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Abstract

Differentiating radiation necrosis (a radiation induced treatment effect) from recurrent brain

tumors (rBT) is currently one of the most clinically challenging problems in care and management

of brain tumor (BT) patients. Both radiation necrosis (RN), and rBT exhibit similar morphological

appearance on standard MRI making non-invasive diagnosis extremely challenging for clinicians,

with surgical intervention being the only course for obtaining definitive “ground truth”. Recent

studies have reported that the underlying biological pathways defining RN and rBT are

fundamentally different. This strongly suggests that there might be phenotypic differences and

hence cues on multi-parametric MRI, that can distinguish between the two pathologies. One

challenge is that these differences, if they exist, might be too subtle to distinguish by the human

observer. In this work, we explore the utility of computer extracted texture descriptors on multi-

parametric MRI (MP-MRI) to provide alternate representations of MRI that may be capable of

accentuating subtle micro-architectural differences between RN and rBT for primary and

metastatic (MET) BT patients. We further explore the utility of texture descriptors in identifying

the MRI protocol (from amongst T1-w, T2-w and FLAIR) that best distinguishes RN and rBT

across two independent cohorts of primary and MET patients. A set of 119 texture descriptors (co-

occurrence matrix homogeneity, neighboring gray-level dependence matrix, multi-scale Gaussian

derivatives, Law features, and histogram of gradient orientations (HoG)) for modeling different

macro and micro-scale morphologic changes within the treated lesion area for each MRI protocol

were extracted. Principal component analysis based variable importance projection (PCA-VIP), a

feature selection method previously developed in our group, was employed to identify the

importance of every texture descriptor in distinguishing RN and rBT on MP-MRI. PCA-VIP

employs regression analysis to provide an importance score to each feature based on their ability

to distinguish the two classes (RN/rBT). The top performing features identified via PCA-VIP were

employed within a random-forest classifier to differentiate RN from rBT across two cohorts of 20

primary and 22 MET patients. Our results revealed that, (a) HoG features at different orientations

were the most important image features for both cohorts, suggesting inherent orientation

differences between RN, and rBT, (b) inverse difference moment (capturing local intensity

homogeneity), and Laws features (capturing local edges and gradients) were identified as
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important for both cohorts, and (c) Gd-C T1-w MRI was identified, across the two cohorts, as the

best MRI protocol in distinguishing RN/rBT.
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1. INTRODUCTION

One of the most significant unsolved problems in treatment and management of brain

tumors is differentiating radiation necrosis (RN),1 a radiation induced effect, from brain

tumor recurrence (rBT)2 following radiation therapy. The current standard treatment

regimen for patients with brain tumors (BT) comprises of surgical resection followed by

adjunctive radiation and chemotherapy. Such aggressive treatment, although has shown to

significantly improve median survival in BT patients, has also resulted in up to a threefold

increase in radiation induced effects such as RN1 for both primary as well as metastatic

(MET) brain tumor patients. RN, an irreversible radiation effect, that manifests after 6-9

months post-chemo-radiation treatment is characterized by life-threatening complications

such as edema, severe neuropsychological symptoms, and usually mimics signs of rBT on

MRI. Consequently, as many as 20 to 40% of all patients are subjected to multiple

radiological studies, brain lesion biopsies, and even resections for what is ultimately deemed

RN. Unfortunately, both these manifestations (RN and rBT) have significantly different

treatment regimens and could be potentially fatal if not identified in time. The ability to

reliably distinguish RN from rBT early could have immediate clinical implications in

determining prognosis, guiding subsequent therapy, and improving patient outcome.1 There

is hence a significant need to identify non-invasive imaging based markers that can reliably

distinguish patients with rBT from RN to identify appropriate treatment regimens and thus

avoid unnecessary and potentially harmful surgical interventions.

