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Summary

Tissue regeneration is an orchestrated progression of cells from an immature state to a mature one,

conventionally represented as distinctive cell subsets. A continuum of transitional cell states exists

between these discrete stages. We combine the depth of single-cell mass cytometry and an

algorithm developed to leverage this continuum by aligning single cells of a given lineage onto a

unified trajectory that accurately predicts the developmental path de novo. Applied to human B

cell lymphopoiesis, the algorithm (termed Wanderlust) constructed trajectories spanning from

hematopoietic stem cells through to naïve B cells. This trajectory revealed nascent fractions of B

cell progenitors and aligned them with developmentally-cued regulatory signaling including IL-7/

STAT5 and cellular events such as immunoglobulin rearrangement, highlighting checkpoints

across which regulatory signals are rewired paralleling changes in cellular state. This study

provides a comprehensive analysis of human B lymphopoiesis, laying a foundation to apply this

approach to other tissues and “corrupted” developmental processes including cancer.
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Introduction

Most complex organisms start as a single cell that matures through coordinated stages of

development into a diverse set of transitional and terminal cell types, many of which have

yet to be defined. There is a continuous relationship between maturing cell subsets: more

potent cells divide and differentiate into more functionally restricted cells. The challenge is

to devise approaches that analyze and order the cells of these complex tissues to reveal their

developmental relationships, behavior, and the mechanisms that govern their differentiation.

One technique that has been used to effectively determine immune system hierarchies is

fluorescence activated cell sorting (FACS) which traditionally relies on surface antigen

expression for purifying cells of a given population (Hardy et al., 1984). One drawback of

this technology is the limited number of simultaneously assayed markers (generally < 12)

which confines experiments to isolating a narrow “slice” of the overall cellular pool, thereby

restricting the ability to characterize transitional populations and the relationships between

them. Emerging single-cell technologies (Bendall et al., 2011; Jaitin et al., 2014), however,

can measure a large number of simultaneous features in individual cells with unprecedented

resolution. Mass cytometry (Bendall et al., 2011) can now quantify more than 40 features

simultaneously in thousands to millions of individual cells per experiment. Thus, an

opportunity exists to assay nearly all cell types, from the earliest to the most mature within a

given system, and by simultaneously measuring a sufficient number of identifying markers

in a single sample, enable direct inference of a continuous developmental trajectory of

primary cells in situ.

A case in point is the early development of human B lymphocytes. Early B cells originate

from the hematopoietic stem cell, followed by a common lymphoid progenitor cell, pro-B

cell, pre-B cell, and finally an immature B cell, which migrates out of the marrow (LeBien

and Tedder, 2008). While these early developmental hallmarks have been described in the

mouse (Rolink et al., 1999) the exact nature of cell types and timing of critical events such

as IgH rearrangement and clonal expansion remain elusive in human B lymphopoiesis. As

hematopoiesis is both continuous and asynchronous throughout life, the full spectrum of cell

types exists in a single sample of bone marrow from a healthy individual. It was reasoned

that by combining mass cytometry with computation, we could construct a putative B-

lineage trajectory (an ordering of cells according to their most likely developmental

chronology) representing in vivo development, from primary human bone marrow. Then,

this trajectory could be used to characterize the order of key molecular and cellular events

during development.

B cell centric, 44 parameter single cell mass cytometry data was collected from human bone

marrow, simultaneously measuring multiple cellular features, including phenotypic proteins,

transcription factors, regulatory enzymes, cell state indicators, and activation of regulatory

signaling molecules. Sufficient cells were measured to encompass a complete spectrum of B

cell lymphopoiesis that could be reassembled into a continuous progression from a single

sample. Experimental design was tailored to maximize physiologic interpretability of the

data by allowing for minimal ex vivo manipulation. The resulting high dimensional data was

ordered using a graph-based trajectory detection algorithm, Wanderlust, that orders cells to a
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unified trajectory based on their maturity, thus predicting the developmental path de novo,

which was subsequently validated.

Wanderlust generated remarkably consistent trajectories across multiple individuals that

were largely congruent with prior knowledge. Using the trajectory, we determined the

timing and order of key molecular and cellular events across development, including

identifying previously unrecognized subsets of B cell progenitors that pinpoint the timing of

DJ and V(D)J recombination of the immunoglobulin heavy chain (IgH). Surveying the

dynamic changes in cellular expression across the Wanderlust trajectory, we identified

‘coordination points’, where re-wiring of the signaling network occurs concurrently with the

rise and fall of multiple proteins. These coordination points and their characteristic signaling

were further aligned with cell cycle status, apoptosis, and germline IgH locus rearrangement,

together forming a deeply detailed map of human B lymphopoiesis. By exploiting the

cellular heterogeneity of the human system while monitoring both single-cell identity and

behavior, a holistic model ordered by developmental chronology was created.

Results

Aligning cells to a developmental trajectory

Primary human tissues are a rich source of cellular diversity as they contain both multi-

potent progenitors and mature specialized cells. Previously, it has been shown that the

transitional cooccurrence of an extended suite of phenotypic markers, measured

simultaneously in individual cells, can be used to roughly order cells along a developmental

hierarchy (Bendall et al., 2011; Qiu et al., 2011). However, previous approaches were

limited, either by false assumptions of linearity (Figure 1A), or stochastic partitioning of cell

populations into overly-coarse clusters, losing directionality and single cell resolution, and

thus the ability to accurately order cellular relationships (see Supplementary methods). To

address these limitations, we developed a robust algorithm that uses high dimensional single

cell data to map individual cells onto a trajectory representing the chronological order of

development in fine detail.

Several assumptions are made regarding the data. First, the sample includes cells

representative of the entire developmental process, including most transient and rare

populations. Second, the developmental trajectory is non-branching: cells are placed along a

one-dimensional path. Third, changes in protein expression are gradual during development.

