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SUMMARY

No single analgesic drug provides the perfect therapeutic/adverse effect profile for every pain

condition. In addition to convenience and possibly improved compliance, a combination of

analgesic drugs offers the potential, requiring verification, of providing greater pain relief and/or

reduced adverse effects than the constituent drugs when used individually. We review here

analgesic combinations containing oxycodone. We found surprisingly little preclinical information

about the analgesic or adverse effect profiles of the combinations (with acetaminophen,

paracetamol, nonsteroidal anti-inflammatory drugs, morphine, gabapentin or pregabalin). Clinical

experience and studies suggest that the combinations are safe and effective and may offer certain

advantages. As with all combinations, the profile of adverse effects must also be determined in

order to provide the clinician with the overall benefit/risk assessment.

INTRODUCTION

The challenge in treating patients with acute or chronic pain has always been to find safe,

effective and adequate analgesia. While numerous pharmacological advances have made

more and better drugs available to manage pain, it often goes unrelieved (1–3). Inadequate

analgesia can occur for many well-documented reasons: failure to prescribe according to

guidelines (4, 5), poor understanding of analgesia on the part of prescribers (6), challenging

patient populations such as the elderly (7), lack of availability of proper medications (8),
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excessive legal restrictions on opioids (9), patient misconceptions about drugs or resistance

to them (10, 11), and changes in the patient’s condition or comorbidities requiring drug

adjustments that may not be followed. Less frequently discussed is the fact that single

agents, even when appropriately prescribed in an adherent patient, are not always sufficient

to control pain or do so only at doses that produce excess adverse effects. To address the

shortcomings of single-agent use, combination analgesics have long been prescribed for

moderate to severe acute and chronic pain, and new drug formulations now offer the

practicality of dual analgesic agents in a single tablet that may help address this unmet need.

Although oxycodone has been available as an analgesic agent for nearly a century, it is

marketed in the United States, Canada and Australia primarily as part of a combination, such

as oxycodone and aspirin or oxycodone and acetaminophen (U.S. name) or paracetamol

(international name) (12). Oxycodone has been shown to be a safe and effective pain

reliever with side effects comparable to those of other opioids. In 1995, the Food and Drug

Administration (FDA) approved a sustainedrelease formulation of oxycodone (OxyContin®,

Purdue Pharma); although the sustained-release formulation was designed to deter drug

misuse, drug abusers could circumvent the design (13, 14). Oxycodone combination drugs

can also be misused (15), and care should be taken on the part of healthcare providers to

confirm and monitor appropriate use. Some oxycodone combination formulations are

familiar to clinicians, and new combination products are being marketed. Herein, we review

four oxycodone combinations for the treatment of chronic pain: oxycodone in combination

with morphine, aspirin–nonsteroidal anti-inflammatory drugs (NSAIDs)–acetaminophen,

pregabalin and gabapentin.

OXYCODONE AND MORPHINE (DUAL OPIOIDs)

Mechanisms of action

Receptors for the endogenous opioid peptides (namely, the endorphins, enkephalins,

dynorphins and endomorphins) are located at multiple levels of nociceptive pathways

(mainly in the spinal cord and brain, but also the periphery, particularly during injury) (16).

Genes encoding three types of opioid receptors (named μ, δ, and κ) have been identified (17)

and there is pharmacological evidence for subtypes of each type (μ1, μ2, δ1, δ2, and κ1

through κ3) (18), possibly arising from alternate splice variants of a common gene. All of

the currently identified opioid receptors are members of the 7-transmembrane G protein-

coupled receptor family (19).

Morphine (5α,6α-7,8-didehydro-4,5-epoxy-17-methylmorphinan-3,6-diol) is an agonist

(determined by an increase in [35S]-GTPγS binding) at all three opioid receptors, having the

highest affinity for the μ subtype (20). Agonist-induced activation of μ opioid receptors

produces two well-established actions on neurons that express these receptors (21). On

postsynaptic neurons, they enhance K+ efflux at inwardly rectifying K+ channels, and

thereby hyperpolarize the postsynaptic neuron, rendering it less responsive to stimulation by

presynaptic neurotransmitter release; on presynaptic neurons, they attenuate Ca2+ influx (at

ligand-gated Ca2+ ion channels), and thereby reduce Ca2+-dependent neurotransmitter

release from vesicular stores (22). Opioid-induced depression of neurotransmitter release

appears to be quite general, since it has been demonstrated for neurotransmitters of diverse

