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Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has been found in a high proportion of chronic fatigue syndrome (CFS)
patients and includes enhanced corticosteroid-induced negative feedback, basal hypocortisolism, attenuated diurnal variation,
and a reduced responsivity to challenge. A putative causal role for genetic profile, childhood trauma, and oxidative stress has
been considered. In addition, the impact of gender is demonstrated by the increased frequency of HPA axis dysregulation in
females. Despite the temporal relationship, it is not yet established whether the endocrine dysregulation is causal, consequent,
or an epiphenomenon of the disorder. Nonetheless, given the interindividual variation in the effectiveness of existing biological
and psychological treatments, the need for novel treatment strategies such as those which target the HPA axis is clear.

1. Introduction

Chronic fatigue syndrome (CFS) is a debilitating illness
which was classified as a neurological disease in 1993 by the
World Health Organisation (WHO) [1]. Symptoms of CFS
include persistent fatigue, difficulty with memory and con-
centration, a disturbed sleep pattern, and severe muscular-
skeletal pain [2]. Post exertional exacerbation of symptoms
is common but not invariable [3]. The symptoms displayed
vary markedly from patient to patient; some patients remain
bedridden for very long periods of time, while others are
able to manage their fatigue by staying within their own
energy boundaries [4]. Diagnostic reliability is enhanced by
the use of operational criteria such the Centre for Disease
Control and Prevention Criteria [5], the Oxford Criteria
[6] or the International Consensus Criteria [7, 8]. However,
the heterogeneous symptom profile and absence of clear
biological markers militate against confidence in the validity
of CFS as a unitary diagnosis. It is not known, for instance,
whether there is a core set of biological processes which
underlie all cases of CFS or whether there are multiple
processes (and if so, whether or not these potentially disparate
processes converge on a final common pathway) [9].

Dysregulation of the biological systems which mediate
the response to stress potentially has an important role in the
aetiopathogenesis of CFS [1, 4, 10]. The neurobiological stress
system comprises a range of networks that form intricate
pathways; an important part of this is the hypothalamic-
pituitary-adrenal (HPA) axis [11-14] which is a self-regulated
feedback system which contributes to the maintenance of
homeostasis and which is impacted by multiple factors such
as time of day and physical and psychological stressors [2, 15].
There are a number of structures within the HPA axis, includ-
ing the paraventricular nucleus (PVN) of the hypothalamus
which releases corticotropin releasing hormone (CRH) and
arginine vasopressin (AVP) which in turn stimulates the
pituitary to secrete adrenocorticotropic hormone (ACTH)
into the systemic circulation. The ACTH acts at the adrenal
gland to stimulate the synthesis and secretion of cortisol.
Cortisol is released in a pulsatile fashion and ensures strict
regulation of both feedforward and feedback loops involving
the HPA axis. Hence circulating cortisol activates mineralo-
corticoid and glucocorticoid receptors (MR and GR) and so
decreases the secretion of CRH, AVP, and ACTH [16, 17].
This feedback mechanism is shown in Figure 1. Functional
capacity of glucocorticoid receptors is considered, by some,
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FIGURE 1: The effect of stress on the hypothalamic-pituitary-adrenal
axis. The hypothalamus secretes both CRH and AVP from the par-
aventricular nucleus which stimulate the production of ACTH in the
anterior pituitary. ACTH travels via the blood until it stimulates the
adrenal gland to secrete cortisol. Cortisol acts via a negative feedback
mechanism mediated by MR and GR in the hypothalamus and GR in
the anterior pituitary, which ultimately causes a decrease in secretion
of CRH, AVP and ACTH. CRH: corticotropin releasing hormone;
AVP: arginine vasopressin; ACTH: adrenocorticotropic hormone;
MR: mineralocorticoid receptor; GR: glucocorticoid receptor.

to be the determining factor in the regulation of the HPA
axis [18]. The effects of cortisol are both potent and extensive;
it affects numerous physiological functions, for instance,
in the regulation of the neuroendocrine and sympathetic
nervous systems, modulation of the inflammatory response,
inhibition of secretion of multiple hormones, and induction
of lymphocyte apoptosis [19, 20].

2. Schematic of the
Hypothalamic-Pituitary-Adrenal
Axis Feedback Loops

See Figure 1.

3. Adrenal Steroid Metabolic Pathways

See Figure 2.