Ordering single cells onto a trajectory is based on continuous tracking of the progressive rise

and fall of phenotypic markers during development. This trajectory provides a framework to

infer the order and transition between additional key molecular and cellular events.

A fundamental challenge to constructing an accurate trajectory is that the relationships

between markers cannot be assumed to be linear. Thus, determining the distance between

two individual cells using standard metrics based on marker levels (e.g. Euclidian norm or

correlation) results in poor measures of their chronological distance in development, except

in the case of very similar cells. Figure 1A demonstrates the non-linearity that manifests

from using only two markers; while cells X and Y are close based on Euclidian distance,
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they are quite distant in terms of developmental chronology. The complexity of such non-

linear behavior only increases as more instances occur in high dimensions.

A graph-based representation of the data overcomes such problems and helps construct a

distance metric that corresponds to developmental chronology (Figure 1B). In the graph,

each cell is represented as a node connected to its neighbors—the cells most similar to it—

by a series of edges. Conversion into this graph structure represents a new geometry for the

data: distances between cells are defined as shortest paths on the graph (Figure 1B),

composed of steps (edges) between neighbors, where each step traverses similar cells that

are likely adjacent in their developmental chronology. Moreover, because the model is based

on similarity between cells, rather than relationships between parameters, it can more

naturally handle the non-linearity.

Wanderlust, a robust graph-based trajectory detection algorithm

We developed Wanderlust, a graph-based trajectory detection algorithm that receives multi-

parameter single-cell events as input and maps them onto a one-dimensional developmental

trajectory (Figure 1C). Cells are ordered along a trajectory that represents their most likely

placement along a developmental continuum. A key challenge for any such algorithm is that

most data is rife with noise from biological and technical sources. Wanderlust determines a

cell's position based on steps between neighboring cells, but noise accumulates with each

step, so longer paths (a series of steps) are less reliable than shorter paths. To construct a

more accurate trajectory, Wanderlust incorporates random waypoint cells, each of which

helps refine estimations for the positions of nearby cells. An initial estimation of each cell's

position, including the waypoint cells, is set to its distance from a pre-chosen ‘early cell’.

Next, each cell's position is refined using its distance to nearby waypoint cells. Since the

refinement affects the positions of waypoint cells themselves, it is repeated iteratively until

each cell's position converges (Figure 1C).

The most harmful effect of noise is “short circuits” (Figure 1B): i.e., spurious edges between

developmentally distant cells which nevertheless have similar marker measurements. Even a

single short-circuit in a graph of thousands of cells can impede construction of a correct

trajectory, as all shortest paths will “cut through” this short-circuit. Wanderlust overcomes

short circuits by building an ensemble of graphs (Figure 1C). The exact set of neighbors

varies between each graph, so any randomly occurring short circuit appears in very few

graphs in the ensemble. A trajectory is constructed separately for each graph in the ensemble

and the final trajectory is found by taking the average over the positions from all graphs,

thus averaging out the influence of short circuits in the final trajectory. Full details of the

Wanderlust algorithm can be found in the Supplemental Methods section.

Wanderlust's performance was initially evaluated using synthetic data (see Supplementary

Methods). Wanderlust faithfully recovered the correct trajectory (ρ=0.97), even under

increasing magnitude of noise, including noise levels that exceed those typically found in

biological data (Figure S1A). To emulate the short circuits that render biological data

challenging, false edges were randomly added between distant points across the entire

synthetic data set following graph construction. The algorithm successfully detected the

solution trajectory, even in the increasing presence of short circuits (Figure S1B). In
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summary, Wanderlust robustly recovered the correct trajectory from synthetic data, despite

increasing noise and short circuits, providing confidence in the trajectories it derives from

real data.

Constructing a trajectory for B cell lymphopoiesis

B cell lymphopoiesis, a non-branching process occurring entirely within bone marrow,

represented an ideal test case for Wanderlust. Mass cytometry was applied to a cohort of

healthy primary human marrow aspirates (lineage negative bone marrow mononuclear cells

(BMMC)) using a B cell centric marker panel (Table S1). Forty-four markers were

simultaneously measured for each individual cell, including both phenotypic surface

markers and internal functional proteins involved in signaling, cell cycle, apoptosis and

genome rearrangement. Both surface and intracellular markers were chosen based on prior

indications of their utility in defining developmental states in B cell maturation. Not all

markers were used to construct the trajectory. Certain markers were used to validate stages

in the trajectory or to discover new principles in the maturation process that had been

previously obscured.

BMMC were enriched for B cells or their precursors, resulting in ~200,000 cells for analysis

from each individual (Methods). Wanderlust was applied to each marrow independently,

using a ‘starting position’ of hematopoietic progenitors (Lin-CD34+CD38-) and the

expression of seventeen phenotypic markers (Table S1) to order all cells along a one-

dimensional trajectory. To characterize marker trends over the course of this trajectory, we

used a sliding window over slices of cells, as ordered by Wanderlust; the median marker

level, for each marker, was computed over all cells in each window (Supplementary

Methods).

To evaluate the resulting trajectory, we examined the expression of canonical markers of B

cell development as they align with expected cell populations (Figure 2A). The rise and fall

of phenotypic markers along the resulting trajectory matched prior knowledge, starting with

CD34, followed by CD38, CD10 (the earliest canonical Pro/Pre-B cell marker), CD19,

CD20, and ending with immunoglobulin heavy chain IgH expression, indicative of

immature B cells ready to leave the marrow. Developmental ordering was further cross-

checked using biaxial plots. Examining ten percentile slices of cells, as ordered across the

trajectory, demonstrated the expected progression (red arrows) of phenotypic markers

CD34/38, CD10/19, and CD20/IgH, respectively (Figure 2B, biaxial plots). Together, these

observations indicate that, from a starting point of hematopoietic stem cells, the primary

phenotypic landmarks of B cell lymphopoiesis were correctly reconstructed and ordered.