Raffa et al. Page 2

Drugs Today (Barc). Author manuscript; available in PMC 2014 June 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



chemical classes, such as the excitatory amino acid glutamate, the catecholamine

norepinephrine, the ester acetylcholine, the indoleamine 5-HT (5-hydroxytryptamine, also

known as serotonin) and the undecapeptide substance P (23). Morphine is metabolized via

UDP-glucuronosyltransferase-catalyzed conjugations to two active glucuronides: at the 6-

hydroxyl position to morphine-6-glucuronide (M6G) and at the 3-hydroxyl position to

morphine-3-glucuronide (M3G) (24). M6G is more potent (about 4–6-fold) as an analgesic

than morphine, but whether M6G levels in the brain accumulate to levels that make a major

contribution to morphine’s overall analgesic effect is not definitively known.

Oxycodone (5R,9R,13S,14S-4,5α-epoxy-14-hydroxy-3-methoxy-17-methylmorphinan-6-

one) is an opioid receptor agonist (determined by an increase in [35S]-GTPγS binding) (25).

A synergistic analgesic interaction with morphine would not be expected (untenable

mechanistically), if it only interacts with the same opioid receptors or other analgesic

pathways as does morphine. However, both in vitro and in vivo data suggest differences

between the drugs (summarized in ref. 26). Oxycodone has relatively weak affinity for μ

opioid receptors (Ki 300–400 nM), little or no affinity for δ opioid receptors, and affinity for

only a subtype of κ opioid receptors (27–29), although the details of the receptor binding

profile have not been unambiguously determined. Consistent with the binding data,

intracerebroventricular (i.c.v.) oxycodone but not i.c.v. morphine, blocks antinociception by

pretreatment with the κ-selective antagonist norbinaltorphimine (nor-BNI), whereas i.c.v.

morphine blocks antinociception by pretreatment with the μ-selective antagonist

naloxonazine (28). It appears that oxycodone does not affect the inwardly rectifying K+

channel in the same way as morphine (27). In animal models, the efficacy profile of

oxycodone does not overlap that of morphine (30). A major metabolite of oxycodone is

noroxycodone and a minor metabolite is oxymorphone, which is a powerful analgesic.

Noroxycodone produces potent opioid receptor-mediated antinociception when it is

administered spinally (31), but not systemically (due to poor penetration of the blood–brain

barrier). An important role for a metabolite has been suggested (32, 33), but again the results

are not definitive. In clinical practice, the observation of effective rotation from morphine to

oxycodone suggests pharmacodynamic or pharmacokinetic differences.

Opioid efficacy is often discussed in terms of equianalgesia, a theory according to which a

specific dose of one opioid at steady state will provide equivalent pain relief of a specific

dose of another opioid at steady state. Parenteral morphine 10 mg was used in the initial

equianalgesia studies and has since been taken as the “gold standard” in equianalgesia

conversion (34). Oral oxycodone appears to be 1.5–2.0 times more potent than oral

morphine (35–38). Much information in equianalgesic tables is derived from single-dose

studies and expert opinion, and cannot accommodate variations in patients such as pain

diagnosis, opioid experience and renal sufficiency, all of which can affect the efficacy (39).

Some equianalgesic data are achieved by computational predictions rather than derived in

the clinical context. For this reason, the literature often reports a range of equianalgesic

dosing, that is often not clinically helpful.

Further confounding the issue of oxycodone and morphine efficacy is the fact that the oral

bioavailability of morphine (15–64%) and oxycodone is variable (> 50%) (40). These

differences alone could account for as much as a doubling of potency. Thus, it has been
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suggested that oral morphine should be considered to be about equipotent or half as potent

as oral oxycodone. In a preclinical comparative study of six opioid analgesic agents,

fentanyl was most potent, followed by burprenorphine, oxycodone, morphine, hydrocodone

and codeine (41). In humans, intramuscular (i.m.) morphine is considered to be slightly

more potent than i.m. oxycodone, whereas oral oxycodone is considered to be more potent

than oral morphine (42). Oxycodone metabolizes in a more predictable way than morphine,

and thus its dose titration is easier than with morphine. Collectively, it appears that

oxycodone and morphine produce analgesia through mechanisms that do not completely

overlap, and therefore their combination has the theoretical potential to produce synergistic

action. Demonstration of actual synergy (or additive, or subadditive effect) requires testing

of individual combinations.