4. HPA Axis Function in Patients with CFS

Basal hypocortisolism was first reported in CFS patients in
1981 [21]. Cortisol concentrations have since been measured
in blood, saliva, and urine in a number of studies with
rather varying results (reviewed in [8]), but the notion of a
hypocortisolaemic picture in CFS is supported by a meta-
analysis [22]. Reduced cortisol levels are more apparent in
female patients and also tend to occur during the later stages
of the illness [22]. These abnormal cortisol concentrations
may reflect differences in the biological mediation of the
stress response or may be consequent on the differential
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FIGURE 2: The metabolic pathway showing the steps involved in
the synthesis of cortisol from cholesterol. Cholesterol is converted
to pregnenolone by desmolase, which is then converted to proges-
terone by 3-B-hydroxysteroid. Progesterone is converted to 17-a-
hydroxyprogesterone (17-OH progesterone) by 17-hydroxylase. The
17-OH progesterone is then converted to 11-deoxycortisol by the
enzyme 21-hydroxylase. Finally, 11-deoxycortisol is converted into
cortisol by 11-hydroxylase. DHEA: dehydroepiandrosterone.

nature/magnitude of the stressor engendered by the experi-
mental procedure (e.g., the hospital visit or the venepuncture)
in patients with CFS compared to comparator subjects [8,
16, 23]. Further, basal studies have also shown an attenuated
diurnal variation [8, 24] particularly with a loss of the
morning peak of ACTH [8, 20, 21, 25, 26] or cortisol [8, 20,
27] while challenge studies often, but not invariably, show
a diminished HPA axis responsivity. This has been assessed
using the ACTH, cortisol, and/or 11-deoxycortisol response
to pharmacological challenge using, for example, dexametha-
sone combined with corticotropin-releasing hormone (CRH)
[28], insulin [29], inflammatory cytokines, and metyrapone
[30]; to psychological challenge (e.g., using the Trier Social
Stress Test [31]), and to physiological challenge (such as
wakening) [32-34].

The hypocortisolaemia, attenuated diurnal variation,
and reduced responsivity to challenge seen in these cross-
sectional studies may be mediated by upregulation of GR and
MR, reduced hormone synthesis, or increased metabolism
[8, 35]. The enhanced suppression of cortisol during the
dexamethasone [36, 37] and prednisolone suppression test
[38] supports the notion that increased functional activity
of GR and possibly MR may have pathophysiological signif-
icance in CFS. However, as dexamethasone is metabolised
via cortisol metabolic pathways, the enhanced cortisol sup-
pression during the DST may therefore be caused not by
GR upregulation but by reduced dexamethasone metabolism
(as a consequence of the enzyme inhibition secondary to
persistent hypocortisolaemia [39]).

The thesis that the hypocortisolaemia is caused by a shift
in the balance of the various metabolic pathways (Figure 2)
in steroid synthesis is tentatively supported but by no means
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proven by studies examining plasma concentrations of dehy-
droepiandrosterone (DHEA) and dehydroepiandrosterone
sulphate (DHEAS) and by those which calculate the corti-
sol : DHEA ratio. DHEA levels have been shown to be normal
[29], numerically [40] or significantly [41] increased; DHEAS
levels have been reported to be reduced [42, 43], sand the
cortisol : DHEA ratio has been shown to be normal [41, 44]
or, in the larger study, reduced [40] in patients with CFS.

5. Cause of the HPA Axis Dysregulation in CFS

It is valuable to explore the mechanisms which may explain
the HPA axis dysregulation seen in adults with CFS. Specific
genes (acting on the HPA axis or otherwise) which confer
an increased risk of CFS have not been identified. There is,
however, evidence of a heritable component to the disorder
[45]. In addition, the role of early adversity also warrants
consideration, particularly given the evidence of an increased
rate of childhood trauma in patients with CFS. Around 50%
of patients report at least one type of childhood trauma [46,
47]. It has been estimated that childhood trauma increases
the risk of CFS between 6- and 8-fold [33, 48] with a graded
relationship between the severity of the trauma and the risk
of developing CFS [33, 46, 48]. Furthermore, an increased
severity of symptoms has been noted in those who report
childhood trauma [48]. It is increasingly established in other
disease areas that childhood trauma acting via the HPA
axis impacts the risk of disorder in adulthood, but it must
also be remembered that early adversity is a broad concept
which encompasses much more than childhood physical,
emotional, and sexual abuse and neglect.