This was accomplished de novo and without ex vivo manipulation or synchronization in a

single primary sample.

The Wanderlust trajectory is robust across parameter choice

The algorithm's sensitivity to the user-defined initial cell is a crucial feature. To evaluate this

feature, initiating cells selected from evenly spaced points along the entire trajectory were

each used to seed an independent trajectory determination by the algorithm. Wanderlust's

iterative approach correctly detected the trajectory, even when using more mature starting
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points (Figure S1C). For example, using a starting point of 0.3 on the trajectory results in a

correlation of ρ=0.98 with the original trajectory. With mature cells, the trajectory reverses,

but remains congruent, with a correlation of ρ=-0.98 between the forward and reverse

trajectory (Figure S1C).

To test the robustness of the algorithm to the selection of phenotypic features used to map

the trajectory, Wanderlust was run removing one marker at a time, and the correlation with

the original trajectory was assessed. Exclusion of any one individual marker had little effect

on the overall trajectory as evidenced by the strong correlation (ρ > 0.97) with the original

model, except HLA-DR (Figure S2A). Wanderlust was then run removing all of 6 key B cell

markers (CD19, CD20, IgM-i, IgM-s, CD79b and CD10), and the correlation with the

original trajectory remained (ρ > 0.95, Figure S2B). Thus even without canonical markers,

Wanderlust was able to correctly order the events and phenotypic progression of B cell

lymphopoiesis. Note that only three of the seven markers in this trace were actually used for

the Wanderlust analysis (Figure S2C,D).

Additionally, we tested the algorithm's robustness by varying all free parameters. We

compared trajectories generated independently over a wide range of input values to our

original model, constructed using default parameters, and found a correlation of (ρ > 0.99)

between trajectories (See supplementary materials). In conclusion, the Wanderlust algorithm

constructs a remarkably consistent trajectory and is robust to variation in the parameters

used for its construction.

Importantly, not only do the median marker levels follow expected trends over the

trajectory, variation in marker expression within each window was remarkably low (Figure

2C,S2E). This tightness is especially apparent with TdT, which was not used as input to the

algorithm. At any given point, the distribution of B cell centric epitopes was tight around the

median, indicating the algorithm's ability to leverage multi-dimensional information to

create a highly-organized trajectory of cellular development in silico. Thus, the quality of

the trajectory is demonstrated by its robustness and marker tightness.

The trajectory is consistent across individuals

Having demonstrated Wanderlust's robustness when applied to a single healthy bone

marrow sample, we investigated whether the trajectory of human B cell development is

consistent across independent human samples. Altered proportions of cell subtypes due to

outside factors (genetics, exposure to pathogens, etc.) could lead to scaling discrepancies

between the output trajectories, yet we expected to see the general shape, order and co-

expression of given markers maintained. To account for the scaling variations expected due

to subpopulation frequency differences, we used cross-correlation (see methods) to compare

the trajectories of four independent bone marrow samples (using the same experimental

procedures). The four trajectories were completely overlaid (Figure 2D, S2D),

demonstrating that Wanderlust consistently recapitulates the developmental trajectory across

independent samples despite distinct genotypes and environmental backgrounds.

In addition, we observed qualitative agreement on the order of molecular events. Focusing

on the less-characterized emerging B cell populations at the beginning of the trajectory,
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Wanderlust revealed that CD24 consistently bisected the wave of terminal deoxynucleotidyl

transferase (TdT)—an enzyme that participates in rearrangement of the IgH locus (Figure

2D). Both CD24 and TdT were reliably expressed earlier than expected, before the rise of

CD10, a canonical surface marker believed to be the earliest identifying surface marker of

emerging human B cells committed to the lineage.

Ordering of emerging B cell precursors

The Wanderlust trajectory guided the identification of distinct, early populations and

determined their relative ordering across development. The expression of both TdT and

CD24 increased prior to the expression of any canonical B cell surface markers (i.e. CD10

or CD19) in every bone marrow sample examined (Figure 2D). Given TdT's defining role in

mammalian B cell emergence, we hypothesized that TdT, in combination with CD24 and

other progenitor markers, could serve as a novel set of identifiers to dissect early populations

of human B cells in the marrow. We used Wanderlust to guide the selection of a series of

biaxial gates based on CD34, CD38, CD24 and TdT, revealing four distinct populations of

cells (Figure 3A). According to Wanderlust, these were early cellular fractions sequentially

occupying populations labeled II-V (Figure 3A, S3A). Additional phenotypic markers,

including λ5 (CD179b), vPreB, CD10 and intra-cellular IgH protein (Figure 3B), were used

to support the determined progression of these populations and their identity as definitive

early B cells. Thus, the Wanderlust trajectory of these populations (II-V) is confirmed by

protein co-expression patterns typical of B-lineage development.

VH(D)JH Recombination confirms ordering of novel early human B cell populations

To independently confirm the developmental ordering of the hypothesized early B cell

fractions, we used the rearrangement of the germline IgH locus, the molecular target of TdT,

as a measure of developmental stage and B cell identity. A quantitative polymerase chain

reaction (qPCR) assay was developed to quantify the relative proportions of DJH and

VH(D)JH arranged cells and validated by assaying mixtures of cells containing known

proportions of mature (fully rearranged) B cells (Figure S3B-C). FACS was then used to

isolate populations II-V (Figure S3D) from BMMC preparations of two additional subjects.

Genomic DNA was extracted from each fraction, and the relative IgH rearrangement status

of each fraction was quantified using the qPCR assay.