Due to its high resolution and clear definition of tumor margins, structural MRI is routinely

used in the clinical setting to follow and monitor patients with brain tumors; however, it

suffers from limitations in differentiating RN from rBT.3 Figures 1 (a) and (b) show a T1-w

MRI image for rBT and RN respectively and the corresponding intensity histogram plots for

RN (blue) and rBT (red) in 1 (c). Figures 1 (d) and (e) similarly show the two pathologies

for T2-w and the corresponding intensity histogram plots in 1 (f). The similarity and overlap

of intensities across RN and rBT for both T1-w as well as T2-w MRI is apparent,

demonstrating the poor separability of RN and rBT using original MR intensities. Recently,

a few studies have identified visual (qualitative) descriptors as “swiss cheese”, “soap bubble

enhancement”, and “moving wave-front effect” based on their appearance on MRI as

corresponding to RN.4 However these investigations have used image characteristics that are

subjectively assessed and qualitatively defined and, therefore, potentially have inter-

observer variability. Moreover, qualitatively defined features may not be able to capture the

subtle localized differences across different pathologies with similar overall appearance.5
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Interestingly, recent studies have reported that the physiological pathways leading to the

development of RT and rBT are fundamentally different.1,6 This strongly suggests that there

might be phenotypic differences and hence cues on multi-parametric MRI, that can

distinguish between the two pathologies.7 Over the last two decades, texture descriptors

have shown substantial utility in quantifying morphological information for computer aided

analysis for a myriad of diseases and tumor types.8–10 However, to our knowledge, the

utility of texture descriptors, in the context of differentiating RN and rBT, has not yet been

explored in detail. In this work, we explore the applicability of texture descriptors for

evaluating subtle morphological differences across RN, rBT towards addressing the

following questions:

1. Are there specific texture descriptors that can distinguish RN from rBT for primary

brain tumor patients?

2. Are there specific texture descriptors that could differentiate RN and rBT for MET

brain tumor patients? Is there a commonality between the texture features identified

as important for primary and MET patients?

3. Could we quantify relative importance of standard-of-care MRI protocols (Gd-C

T1-w, T2, FLAIR) in distinguishing RN and rBT for primary and MET patients?

The remainder of the paper is organized as follows. Section 2 discusses the previous work

and novel contributions. In Section 3, we provide methodological details of this work.

Experimental results are presented in Section 4. We provide concluding remarks in Section

5.

2. PREVIOUS WORK AND NOVEL CONTRIBUTIONS

The existing research on identifying differences between RN and rBT on MRI has primarily

focused on reporting qualitative clues regarding the location, shape, and surrounding

pathologies of the two types. The qualitative features that have been reported in the literature

as distinctive of RN and rBT include, (1) origin near the primary tumor site, (2) contrast-

agent enhancement, (3) vasogenic edema, (4) growth over time, and (5) mass effect.1,11

Features such as conversion from a non-enhancing to an enhancing lesion after radiation

therapy, lesions appearing distant from the primary resection site, corpuscallosum or peri-

ventricular white matter involvement, “Swiss cheese” and “soap bubble” shape patterns

have been suggested to characterize RN.1 However, some studies have reported

contradictory results regarding the validity of these qualitative findings in distinguishing RN

and rBT on MRI.5

Apart from the visual descriptors, a few small cohort studies have displayed promise in

utilizing semi-quantitative measures obtained via magnetic resonance spectroscopy (MRS),

perfusion-and diffusion-weighted MR imaging, and Positron emission tomography (PET) to

successfully distinguish the two morphologies. For e.g., Taylor et al.12 found that MRS

reliably identified 5 of 7 patients with rBT and 4 of 5 patients with RN. Others however

have found that MRS reliably distinguished pure rBT from pure RN but not where mixed

specimens were involved.13 Tsuyuguchi et al.14 found that methionine PET had a sensitivity

of 78% and a specificity of 100% for detecting rBT. However, Belohlvek et al.15 with a
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different agent, fluorodeoxyglucose, found PET to be insensitive but specific in

distinguishing RN and rBT. Unfortuantely, none of these investigations have yet been

identified to be clearly superior to the other modalities in terms of diagnostic sensitivity or

specificity.16 Additionally, to our knowledge, none of these existing methods have explored

the utility of computerized quantitative descriptors to obtain alternate representations of the

lesions for differentiating RN and rBT on MRI.