Animal models of early-life stress reveal HPA axis
changes which persist into, or became evident in, adulthood
[49]. There are a number of potential mechanisms. Variations
in maternal care in rodents [50, 51], early life neonatal stress
[52, 53], and childhood trauma in man [54-56] have been
shown to increase methylation in the CpG-rich regions of a
broad range of candidate gene promotors and transcriptional
and intragenic sequences [57, 58]. One of the better studied
has been the exon 1F promotor region of the GR gene
(NR3C1). Increased methylation reduces transcription of the
NR3Cl gene and so reduces hippocampal GR expression
and increases glucocorticoid secretion in rodents [50, 51]
and the cortisol stress response in man [52, 53]. Whilst this
picture is not typical of HPA axis function in CFS patients,
it nonetheless demonstrates the potential for neonatal and
early childhood environment to impact on HPA axis function
in adulthood. The methylation is measurable in blood lym-
phocytes and therefore provides a useful tool to examine the
relationship between attachment and subsequent HPA axis
function in patients with CES [55]. FK506 binding protein
5 (FKBP5) impedes GR activation [59, 60]. Polymorphisms
in the FKBP5 gene interact with early trauma to predict a
number of stress-related psychiatric disorders. An elegant
series of experiments by Elizabeth Binder’s group suggests
that this interaction is mediated by stress-induced methyla-
tion of FKBP5 during critical developmental windows [61].

Early life stress also influences brain development [33].
Teicher and colleagues [62] have recently demonstrated the

sensitivity of the hippocampus, particularly the subiculum,
to adversity. This is noteworthy because the subiculum has
an important role in regulating the HPA axis; hence, neu-
roarchitectural change secondary to early adversity would be
expected to alter the dynamics of the HPA axis in adulthood.
Stress in adolescence or adulthood, such as that conferred
by infection by microbes such as Epstein-Barr virus, Coxiella
burnetii, and enteroviruses, is common but on occasion leads
to CFS. It has been argued that this may be a result of
disease in the central nervous system [63], but it is also
worth considering whether preexisting HPA axis function
or the nature or magnitude of the HPA axis response to
this stressor plays a part in determining whether infection
will precipitate CFS. We should be mindful that the adaptive
response to the HPA axis changes of such genetic factors
or stressors may confer an allostatic load which predisposes
to CFS [64]. It has, for instance, been suggested that the
allostatic response to persistent cortisol elevation may be
a “switch” to hypocortisolaemia [35, 65-67] mediated by a
relative increased reliance on AVP rather than CRH to drive
[68], or on MR rather than GR to control, the axis [69, 70].
We are still a long way from understanding the evolutionary
advantage of the altered regulation of the HPA axis in patients
who have, and those who go on to develop, CFS; perhaps CFS
is the cost of the cortisol response to challenge (including
social challenge) which may be necessary to adapt to the
complex dynamics of human social competition [71].
Another potential cause of disruption to HPA axis func-
tion is oxidative stress and a decrease in antioxidant capacity
in addition to the presence of histone deacetylase (HDAC)
[72]. Increased activity of HDAC 2 and 3 coincides with a
decrease in plasma cortisol [14]. This theory has been cited as
another possible cause of hypocortisolism found in patients.

6. Impact of HPA Axis Dysregulation

Having argued that altered HPA axis function may have
an aetiopathological role in CFS, it remains necessary to
consider the link between cortisol and the typical symptoms
of CFS. This may be mediated by immune mechanisms as
a dysregulated HPA axis, particularly if characterised by
hypocortisolaemia, has the potential to reduce the capacity
with which HPA axis hormones can restrain the immune
system. As a result, relatively minor physical or psychological
stressors may be transduced into an inflammatory response
by triggering the release of inflammasomes and subsequently
proinflammatory cytokines [73, 74]. This process would be
expected to evoke a pathological illness with symptoms such
as those found in CFS patients [31, 75-77]. Further work
is needed to quantify the inflammatory response in CFS
patients. Cytokine-mediated inflammation may also explain
the prevalent pain and hypersensitivity that affects CFS
patients [78].

A vascular aetiology of CFS has also been proposed. This
is a current research interest of our group and is exemplified
by the relationship and overlap between CFS and postural
orthostatic tachycardia syndrome (POTS) [79, 80] which
typically presents with fatigue, dizziness, and an inability to



exercise. HPA axis dysregulation, particularly hypocortiso-
laemia, can cause hypotension and may possibly mediate the
fatigue experienced by CFS patients by inducing orthostatic
hypotension and hence reducing cerebral perfusion [81].

7. Relationship between HPA Axis
Dysfunction and Symptoms

The demonstrated association between the magnitude of
HPA axis dysfunction and symptom severity highlights the
relationship between the endocrinology and the disorder
[8, 82, 83]. This is further emphasised by the demonstration
that HPA axis dysregulation is a poor prognostic factor for
CFS patients undergoing psychological treatment [22, 84].
The HPA axis dysregulation may have a causal role in CFS;
it may be consequent on the disorder or it may be an
epiphenomenon. Experimentally induced, or pathological,
hypocortisolaemia (such as that seen in Addison’s disease) is
associated with symptoms typical of CFS, including fatigue,
weakness, and abdominal pain, but it is also associated with
a range of other features which are not typical of CFS [19,
85]. Further work to delineate the relationship between HPA
axis dysfunction and fatigue in Addison’s disease and other
hypocortisolaemic states would be of benefit [86, 87].
Inactivity, sleep disturbance, psychiatric comorbidity,
medication, and ongoing stress experienced by people with
CFS will affect HPA axis function, and the findings that HPA
axis dysregulation is more prominent in patients with a longer
duration of illness suggest that the endocrine changes may be
secondary [20, 88]. Interestingly, it has been proposed that
these secondary endocrine changes may act to perpetuate the
symptoms displayed by CES patients [78]. The interindividual
variation in HPA axis regulation in patients with CFS argues
for a heterogeneous and multifactorial bidirectional relation-
ship between the endocrine disturbance and the disorder [16].