As anticipated, relative to population II, there was a progressive rearrangement of the IgH

locus towards population V. Most cells had detectable DJH rearrangement upon reaching

population IV and VH(D)JH rearrangement upon reaching population V (Figure 3C and D).

This was consistent with the observation that virtually all cells in fraction V displayed

intracellular expression of IgH protein (Figure 3B‘*’). Establishing the progressive

rearrangement of IgH in these populations confirmed that the Wanderlust trajectory not only

facilitated the identification of the earliest human B lymphocytes, but also accurately

ordered their developmental timing, all from the analysis of a single human marrow, without

synchronization or manipulation.

This ability to identify and order cells was particularly notable given the sparsity of cells in

these early fractions. Figure 3E highlights the rarity of these early B cell populations relative
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to total BMMCs. In particular, population III comprised only 0.007% of total BMMCs. The

fact that population III occurs prior to CD19 expression (Figure 2A-B), in combination with

inconsistent expression of CD10 (Figure 3B), suggests why these populations had not been

described previously.

pSTAT5 response to IL-7 is confined to rare B cell precursors

Mass cytometry allows simultaneous measurement of surface markers, as well as internal

functional proteins and their modifications, in the same cells. To functionally characterize

early B cells and how they respond to stimuli, data was collected following multiple cellular

signaling perturbations, including the cytokine IL-7 (Table S2). The activation of STAT5 by

IL-7 via its phosphorylation site has a critical regulatory role in mouse lymphopoiesis (Corfe

and Paige, 2012): disruption of this pathway results in arrest of B cell maturation at the pro-

B cell stage (Malin et al., 2009). However, in human, the precise developmental timing of

this pathway and its regulatory role remain unclear.

Investigation of signaling response to IL-7 across the four early B cell populations II-V

revealed that cells within population III displayed an almost exclusive ~5 fold induction of

STAT5 phosphorylation versus basal (Figure 4A) – a striking observation considering

population III represents seven in 10,000 cells in the marrow (Figure 3E). Moreover, this

pinpointed response was consistent across seven distinct marrows from independent human

subjects. We note that pSTAT5 and other functional markers were not used to construct the

Wanderlust trajectory and therefore this pattern of pSTAT5 induction was not enforced by

the algorithm, but rather was revealed due to its precise phenotypic ordering of cells.

STAT5 network rewiring occurs during immunoglobulin rearrangement

Since the IL-7/STAT5 response was limited to a specific fraction, STAT5 regulation was

further characterized relative to adjacent cell fractions across the developmental progression.

We used the JAK inhibitor Tofacitinib, combined with IL-7 stimulation, to confirm a Janus

kinase mediated mechanism of STAT5 control (Johnson et al., 2005). As expected, within

population III, STAT5 activation was attenuated by treatment with Tofacitinib, indicating a

JAK mediated mechanism (Figure 4B, S4A).

Populations III's induction of pSTAT5 coincides with the cells gaining expression of the

IL-7 receptor (CD127), where all CD127 positive cells of population III strongly induce

pSTAT5 in response to IL-7 (Figure S4B). IL-7 receptor levels continue to rise in

populations IV and V (Figure 4C), yet ex vivo IL-7 stimulation no longer induces pSTAT5

in these later populations (Figure S4B). However, cells occupying population IV display a

higher basal level of pSTAT5 (Figure 4C). To test if pSTAT5 levels are saturated in later

populations, the pan tyrosine phosphatase inhibitor pervanadate (PVO) was tested. In the

presence of PVO, the levels of pSTAT5 rose in all CD34+ progenitor B cell fractions, across

biological replicates (Figure 4B, S4A). Additionally, cells in populations III and partially IV

yielded a similar STAT5 phosphorylation pattern in response to thymic stromal

lymphoprotein (TSLP) (Figure 4B & S4A), a ligand that shares the IL-7rα chain (CD127)

and activates STAT5 (Kang and Der, 2004).

Bendall et al. Page 8

Cell. Author manuscript; available in PMC 2015 April 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Together these observations illustrate a STAT5 network rewiring over the development of B

cell precursors (Figure 4D). STAT5 phosphorylation is initially dependent upon an

exogenous ligand (i.e. IL-7, TSLP or others) in a JAK mediated mechanism (population III).

Then, despite continued expression of the IL-7 receptor, STAT5 phosphorylation becomes

ligand independent (population IV-V), yet remains basally high relative to developmentally

adjacent cells.

Previous studies in mouse have implicated the IL-7-dependent STAT5 induction in the

initiation of genomic rearrangement (Malin et al., 2009). The peak expression of TdT

(Figure 4C) indicated that cells in population IV are actively rearranging the IgH locus of

the immunoglobulin gene (Figure 3C-D). Therefore, the switch in regulation of STAT5

activation overlaps with germline gene rearrangement, a cell state in which successful

outcome requires careful monitoring by the cell. Thus, when cells were organized into a

progression, we observed the coordinated rewiring of the regulatory signaling network in the

rare, early B cell populations (Figure 4D).

Derivative analysis of the trajectory reveals coordination points in B cell development

The coordinated expression of phenotypic markers coupled with re-wiring of regulatory

signaling suggested that these events coalesced around developmental checkpoints

controlling the progression of B cell lymphopoiesis. Because this highly multiplexed dataset,

combined with the developmental ordering revealed by Wanderlust, allows examination of

the concurrent timing of protein expression across B cell development, we used derivative

analysis to determine the rates by which given markers changed at each point along the

trajectory. The derivative for each marker along the Wanderlust trajectory was approximated

using a sliding window (Figure 5A).