Figure 2 illustrates an overview of our framework. In Step 1, different MRI protocols are

aligned in the same frame of reference, Gd-T1-w MRI in our case. In Step 2, skull stripping

is first performed to remove background intensities that might affect feature extraction and

classification across MRI protocols. Intensities across different MRI protocols are then

aligned via intensity standardization to enable quantitative evaluation of MR parameters

across patient studies, while ensuring tissue specific meaning to the parameters being

compared. After intensity standardization, manual segmentation by a hand held annotation

tool is performed by an expert radiologist to localize the lesion area. In Step 3, texture

descriptors capturing information regarding orientations, heterogeneity, edge, spots, ripples,

wave effects for RN and rBT (Table 1) on a per-pixel are extracted for every MRI protocol.

Principal component analysis based variable importance projection (PCA-VIP),17 a feature

ranking method previously developed in our group, is then employed to rank different

texture descriptors in the order of their performance in distinguishing RN and rBT. A

random forest (RF) classifier is employed as a final step to train a classifier using the best

performing PCA-VIP texture descriptors to evaluate their performance in distinguishing RN

and rBT.

3. METHODOLOGY

3.1 Notation

We denote  as a 3D grid for Gd-contrast (Gd-C) T1-w MRI protocol. The remaining

MRI protocols are registered to  to obtain, , where fβ(c) is the associated

intensity at every voxel location c on a 3D grid Cβ, β ∈ {T2, FLAIR}. Texture feature

descriptors are denoted as , where ϕ denotes the feature operator, and β denotes the

MRI protocol, β ∈ {T1, T2, FLAIR}. The PCA-VIP score corresponding to every feature

 is denotes as πϕ,β, while the combined PCA-VIP score for every MRI protocol is

denoted as πβ.

3.2 Co-registration of different MP-MRI protocols

A 3D affine transformation with 12 degrees of freedom, encoding rotation, translation,

shear, and scale, was employed via the 3D Slicer software 4.1. (http://www.slicer.org/) to

accurately align every MRI protocol with reference to Gd-C T1-w MRI,  which yielded a

registered 3D volume, , for every β, β ∈ {T2, FLAIR}. During registration, the 3D volume

is appropriately resampled and interpolated, in order to account for varying voxel sizes and

resolutions between different MRI protocols. Note that all the different MP-MRI

acquisitions are aligned to  frame of reference to enable per-voxel quantitative

comparisons across different protocols (Figure 2(a)).
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3.3 Pre-processing of MRI protocols

Pre-processing involves skull stripping, bias field correction, and intensity standardization of

MRI images across different studies. Skull stripping is performed via an open-source

automated BrainSuite tool (http://brainsuite.org/). We then correct the MRI protocols for

known acquisition based intensity artifacts; bias field inhomogeneity and intensity

nonstandardness.

3.3.1 Bias field inhomogeneity correction—The bias-field artifact manifests as a

smooth variation of signal intensity across the structural MRI, and has been shown to

significantly affect computerized image analysis algorithms such as the automated

classification of tissue regions.18 Bias field artifacts were corrected for by means of the

popular N3 algorithm,18 which incrementally de-convolves smooth bias field estimates from

acquired image data, resulting in a bias-field corrected image.

3.3.2 Intensity standardization—A second artifact termed intensity nonstandardness

refers to the issue of MR image “intensity drift” across different imaging acquisitions; both

between different patients as well as for the same patient at different imaging instances.

Intensity nonstandardness results in MR image intensities lacking tissue-specific numeric

meaning within the same MRI protocol, for the same body region, or for images of the same

patient obtained on the same scanner.19 Correcting for this artifact hence enables

quantitative evaluation of MR parameters across patient studies, while ensuring tissue

specific meaning to the parameters being compared. Every MRI protocol,

 is quantitated by correcting for intensity drift between different

patient studies.19 The ROI was then manually segmented on  by an expert radiologist via

a hand-annotation tool in 3D Slicer.