8. Opportunities for Novel Therapeutic
Strategies in Treatment of HPA Axis
Dysfunction in CFS

Cognitive behavioural therapy (CBT) and graded exer-
cise plans have demonstrated efficacy but with significant
interindividual variation [4, 23, 78, 89]. These therapies
modify illness perception and allow patients to make adjust-
ment to optimise energy expenditure. CBT has been shown
to increase cortisol levels by reversing some of the effects
induced by low activity levels, depression and stress in
early life [8, 82, 90, 91]. In addition, many pharmaco-
logic treatments have been investigated for CFS including
psychostimulants, corticosteroids, anti-inflammatories, and
antidepressants [92-94]. There is currently no evidence to
suggest that any of these medications have an advantage to
patients though antidepressants are widely prescribed [95].
Low-dose hydrocortisone [96-98] and DHEA [42] have
both been used as treatment agents in pilot studies in CFS,
and have benefitted some patients. There is an argument for
further trials of steroid treatment in patients selected on the
basis of adrenal insufficiency, but the potential impact of

ISRN Neuroscience

long-term treatment including Cushing’s syndrome, osteo-
porosis, extreme mood changes, and seizures cautions against
this approach [99]. The HPA axis though remains a potential
target for novel treatment strategies in CFS and this has
been examined in studies utilizing animal models to examine
traditional medicines with a putative HPA axis effect; for
example, Shilajit, a traditional Indian medicine, reduced
immobility and increased climbing behavior whilst increas-
ing adrenal weight and corticosterone levels in the forced
swim test in rats [72] and Myelophil, based on compounds
used for fatigue in Chinese medicine, increased glucocorti-
coid receptor expression in the hypothalamus and hippocam-
pus, and altered expression of cytokines such as interleukin
(IL-10) and tumour necrosis factor-alpha (TNF-«) using the
chronic cold stress and restraint model in mice [100].

One of the most interesting proposals is the switch
to a new steady state from chronic hypocortisolaemia to
a healthy, reactive state using the model-based predictive
control (MPC) solution originally proposed by Gupta and
colleagues [35]. This requires a pharmacologically induced
short-term hypocortisolaemia in order to increase ACTH
release to a threshold level following which a new equilibrium
state is attained even in the absence of the pharmacological
agent [19].

9. Conclusion and Further Research

HPA axis dysregulation appears to be associated with CFS.
A credible body of evidence suggests a mechanism by which
genetic and environmental factors (and their interaction)
may serve to create an endocrine milieu which may impact
on immune and vascular processes and thus putatively
precipitate and maintain the symptoms experienced by those
with a diagnosis of CFS. Nonetheless the abnormalities are
subtle, and there is marked variation in basal and challenge
tests in CFS patients and a real risk that these so-called
abnormalities are simply confounds or epiphenomena.

The findings that successful psychological treatments
normalise the HPA axis dysregulation together with the
reports that HPA axis dysregulation is a poor prognostic
factor do give optimism that treatments targeting the HPA
axis may have efficacy alone or in the augmentation of more
established psychological, behavioural, or pharmacological
treatments.

The recent launch of the UK ME/CEFES Research Collabo-
rative [101] demonstrates the commitment of the government
and associated funding bodies to pursue research into the
understanding and treatment of this potentially debilitating
disorder. This next decade may see an enhanced understand-
ing of individual facets of CFS including its genetic and
epigenetic signature, immune and vascular processes, the
fine detail of HPA axis regulation, and the symptoms and
psychological underpinning of the disorder. These should be
examined using a network approach to map the intricate
relationships and should allow consideration of whether
CFS, as it is currently defined, is a unitary construct or if
it represents multiple illnesses with different causes, albeit
with similar symptom patterns. In addition, prospective
studies may demonstrate vulnerability and trait factors and
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help to explain why some patients develop these symptoms.
Hopefully, we can dispel any lingering Cartesian dualism
and translate the psychological and biological understanding
into holistic therapeutic programmes and novel treatment
strategies. Progress is continuously being made; however, for
patients who have had their lives destroyed, the development
of a cure cannot come fast enough.
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