The derivatives were examined to see if multiple phenotypic features changed in a

coordinated fashion. Clustering the parameters based on the absolute value of their

derivative across the trajectory uncovered several striking ‘coordination points’ where the

changes in expression of multiple proteins coalesced across B cell development (Figure 5B).

At least four major coordination points were identified across the trajectory (Figure 5B,

dashed boxes), and were consistent across samples from independent human subjects

(Figure S5). The first (Figure 5B and C, red) coincides with population III, the ligand-

dependent pSTAT5 cells (Figure 4), representing cells at the early pro-B cell stage of

development just prior to IgH locus rearrangement. The second (Figure 5B and D, blue) is

consistent with cells that are passing through the pre-B cell stage and are preparing to

rearrange the light chain locus of the immunoglobulin (Cobaleda and Sanchez-García,

2009).

Light chain rearrangement is crucial to the latter two coordination points. The first of these

(Figure 5B and E, purple) coincides with kappa light chain protein expression, which

mirrors the trajectory of CD20, signifying that the expression of CD20 occurs in concert

with BCR light chain rearrangement and expression. Cells that do not successfully express

kappa switch to lambda light chain, both consistent with the known biology and correctly

ordered by Wanderlust (Figure 5B ‘*’ and E). The last coordination point (Figure 5B and F,
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black) cements the emerging cells as naïve, immature B cells preparing to enter peripheral

lymphoid organs.

In summary, Wanderlust successfully organized a dynamically asynchronous cellular

system, providing a holistic view of the coordination of a complex system, even for transient

and rare cell types. Derivative analysis reveals a closely coordinated series of regulatory and

cellular events, suggesting coordination points that might act as checkpoints between shifts

in cellular states and fate determinations.

Coordination points reveal a checkpoint for B cell developmental progression

Using Wanderlust to overlay simultaneously measured indicators of cell proliferation (Ki67)

and apoptosis (cleaved poly ADP ribose polymerase–cPARP) revealed a further level of

functional coordination across nascent human B cell populations (Figure 6A). The first

coordination point (Figure 6A, red arrow) marks a transition from a state of high to low

proliferation, as assessed by decreasing Ki67 expression (Figure 6A, background shade).

This drop in proliferation leads directly into population IV (Figure 6A), signifying the

transition into pro-B cells, suggesting a checkpoint that has never been clearly demonstrated

in the human.

As the cells pass through the second coordination point, which occurs after the IgH locus

has been completely rearranged, Ki67 levels show that the cells re-enter a state of

proliferation, expanding the pool of pre-B cells, which have productively formed an IgH

(Figure 6A, blue arrow). Just preceding this pre-B cell expansion there is a discrete spike in

cell death, indicated by a surge in single cells with higher cPARP (Figure 6A, yellow line),

consistent with cells that could not form a productive IgH rearrangement and thus were

unable to pass through this checkpoint.

In concert with expression of VpreB and λ5, the newly expressed IgH now composes a

complete pre-B cell receptor (preBCR). Mapping cells following B cell receptor cross-

linking onto Wanderlust demonstrates that precisely paralleling the surface expression of the

IgH (IgHs), cells are able to induce massive phospholipase C (PLC) gamma 2

phosphorylation (Figure 6B, red) as compared to the basal state (Figure 6B, black). Thus,

with pre-BCR on the surface of the cells, they have yet again re-wired their regulatory

signaling and have become responsive to receptor cross-linking (Figure 6B).

Ex vivo differentiation assay confirms pro-B cell checkpoint

To determine the role these checkpoints play in a cell's developmental progression, the

earliest pro-B cell checkpoint was interrogated using an ex vivo differentiation assay (Figure

6C, Tables 3,4). The re-wiring of STAT5 regulation across fractions II to IV (Figure 4)

suggests that a blockade of STAT5 phosphorylation could alter the progression of cells

through the pro-B checkpoint proposed here. To test this, Lin- human BMMCs from two

donors were differentiated on OP-9 stromal cell feeders for six weeks (Sanz et al., 2010),

after which the relative proportions of fractions II through IV were assessed.

Both JAK inhibitors used, Ruxolitinib (JAK1/2 inhibitor) and Tofacitinib (JAK1/3

inhibitor), restricted progression of cells from population II through to population IV (Figure
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6D), significantly decreasing the frequency of cells in population IV, relative to a DMSO

control. At the same time, there was a significant accumulation of cells in population II. The

P38 inhibitor, did not have a significant influence on the allocation of cells across the three

fractions, though it did promote significant, albeit compartment independent, cellular

expansion (Figure S6B). Collectively, these ex vivo culture assays imply that STAT5

promotes the developmental progression of early B cell precursors, where the ligand

dependent phosphorylation in population III likely represents a critical (pro-B cell) transition

point for initiating IgH V(D)J rearrangement and progression to later stages of maturity.

Discussion

By leveraging the massively multiplexed, single-cell analysis of a complex primary sample,

algorithmic ordering of cellular processes can detect the underlying temporal element in the

system and be used for novel biological inquiries. The Wanderlust algorithm described here

is resilient to noise, consistent between samples, and scalable to up to tens of millions of

cells. It extracts a trajectory from a snapshot of the system rather than from time-series data

and only requires an approximate starting point as prior information. The Wanderlust

trajectory is continuous; in addition to mapping stable cell states, it also provides

information about the transitions between states. The combination of these characteristics

makes this an ideal approach for the exploration of any system undergoing a continuous

developmental process.

As single cell measurements amass due to new technologies such as mass cytometry and

single-cell RNA-seq, researchers are faced with the novel challenge of organizing this

volume of data. The solution most commonly used is clustering, but by averaging cells into

groups, this approach loses the richness of single cell resolution. Using the graph approach

proposed here, rather than assigning single cells to a group of similar cells, each cell is

mapped to a unique position in a graph structure that can be easily navigated. This structure

affords many of the advantages of clustering while preserving much of the cell's individual

information. This graph-based representation of single cell data can be adapted to a wide

range of additional applications.