Evaluation of mechanistic interaction

Basic principles—When drugs produce overtly similar effects, e.g., analgesia, it is

common practice to use them in combination. In these situations, the combination effect

may turn out to be less than, the same as or greater than the predicted magnitude

(subadditive, additive or synergistic, respectively). Discerning which of these results

actually apply requires measurements derived from a rigorous comparison of expected and

actual effects, a procedure that is rooted in the concept of dose equivalence (doses of each

drug that yield the same magnitude of effect when each used alone) (43–48). The analysis

leading to metrics to distinguish between additive and nonadditive effects is also needed. No

intimate knowledge of the drugs’ mechanism(s) is required; the entire procedure is built

from the consequences of dose equivalency. Such a quantitative analysis for combinations

involving two or more drugs is most often accomplished with ”isoboles”, a graph of dose

combinations that produce an effect of specified magnitude. The initial procedure (49–52)

has subsequently been applied to numerous combinations of drugs. The usual isobolographic

procedure leading to linear isoboles of additive effects is applicable to drugs with a constant

potency ratio (44–48), but has been extended to apply to cases in which the individual drugs

have a variable potency ratio (53), as well as to application that is based on receptor

occupation of the constituent compounds (54).

Oxycodone and morphine—Isobolographic analysis of oxycodone + morphine

combination in rats demonstrated an antinociceptive synergy (55), whereas a study in mice

found the interaction to be only additive (56). A clinical experimental study found an

oxycodone + morphine combination to be additive (57), but the interpretation of the clinical

study has been debated (58).

In the first study (55), oxycodone and morphine administered individually and in

combination were tested for antinociceptive activity (in the radiant heat tail-flick test) in

adult male Sprague-Dawley and Dark Agouti rats. Oxycodone and morphine were

administered via i.c.v., intraperitoneal (i.p.) and subcutaneous (s.c.) routes. Dark Agouti rats

were used for the systemic administrations because they generate only a small amount of

oxycodone active metabolite (O-demethylate) due to a genetic deficiency in CYP2D1.

Antinociceptive synergy was reported for the simultaneous administration of

“subantinociceptive doses” of oxycodone and morphine by central or systemic
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administration. In the case of s.c. dosing, the antinociceptive ED50 values ± SD were 2.8 ±

0.2 and 8.5 ± 0.2 mg/kg respectively, for oxycodone and morphine. The rats were then

dosed with a “subantinociceptive dosing combination” of ocycodone + morphine in three

fixed-dose ratios of 3:1, 1:1 and 1:3 relative to the individual antinociceptive ED50 values.

The isobologram generated using the results is shown in Figure 1. Since the experimentally

determined ED50 values of each combination were statistically less than (P < 0.05) the

theoretical additive ED50, a synergistic interaction was inferred.

In the second study (56), several opioids were tested alone and in fixed-ratio combinations

for antinociceptive activity in adult male CD-1 mice (s.c. route, radiant heat tail-flick test).

A synergistic antinociceptive interaction (identified when the composite line of additive

effect for the combination was significantly different from the dose–response regression line

of the experimentally determined combination) was reported (including the isobolograms)

for combination of L-methadone with several opioids (morphine, M6G, codeine and 6-

acetylmorphine [active metabolite of heroin]), but not others (fentanyl, alfentanyl,

meperidine or oxymorphone). In contrast to the first study, the combination of morphine

with oxycodone was found to be only additive, not synergistic. The authors did not comment

on (or cite) the first study.

In the third study (57), an effort was made to investigate whether the synergy reported in the

first study (55) would extend to humans. Healthy female volunteers (N = 47; predominantly

from medical and nursing school) were enrolled in a double-blind, crossover trial. Nonstoic

and placebo nonresponders were randomly assigned to receive oral morphine (0.5 mg/kg),

the same dose of oral oxycodone (0.5 mg/kg), or a 1:1 combination of oral morphine and

oral oxycodone each at half the dose given alone (i.e., 0.25 mg/kg). The reason stated in the

study for giving equal doses of morphine and oxycodone was that it was commonly done in

clinical practice. More recent literature states that the average relative potency ratio for

oxycodone to morphine is 3:1 (58). Assessment measures included pain onset, magnitude

and tolerance. The results failed to demonstrate a synergistic interaction between morphine

and oxycodone on any of the three measures. The authors discuss possible reasons for the

different findings from the rat study, in which synergy was found (55), and the authors of

the rat study add more in an exchange of letters to the Editor (59). Neither discusses the

agreement with lack of synergy reported in the mouse study (56).