3.4 Texture feature extraction of MP-MRI

A total of 119 texture features were extracted from each of , β ∈ {T1, T2, FLAIR} on a

per-voxel basis. These features are obtained by (1) calculating responses to various filter

operators, and (2) computing gray level intensity co-occurrence statistics, as follows,

a. Haralick texture features: Haralick texture features10 are based on quantifying the

spatial gray-level co-occurrence within local neighborhoods around each pixel in

an image, stored in the form of matrices. A total of 13 Haralick texture descriptors

were calculated from each of , β ∈ {T1, T2, FLAIR} based on statistics derived

from the corresponding co-occurrence matrices.

b. Laws texture features: Laws features use 5 × 5 separable masks20 that are

symmetric or anti-symmetric to extract level (L), edge (E), spot (S), wave (W), and

ripple (R) patterns to detect various types of textures on an image. The convolution

of these masks with every , β ∈ {T1, T2, FLAIR} resulted in a total of 25 distinct

laws features for every MRI protocol.

c. Laplacian pyramids: Laplacian pyramids allows to capture multi-scale

representations via a set of band pass filters.21,22 First, the original image is

convolved with a Gaussian kernel. The Laplacian is then computed as the
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difference between the original image and the low pass filtered image. The

resulting image is then sub-sampled by a factor of two, and the filter sub-sample

operation is repeated recursively. This process is continued to obtain a set of band-

pass filtered images (since each is the difference between two levels of the

Gaussian pyramid). A total of 24 filtered image representations were obtained from

each of , β ∈ {T1, T2, FLAIR}.

d. Histogram of gradient (HoG) orientations: For every c ∈ C, gradients along the X

and Y directions are computed as,23

(1)

Here,  and  are the gradient magnitudes along the X and the Y axes

respectively denoted by f(c)X and f(c)Y . Once the gradient magnitudes along the

two coordinate axes are calculated, the gradient orientation θ of every c ∈ C is

calculated as

(2)

After obtaining the gradient orientations of all the points of interest, they are binned

into histograms that span 0 to 360°. The entire histogram is divided into twenty

bins, each encompassing 18°. The feature vector consists of the binned histogram

values in the form of 20×1 vectors.

Feature extraction results in feature scenes , where fϕ,β (c) is the feature

value at location c ∈ C when feature operator ϕ is applied to scene , β ∈ {T1, T2,

FLAIR}, resulting in a total of 120 texture feature scenes (including original intensity)

corresponding to each of , β ∈ {T1, T2, FLAIR}.

3.5 Feature ranking via PCA-VIP

Once feature scenes  are identified for every β, PCA-VIP scheme is used to rank each

of the feature sets based on their ability to distinguish RN and rBT. PCA-VIP quantifies the

contributions of individual features to regression or classification on an embedding obtained

via principal components analysis. PCA-VIP score for every feature scene, ϕϕ,β, is

computed as follows:

(3)

where m is the number of features in the original, high-dimensional feature space; h is the

number of retained features in the low-dimensional embedding space; the ti are the principal
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components; the pi are the loadings, estimated by  (denotes pseudo-inverse);

and the bi are the coefficients that solve the regression equation y = Tb˕, where y is a vector

of class labels. The degree to which a feature contributes to classificationin the PCA

transformed space is directly proportional to the square of its PCA-VIP score. Thus, features

with PCA-VIP scores near 0 have little predictive power, and the features with the highest

PCA-VIP scores contribute the most to class discrimination in the embedding space.

The importance of a feature subset  is quantified by summing the squared PCA-VIP

scores associated with each of the features in , as follows:

(4)

We obtain a combined πβ for every β by summing PCA-VIP values over ϕ for every , β

∈ {T1, T2, FLAIR}, to obtain the relative importance of every MRI protocol in

distinguishing RN and rBT.

4. EXPERIMENTAL RESULTS

4.1 Dataset Description

A total of 20 primary (10 RN, and 10 rBT) and 22 MET (10 RN and 12 rBT) patient studies

were retrospectively acquired between 9 months to 2 years post-chemo-radiation with 3

Tesla MP-MRI. Gd-C T1-w, T2-w, and FLAIR protocols were acquired as a part of the

routine standard of care imaging at different time-points. Both cohorts of patients (primary

and MET) were histologically confirmed on biopsy samples either with RN (>80% RN) and

rBT (>80% tumor) by an expert pathologist. The MP-MRI acquisitions for the time-point

immediately before the biopsy was identified and used in this work for identification of RN

and rBT for the two cohorts.