Wanderlust determined the developmental trajectory of human B cell emergence in bone

marrow by simultaneously examining the features of this primary tissue from progenitor to

maturity, requiring no cellular synchronization, purification, or manipulation. The trajectory

is consistent with the traditional understanding of this process. Furthermore, Wanderlust

provides a quantitative, high-resolution ordering of surface marker expression, signaling and

recombination events, including markers whose timing and relevance were previously

unappreciated. The determined trajectory unifies virtually all relevant cellular features and

regulatory behaviors of early B cell development in the human with discrete cell subsets that

can now be demarcated using conventional cytometric methods (Figure 3).

A unifying model of mammalian B cell development

Because it is difficult to obtain and experimentally manipulate human bone marrow, the

understanding of mammalian B cell development comes mostly from murine systems. The

Wanderlust trajectory identified a precise ordering of key events and explicitly pinpointed
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the developmental hallmarks of B cell development, previously assumed to exist based on

the murine system, in the human. A more precise overview of human B cell development in

the bone marrow is now made possible by aligning phenotype with regulatory signaling and

key developmental events such as immunoglobulin rearrangements (Figure 7). Moreover,

the progression identified by Wanderlust is maintained across all donor bone marrow

specimens examined, such that the developmental timing of key coordination points ordered

by the Wanderlust trajectory are consistent across independent marrows and analyses

(Figure S7).

In addition, the Wanderlust trajectory facilitated an in-depth examination of rare and

transient early stages of B cell development: previously unrealized populations of B cell

progenitors based on the combined expression of CD34, CD38, CD24 and TdT. Notably, the

earliest of these B cell precursors expressed neither CD10 nor CD19, the earliest markers

conventionally used in human B cell identification (Cobaleda and Sanchez-García, 2009).

Previous experimental studies of early B cells, which relied on identification based on

expression of CD10 or CD19, would have entirely excluded the earlier fraction of B cells

highlighted here.

Moreover, the overlay of multiple markers onto a single trajectory offered a holistic picture

of the coordination of a complex system, even for transient and rare cell types; in particular,

identifying regulatory signal re-wiring of STAT5 regulation across populations III through

V. Remarkably, IL-7 induced activation of STAT5 was a limited regulatory state, only

active in a rare population of the cells. While population III comprises only 0.007% of the

BMMCs, the results demonstrated that it serves as a checkpoint to ensure successful

initiation of IgH rearrangement. Through this lens, coordination points appear as a hallmark

of developmental progression.

A discrete versus continuous concept of cellular development

Much effort has been devoted to the taxonomic characterization of cellular populations

across development in virtually all tissues, with new cell subsets constantly being described

based on increasingly complex patterns of expression. Although it is easy to conceptualize

this process as a series of discrete steps, in reality, it is continuous and characterized by

transitional stages. In our approach, the trajectory captures expression as trends: markers rise

and fall in patterns that correspond to the cell's behavior, capturing transitional behavior.

Applying Wanderlust to high-dimensional single-cell data from a primary human tissue

determined a developmental ordering (trajectory) of cells without any time-point

experiments or genetic manipulations. Furthermore, as seen in Figure S1, the algorithm was

able to begin from a late cell and map the trajectory from a known finale back to its

beginning. This variation is relevant in the context of non-hematopoietic development,

where the stem cells are not known but the mature cells are plentiful and easily identified,

such as in mesenchymal development.

A foundation upon which to understand disease

Many human diseases can be considered corruptions of normal development. Indeed,

pathologic examination of tissues often reports findings as the degree of divergence from
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normal tissue architecture. However, our understanding of the underpinnings of a disease is

only as good as our understanding of the normal, healthy condition. Wanderlust provides the

ability to infer regulatory events across the healthy developmental trajectory, so it is now

possible to use the precise foundation of healthy tissue ordering to further understand

corrupted developmental disease processes.

In the case of lymphopoiesis, as demonstrated here, the identification of coordination points

across development coupled to critical regulatory signaling that influence cell fate decisions

(including survival and proliferation), highlights specific developmental periods of risk for

malignant transformation. Understanding the critical network configurations that surround

these transitions may provide important insight into disease, especially when a

developmental state may serve as an additional diagnostic or classification metric.

There are several possible extensions to the concepts presented here. Wanderlust assumes

that the developmental process is composed of a series of consecutive stages, with no

branching. Incorporation of a more sophisticated model that allows for branching will enable

the analysis of more complex systems, such as the complete immune system. Given its

flexibility and minimal experimental requirements, this study lays the foundation for

applying these methods to other tissue types and corrupted developmental processes, such as

cancer, in the future.

Materials and Methods

Mass Cytometry Analysis

Processing of primary human bone marrow and mass cytometry analysis including data pre-

processing is as previously described (Bendall et al., 2011; Fienberg et al., 2012; Finck et

al., 2013; Kotecha et al., 2010). Extended description of these methods can be found in the

supplementary material.

Analysis of Primary Human B Cells

Lin- BMMCs were stained for CD34, CD38, TdT, and CD24 and populations II through V

were collected on a FACS Aria (BD Bioscience). Unamplified genomic DNA from the

sorted cell populations was assessed for the level of IgH (D)J and V(D)J rearrangement

using a qPCR approach adapted from adapted from Van Dongen et. al. (van Dongen et al.,

2003). OP-9 progenitor cell co-cultures for B cell specification were performed as

previously described (Sanz et al., 2010). Extended description of these methods can be

found in the supplementary material.