Safety and efficacy

The oxycodone/morphine dual-opioid combination studies have been published (Table I).

An animal study found that subanalgesic doses of both oxycodone and morphine produce

antinociception without producing sedation (55). Grach and colleagues reported that oral

oxycodone and morphine combined in a 1:1 ratio produced significantly higher latency to

pain onset, i.e., impact on pain threshold, and provided greater analgesia, i.e., impact on pain

tolerance, than morphine alone (P = 0.01 and P = 0.007, respectively) (57). While

oxycodone alone provided improved analgesia compared to the combination (in terms of

pain threshold and tolerance), the results were not significant. This study has been

challenged in the literature with regards to dosages used (59). Ladd and colleagues (60)

studied whether the combination of oxycodone and morphine might potentiate respiratory
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depression, and they found that although mean minute ventilation decreased during

treatment when compared to pretreatment values, the results were deemed by investigators

to be reasonable and not unexpected or disproportionate. Lauretti and colleagues reported

that oxycodone and morphine in combination resulted in a 38% reduced use of rescue

analgesics in cancer patients compared to morphine alone (61).

OXYCODONE AND ASPIRIN/NSAIDs/ACETAMINOPHEN

Mechanisms of action

NSAIDs constitute a diverse family of analgesics that share a common mechanism of action

and include derivatives of acetic acid (e.g., diclofenac, etodolac, indomethacin and

sulindac), enolic acid (“oxicams”), fenamic acid (“fenamics”), proprionic acid

(the ”profens” naproxen and oxaprozin) and the ”coxibs”. All produce their analgesic effect

by reducing the production of pronociceptive and proinflammatory prostaglandins and other

chemical mediators by inhibiting the biotransformation from arachidonic acid, a reaction

catalyzed by cyclooxygenase (COX prostaglandin endoperoxidase H synthase) isozymes.

NSAIDs reversibly inhibit the catalytic activity of cyclooxygenase (62, 63), whereas aspirin

acts irreversibly. The two most relevant COX isoforms are COX-1 (prostaglandin G/H

synthase 1) and COX-2 (prostaglandin G/H synthase 2). COX-1, generally a constitutive

enzyme (its expression is induced throughout the cell life), shares about 60% sequence

homology with COX-2, which is an inducible enzyme (transiently present during certain

physiological states such as pain, inflammation and cancer) (65). The catalytic site of COX

lies at the far end of a long and narrow hydrophobic tunnel defined by four alpha helices

formed by residues 106–123, 325–353, 379–384 and 520–535. The NSAIDs block the

tunnel in various ways, thereby preventing the migration of arachidonic acid to the active

site (66). At least four molecular mechanisms of action have been proposed for NSAIDs:

covalent modifications of an amino acid residue within the tunnel by aspirin (67); reversible

competition for the substrate binding site within the tunnel by ibuprofen; formation of a salt

bridge between carboxylate on the drug and Arg120 that lies within the tunnel, by

fluribiprofen and indomethacin; and interaction between the selective COX-2 inhibitors with

residues Arg513, His90 and Phe518 located within a side pocket (68). A central component

of action of some NSAIDs adds to the possible site(s) of mechanistic interaction with

oxycodone (69).

The mechanism of the analgesic action of acetaminophen (N-[4-hydroxyphenyl] acetamide),

also known as paracetamol, remains elusive. To date, no single mechanism has been able to

sufficiently describe all of its actions. It is reasonable to conclude that paracetamol likely has

a pharmacological mechanism that interacts with a variety of physiological pathways,

probably within the central nervous system (CNS). The major proposed mechanisms are the

subject of a recent comprehensive review by Smith (70). These proposals among others

involve: COX-1, COX-2, “COX-3”, peroxidase, nitric oxide synthase (NOS),

endocannabinoids and 5-HT (71, 72).
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Evaluation of mechanistic interaction

Based on his testing experience, Dr. William Beaver made the early clinical observation

that: “There is substantial evidence that combining an optimal dose of acetaminophen or

aspirin with an oral opioid such as codeine, hydrocodone, or oxycodone produces an

analgesic effect greater than that obtained by doubling the dose of either constituent

administered alone” (73, 74). A more systematic examination of combinations of opioids

and NSAIDs was subsequently made using an animal model (radiant heat tail-flick test),

which the investigators considered to be a model of moderate to severe pain, that correlates

with the clinical situations in which combinations are most commonly used (75). Dose–

response curves were first obtained for the opioids (fentanyl, hydrocodone, levorphanol,

methadone and morphine) when administered alone orally to mice, and were then reobtained

when each opioid was administered in combination with a constant oral dose of each