4.2 Experiment 1: Ranking performance of texture descriptors in distinguishing RN, rBT
for primary BT patients

Figure 3 shows the top 2 best (Figures 3 (b), (c) for rBT and (g),(h) for RN) and worst

(Figures 3 (d), (e) for rBT, and (i), (j) for RN) performing texture descriptors, outlined in

green and orange respectively, on Gd-C T1-w MRI for primary BT patients. The top three

texture descriptors for each of the MRI protocols (Gd-C T1-w, T2-w, and FLAIR) with

corresponding PCA-VIP scores are listed in Table 2. It is interesting to note that HoG

features capturing the dominant orientations in X and Y directions (at orientation range 72° –

107° for Gd-C T1-w, and 180° – 215° for T2-w MRI) were identified as the best performing

texture descriptors for primary BT patients. This suggests that there are some fundamental

orientation differences between RN and rBT that may not be appreciable by visual

inspection of original MR intensities. Inverse difference moment which captures

heterogeneity in the lesion, in laplacian space, was also consistently picked up as an

important feature for all three MRI protocols. This feature in laplacian space is potentially

emphasizing the edges thereby making heterogeneity between RN and rBT more prominent

in the alternate representation space (Figures 3(c), and (h) respectively). The worst
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performing features were identified as Laws features (S5L5 (spots and level filter), and

L5E5 (level and edge filter)) for Gd-C T1-w MRI suggesting the poor discriminability based

on spot, waves, and ripple characteristics, that have previously been identified as qualitative

descriptors (“soap bubble”, “swiss cheese” effect) to distinguish the two pathologies.

4.3 Experiment 2: Ranking performance of texture descriptors in distinguishing RN and
rBT patients for metastasis BT patients

Figure 4 shows the top 2 best (Figures 4 (b), (c) for rBT and (g),(h) for RN) and worst

(Figures 4 (d), (e) for rBT, and (i), (j) for RN) performing texture descriptors, outlined in

green and orange respectively, on Gd-C T1-w MRI for MET BT patients. The top three

texture descriptors for each of the MRI protocols (Gd-C T1-w, T2-w, and FLAIR) for MET

patients with corresponding PCA-VIP are listed in Table 3. Similar to primary BT cases,

HoG features were identified as the most discriminatory feature for each of the three

protocols in distinguishing RN and rBT for MET patients. This reaffirms our hypothesis that

there exists different orientation directions between RN and rBT for both primary as well as

MET patients. Similarly, Laws features quantifying wave and level filter, and wave and

ripple filter, were identified as the worst performing features for MET patients. Interestingly,

however, Laws features quantifying edge and level filter, were identified as important in

distinguishing RN and rBT for Gd-C T1-w as well as FLAIR MRI for MET patients,

suggesting that edge and gradient characteristics are important in distinguishing the two

pathologies.

4.4 Experiment 3: Identifying the MRI protocol that best separates RN from rBT

Table 4 demonstrates the combined PCA-VIP scores, πβ (obtained using equation 4), along

with the mean area under curve (AUC) values, ββ, obtained for every β, β ∈ {T1, T2,

FLAIR} for the two cohorts, primary and MET. The top 10 texture descriptors identified

based on their PCA-VIP scores for the two cohorts were identified. A random forest

classifier was then trained using these top features via a three-fold cross validation strategy,

for each of the 3 protocols for each of the two cohorts independently. The ββ values were

reported as the mean AUC over 25 iterations of 3-fold cross validation. The quantitative

results based on πβ and ββ identified Gd-C T1-w MRI as the best performing feature set in

distinguishing RN and rBT for both primary and MET cohorts. These findings resonate with

the clinical findings as Gd-C T1-w MRI is the current standard-of-care MRI protocol that is

routinely employed by clinicians to make a distinction for RN and rBT. T2-w MRI for

primary and FLAIR for MET patients was identified as the second best protocol after Gd-C

T1-w MRI.