The Wanderlust algorithm

Input and initialization—The Wanderlust trajectory detection algorithm receives as input

the high-dimensional sample data and a user-defined initial cell (for example, a stem cell),

referred to here as the “early” cell. The output is a continuous trajectory score for each cell

that provides the cell's temporal positioning across development; undifferentiated cells have

low scores whereas mature cells have high scores. Wanderlust is composed of two steps:

initialization and trajectory calculation, which is performed iteratively, see outline below.
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Please refer to the supplementary methods for a full and detailed description of the

Wanderlust algorithm.

Wanderlust Outline Description

Wanderlust receives as input the single-cell measurements and a user-defined early cell. The

algorithm begins with a two-step initialization step (Figure 1C, top left). First, a set of cells

is randomly chosen as waypoints. Then, the data is transformed into a randomly generated

ensemble of graphs. The algorithm proceeds by calculating a trajectory separately in each

graph. For each cell (called a target), its position along the trajectory is first set to the

shortest-path distance from the early cell. The target's position is refined according to the

shortest-path distance from each waypoint using a weighted average. Waypoints closer to

the target contribute more to it's location as they are less susceptible to the noise inherent in

the shortest-path distance. However, the waypoints are themselves targets. Therefore, their

position will change following this same refinement step. Since cell positions depend on

waypoint positions, the shift in waypoints might change the newly calculated positions.

Therefore, the refinement step is repeated with the new waypoint positions until the

positions of all cells converge. Once the trajectory calculation step completes in all of the

graphs, the output trajectory is set to the average over all graph trajectories.

Simulated data

We applied Wanderlust to a series of simulated datasets. Each dataset included the same

curved, one-dimensional simulated trajectory that was embedded in 3 dimensions. The

simulated trajectory was generated by starting at position (1, 1, 1) and randomly traversing

the space for 10,000 steps. After each step the current position was added to the trajectory as

a point. Seven additional dimensions of normally-distributed noise were added to each

dataset. The magnitude of the noise dimensions (defined as the standard deviation divided

by the range of the solution trajectory) varied between datasets. Additionally, some datasets

included short circuits; the number of short circuits varied between datasets, and their

distances were exponentially distributed with mean again varying between datasets. Full

details are available in the supplementary methods.

Wanderlust analysis

Wanderlust was run on 21 phenotypic markers in each sample using the following

parameters: nl = 20, dist = angular distance, p = 2, ng = 20, k = 5, l = 30. The early cell was

chosen as the cell expressing the highest level of CD34. The output trajectory was

normalized to the [0, 1] range by subtracting the 5th percentile and dividing by the value of

the 95th percentile minus the 5th percentile. We defined the trace of each marker as the

median marker intensity in overlapping windows across the trajectory. One hundred

windows were uniformly distributed across the [0, 1] range. Each window included all cells

whose trajectory score was within +/-0.08 of the center of the window.

Wanderlust cross-correlation between individuals—Given a marker, for each

sample, we calculated the cross-correlation between the trace of the marker in the sample

and its trace in an arbitrarily chosen sample (sample A). The trajectory was shifted such that

the mean of all cross-correlations was maximized.
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Wanderlust derivative analysis—Given the trace of a marker tm over the Wanderlust

trajectory w, we calculated an approximation of the derivative of the trace at a given point p

using:

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

-Wanderlust aligns single cells on a trajectory according to their developmental path

-Mass cytometry plus Wanderlust infers path from HSCs to naïve B cells

-Trajectory identifies precursor B-cell populations where rearrangement occurs

-Discovery of coordination points dictating cell fate decisions
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Figure 1. Developmental trajectory detection
A) Non-linear relationships between developmentally related cells. Markers ‘A’ and ‘B’

represent sequentially expressed phenotypic epitopes on cells in a developing system (inset).

The red line shows the expected developmental trajectory from the earliest (cell ‘X’) to the

most mature cell type (cell ‘Y’). Developmentally, the distant cell types can be close in

Euclidean space. B) Determining the shortest path through a graph of the data reflects

temporal distance between cells (solid red line between early (cell ‘X’) and target (cell ‘Y’))

better than standard metrics (e.g. Euclidian norm or correlation). Short circuits (dashed red

line) impede a naïve shortest path-based algorithm. C) Description of the Wanderlust

algorithm. The input data is single cells in N-dimensional space (top left). Wanderlust
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transforms the data into an ensemble of graphs and selects random waypoints (purple). Each

graph is independently analyzed (single graph, red box) where a user-defined starting cell

(red) is used to calculate an orientation trajectory. The orientation trajectory is iteratively

refined using the waypoint cells. The final trajectory is an average over all graphs. To

examine trends, the trace of each marker can be plotted according to trajectory position. See

also Figure S1 for evaluation of Wanderlust on simulated data.
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Figure 2. Wanderlust confirms known hallmarks of human B cell development and is consistent
across healthy individuals
A) The Wanderlust trajectory is fixed to an arbitrary scale where the most immature cells are

at 0 and the most mature cells at 1. The traces (based on median marker levels within a

sliding window) demonstrate the relative expression patterns of CD34, CD38, CD10, CD19,

IgH (s)urface, and CD20 across development. The approximate position of progenitors and

B cell fractions is indicated. B) Biaxial plots demonstrate the two-dimensional progression

of cellular marker expression (red arrow) across the Wanderlust trajectory taken in segments

of 0.1 C) Distribution of marker expression across the trajectory for CD24, TdT, and CD10.
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D) Marker traces across the trajectory for four different samples (denoted a to d) aligned

using cross-correlation. Pearson's ρ > 0.9 between the trajectories of different samples. The

red box demarcates the expression of CD24, which bisects the TdT expression prior to

CD10 expression across all four healthy individuals. See also Figure S2 for traces on full

marker panel and additional robustness analysis.
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Figure 3. Wanderlust uncovers rare B cell progenitors prior to the expression of CD10 or CD19
A) Wanderlust trace showing the expression of CD24, CD34, CD38, and TdT (upper left

panel). Density plots of four distinct TdT and CD24 populations defined within the

CD34+CD38+ fraction (right). A histogram overlay of the Wanderlust values for cells

contained in population I-V (dark blue boxes). The median Wanderlust values are indicated.

