating inflammatory responses, clearing inflammatory debris and

restoring homeostatic tissue environments. Neut, neutrophil; Eos, eosinophil.
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Figure 3. Microanatomy of the murine spleen showing discrete localization of splenic
macrophage populations.
The murine spleen has discrete red and white pulp regions separated by a marginal zone

(MZ). The macrophages (MØ) of the spleen are shown in their distinct anatomical locations.

The red pulp macrophages (indicated immunohistochemically by F4/80 expression: red, top)

are involved in iron processing. Marginal zone and metallophilic macrophages (indicated

immunohistochemically by SIGNR1 (blue, bottom) and CD169 (green) expression

respectively) play roles in the capture of microbes and viruses from the circulation. Tingible

body macrophages in the B cell follicles clear the apoptotic cells that result from the

germinal center reaction. Immunofluorescent images were kindly provided by H. Veninga,

E. Borg, G. Kraal, and J.M.M. den Haan.
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