5. CONCLUDING REMARKS

Accurately distinguishing radiation necrosis, a radiation induced effect, from recurrent brain

tumor is a challenging clinical problem due to the apparent similarities in symptoms and

appearance of the two pathologies on traditional MRI. In this work, we investigated the

utility of computer extracted texture descriptors on multi-parametric MRI to reliably

distinguishing RN and rBT for two independent cohorts of primary and metastatic brain

tumor patients. The first objective was to employ texture descriptors for distinguishing RN
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from rBT for primary brain tumor patients. The texture descriptors were utilized, in the

second objective, to distinguish RN and rBT for metastatic patients. The third objective was

to quantify the relative importance of standard-of-care MRI protocols (Gd-C T1-w, T2-w,

FLAIR) in distinguishing RN and rBT for both primary and metastatic patients.

Computerized texture descriptors provided quantitative assessment to distinguish RN from

rBT that appeared accurate in capturing subtle architectural details that may not be

appreciable on original MR intensities. Our preliminary results based on the two cohorts of

primary and metastatic brain tumor patients indicate that,

• HoG features at different orientations were identified as the most important features

for both primary and metastatic cohorts. This suggests some inherent direction

orientation differences between RN, rBT.

• Inverse difference moment (capturing local intensity homogeneity), and Laws

features (capturing local edges and gradients) were identified as important in

distinguishing RN and rBT for primary brain tumor patients. Laws features (local

edges and gradients) was identified as important features in distinguishing RN and

rBT for MET patients.

• Gd-C T1-w MRI was identified as the best feature based on PCA-VIP scores and

AUC values, followed by T2-w and FLAIR for primary BT cases. Gd-C T1-w was

similarly identified as important in distinguishing RN and rBT for metastatic cases,

followed by FLAIR and T2-w MRI. These findings are consistent with clinical

findings as Gd-C T1-w MRI is the modality of choice for visually distinguishing

RN and rBT.

Previous work has reported sensitivity and specificity values in the range of 70-95% using

advanced imaging modalities such as MRS, PET, and perfusion-MRI.12,14,15 However,

these advanced modalities may not be reproducible24 or widely available across diagnostic

centers in the US. Additionally, the reported findings have largely been qualitatively

investigated over a small cohort of studies.

The presented work is the first approach at employing computerized texture descriptors to

investigate histologically-proven RN and rBT over two independent cohorts of 20 primary

and 22 MET patients. Although the results are promising, a limitation of our study was the

ground truth. In the absence of pure RN and rBT cases, the studies with > 80% of RN or rBT

presence identified by a neuropathologist were considered as ground truth. Future work will

include obtaining pure RN and rBT studies to understand the fundamental biological

significance of the texture descriptors (specially orientation differences) that have shown

promise in distinguishing the two pathologies, and their role in predicting patient outcome.

We will also investigate the differences in texture descriptors across primary and metastatic

brain tumors to understand the manifestation of RN over the two cohorts.
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Figure 1.
(a) and (b) show representative T1-w MRI images while (d) and (e) show representative T2

images for RN and rBT respectively. Histograms of T1-w (c) and T2-w MRI (f) intensities

within the lesion area for RN (blue) and rBT (red). Note the similarity of RN and rBT on (a)

and (b), (d) and (e) and the overlap in histograms for T1-w and T2-w MRI.
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Figure 2.
Overview of the methodology and overall workflow. In Step 1, registration of different MRI

protocols (T2-w, FLAIR) is performed to bring them the same frame of reference (T1-w

MRI). In Step 2, pre-processing via intensity standardization and segmentation of lesion area

is performed, while in Step 3, different 2D texture features are extracted on a per-pixel basis.