B) Expression of the surrogate light chain of the pre-B cell receptor, λ5 and VpreB (top),

and CD10 and IgH (i)ntracellular (bottom) across populations I though V. ‘*” denotes the

uniform expression of IgHi in population V. C) Relative to population II, the amount of (C)

IgH DJ and (D) IgH V(D)J rearrangement by qPCR of genomic DNA from prospectively

isolated cells from populations II-V. Triplicate analysis of two biological replicates. Error

bars are standard deviation. ‘*’ denotes uniform IgHi expression implying complete IgH

V(D)J rearrangement. E) Pie charts summarizing the cellular contribution of human

BMMNCs. The purple pie denotes CD34+CD38+ cells. Percentages are relative to all

BMMNCs. See also Figure S3 for supporting data.
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Figure 4. Regulatory signaling re-wires across development
A) Compared to basal control, the IL-7 induction of pSTAT5 in populations I through V.

Population III (CD34+CD38+TdT+) had consistently the largest induction across seven

replicate BM. Induction is arcsinh difference versus basal, scaled individually. Maximum

differences were 0.8, 2.2, 1.7, 1.3, 0.3, 0.8, and 1.8 for A to G, respectively. B) The effect of

TSLP, tofacitinib (JAK1/3i), and pervanadate (PVO) on induction of pSTAT5 across

populations I to V in the same individual versus the basal. The maximum difference is 1.3.

C) Early Wanderlust trace (trajectory 0-0.5) showing expression of IL-7rα (CD127), TdT,

and IgHi. The green heat bar indicates relative pSTAT5 phosphorylation in the basal sample.

Relative positions of populations I to V and IgH V(D)J rearrangement are indicated. D)
Network rewiring between population III and IV. The schematics show proposed regulatory

networks of pSTAT5; population III activates in a ligand and JAK-dependent manner

whereas population IV becomes ligand independent, but maintains a high pSTAT5 level in

the absence of stimulation. See also Figure S4 and table S2 for additional perturbations and

full distributions representing the IL-7 perturbation.
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Figure 5. Coordination of protein expression across B cell development
A) The first derivative was calculated in windows across the trajectory for each marker.

These values are expressed as a heat map with red indicating a positive slope (increasing

expression) and blue indicating a negative slope (decreasing expression). B) Heat map

summary of the first derivative analysis, rows are markers and columns the progression of

the trajectory. Markers were hierarchically clustered using absolute values of the first

derivative. ‘*’ indicates decline in kappa light chain expression coincident with increase in

lambda light chain expression. Coordination points: C) at ~0.25 Wanderlust (red dashed line

and box) rise in VpreB, λ5, TdT, CD10, and CD24 and fall in CD117 expression; D) 0.3-0.4

(blue dashed line and box) drop in CD34 expression and increases in CD19, CD20, IgHi,

and Pax5; E) ~0.6 (purple dashed line and box) showing increases in CD20, kappa, and

lambda light chain protein expression. F) ~0.8 (black dashed line and box) with drop in

CD38 expression and increases in CD40, IgD, and CD22. See also Figure S5 for additional

replicates.
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Figure 6. Regulatory signaling influences cell fate decisions in developing B cells
A) Wanderlust traces of VpreB, λ5, IgHi, and cleaved PARP across the early trajectory

(0.1-0.6). The background is shaded for Ki67 (proliferative antigen) expression. Indicated

are the relative positions of population II to V. The red and blue arrows indicate putative

timing of pro- and pre-B cell coordination points, respectively. B) Wanderlust traces across

the late trajectory (0.3-0.9) showing IgH (i)ntracellular and (s)urface expression with the

basal and receptor cross-linked levels of pPLCϒ2, an intermediary of B cell receptor

signaling. pPLCϒ2 induction in response to cross-link shown in yellow. C) Using two

human BM samples, B cell differentiation co-cultures were performed, following lineage

depletion, for 6 weeks on an OP-9 stromal layer in the presence or absence of inhibitors.

After, cells were analyzed by flow cytometry for the frequencies of populations II through

IV. D) Frequency of populations II through IV, as a proportion of CD34+CD38+ cells, after

six weeks of culture in the indicated condition. Each treatment is normalized to the DMSO

control for that population. Two biological replicates analyzed in quadruplicate cultures for

each condition. Error bars are standard deviation. A two-tailed t-test was performed to

determine statistical significance *p<0.05, **p<0.01, ***p<0.001. See also Figure S6 and

Table S4 for supporting data.
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Figure 7. Summary of phenotypic marker expression, regulatory signaling, and IgH
recombination status and proposed pro- and pre- B cell checkpoints aligned to reported
populations across human B cell development as ordered by the Wanderlust trajectory
Under ‘Definition’ (top) the expected marker localization and expression is listed for

subsequent cytometric characterization. ‘Bold type’ markers are the minimum required to

positively select cells by cytometric analysis. ‘Regular type’ markers are uniformly

expressed on the surface. ‘Italic type’ markers are intracellularly expressed. Markers in

parentheses ‘()’ are only partially expressed on that fraction. Red and blue bars indicate the

pro- and pre- B cell coordination points, respectively. For regulatory signaling and IgH
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status (bottom), the grey bars indicate the developmental regions where cells are prone to the

listed behaviors. See also Figure S7 for additional replicates.
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