PCA-VIP is performed in Step 4 on the texture descriptors to rank the features based on

their ability to distinguish RN and rBT, and finally in Step 5, a random forest classifier is

trained on the best performing features (identified via PCA-VIP) to distinguish RN and rBT

for two independent cohorts of primary and MET patients.
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Figure 3.
Representative T1-w MR images for rBT (a) and RN (f). Figures 3 (b), (c) and (g), (h)

outlined in green, represent top performing features (HoG (red, magenta arrows show top 2

prominent directions), and Laplacian inverse moment (red shows more heterogeneity)) for

rBT, RN respectively. Figures 3 (d), (e) and (i), (j), outlined in orange, represent the worst

performing features (S5L5 and L5E5 (laplacian) Laws features) for rBT and RN

respectively for primary BT patients.

Pallavi et al. Page 14

Proc SPIE. Author manuscript; available in PMC 2014 June 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Representative T1-w MR images for rBT (a) and RN (f). Figures 4 (b) , (c) and (g), (h),

outlined in green, represent the top performing features (HoG (red, magenta arrows show

top 2 prominent directions), and Laws E5L5 (edge and level filter) ) for rBT and RN

respectively. Figures 4 (d), (e) and (i), (j), outlined in orange, represent the worst performing

(W5L5 (wave and level filter in laplacian pyramid space) and W5R5 (wave and ripple

filter)) features for rBT and RN respectively for MET patients.
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Table 1

Biological relevance and significance of the texture features explored in this work in distinguishing RN/rBT

on multi-parametric MRI.

Feature set Significance Biological relevance in distinguishing RN/rBT

Laws Energy (25) Filter masks extract level, edges,
waves, ripples, spot patterns

Appearance of ROI (wavefront,
soap bubble)

Haralick Texture (13) Statistics of gray-level co-
occurrence matrices such as
angular second moment, con
trast and difference entropy

Structural Heterogeneity

Laplacian pyramids (24) Multi-resolution filters capture
edges at different levels

Prominent edges between RN,
rBT appearance

Gradient orientations (57) Intensity orientation captures
prominent direction of intensity
change

Cellular activity, local entropy
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Table 2

Top 3 texture descriptors and their PCA-VIP scores listed for T2-FLAIR, T2-w, and T1-w MRI protocols for

primary BT patients. HoG and inverse difference moment were consistently identified as the best performing

features in distinguishing RN and rBT for primary BT patients for the three protocols.

MRI protocol Texture descriptor π ϕ,β

Gd-C T1-w MRI

HoG (72° – 107°) 2.15

Laplacian (Inverse difference moment) 2.026

Laws (E5L5) 1.621

T2-w MRI

Inverse difference moment 2.21

HoG (180° – 215°) 1.58

Laplacian (Inverse difference moment) 1.42

FLAIR MRI

Laplacian (Inverse difference moment) 2.47

Correlation 1.84

Inverse difference moment 1.83
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Table 3

Top 3 texture descriptors and their PCA-scores listed for T1-w, T2-w, and FLAIR MRI protocols for MET

patients. HoG features were consistently identified as best performing features across all 3 MRI protocols for

distinguishing RN and rBT for MET patients.

MRI protocol Texture descriptor π ϕ,β

Gd-C T1-w MRI

HoG (0-35) 1.98

Laws (E5L5) 1.78

Gabor (Θ = 135, ʌ = 32) 1.51

T2-w MRI

HoG (108-143) 1.71

Sum Entropy 1.49

Sum Variance 1.39

FLAIR MRI

HoG (72-107) 1.91

Laws (E5L5) 1.88

Laws (L5E5) 1.63
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Table 4

PCA-VIP scores (πβ) and mean AUC values (μβ) for each of the three MRI protocols for both primary and

MET patients. Gd-C T1-w MRI was identified as the best performing MRI protocol both in terms of πβ and μβ,

from amongst T2-w MRI and FLAIR protocols.

Cohort Protocol π β μ β

Primary

Gd-C T1-w MRI 2.89 0:74 ± 0:06

T2-w MRI 2.55 0:62 ± 0:2

FLAIR 2.46 0:50 ± 0:2

MET

Gd-C T1-w MRI 2.73 0:71 ± 0:2

T2-w MRI 2.70 0:48 ± 0:20

FLAIR 2.69 0:55 ± 0:24
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