NSAID (aspirin, ibuprofen, ketorolac or naproxen). The NSAIDs were inactive in this test

when administered alone. Ibuprofen ”potentiated” the analgesic action of oxycodone

(defined as a significant reduction in oxycodone’s antinociceptive ED50 value when tested in

combination). Ibuprofen did not potentiate the antinociceptive activity of any opioids tested.

In addition, not all of the NSAIDs potentiated the antinociceptive activity of oxycodone. As

far as we can determine, this is the only rigorous testing for analgesic synergy between

oxycodone and NSAIDs.

At the time of writing, no studies were found that tested for a nonadditive analgesic

interaction between oxycodone and acetaminophen (paracetamol).

Safety and efficacy

Agents combining low doses of oxycodone with aspirin, acetaminophen and NSAIDs have

considerable history and are the subject of many studies in the literature, dating back to 1974

(76). Some of the more recent trials are summarized in Table II. Many of these studies use

the dental pain model, which provides short-term results consistent with oxycodone

combination drug labeling (77). Potential issues involving opioid dependence or potential

misuse must be assessed when using these drugs off label in longer-term analgesia. One

study reported stable, modest-dose, long-term oxycodone/acetaminophen treatment of pain,

suggesting that there are pain populations which might be managed effectively on

oxycodone combination therapy over the long term (78).

OXYCODONE, GABAPENTIN AND PREGABALIN

Mechanisms of action

The mechanism of analgesic action of gabapentin 2-(1-[aminomethyl]cyclohexyl)acetic acid

is the subject of several recent comprehensive reviews (91–94). Initially designed with the

intent of creating a γ-aminobutyric acid (GABA) analogue having greater lipophilicity (CNS

penetration), gabapentin does not bind to GABA receptors (types A, B, or C), nor is it

metabolized to GABA (95, 96). Gabapentin-induced antinociceptive or antihyperalgesic

effects are not blocked by GABAB antagonists in animal models (97–99), discounting a

direct action on these receptors or an indirect action involving elevation of GABA levels via
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inhibition of GABA transaminase (100), activation of glutamic acid decarboxylase (101) or

other mechanism (102).

Autoradiographic studies demonstrated heterogeneous distribution of gabapentin binding in

the brain, with highest levels in the cortex, hippocampus and cerebellum (103). The current

view is that gabapentin produces its effects by binding to the α2-δ subunit (Cavα2-δ) of the

voltage-gated Ca2+ channels (VGCCs) located in these regions (104). The evidence to

support this view includes data from Maneuf and colleagues (93) in models of neuropathic

pain; Cavα2-δ expression is upregulated in sensory neurons and the dorsal horn of the spinal

cord (105–108); blocking Cavα2-δ upregulation (rhizotomy or antisense oligonucleotides)

reverses neuropathic pain (108); gabapentin’s antiallodynic effects are only observed when

Cavα2-δ is upregulated in the dorsal root ganglion or the spinal cord (109); and transgenic

mice overexpressing Cavα2-δ in sensory and dorsal horn neurons exhibit mechanical and

thermal hypersensitivities compared to wild-type littermates (107).

Pregabalin ([S]-3-[aminomethyl]-5-methylhexanoic acid), like gabapentin, was designed as

a more lipophilic GABA analogue. Like gabapentin, pregabalin does not bind to GABA

receptors, metabolize to GABA or alter GABA uptake or degradation (110). Pregabalin, like

gabapentin, is believed to produce its analgesic effect by binding to the α2-δ subunit (Cavα2-

δ) of presynaptic VGCCs (111). By their actions on Cavα2-δ subunits, both gabapentin and

pregabalin attenuate the neuronal activity in pain transmission pathways by reducing

presynaptic Ca2+ channel influx, and consequently reducing the release of neurotransmitters,

including glutamate (112) and substance P (113) from presynaptic neurons.

Evaluation of mechanistic interaction

At the time of writing, no studies were found that tested for a nonadditive analgesic

interaction between oxycodone and gabapentin, or oxycodone and pregabalin.

Safety and efficacy

There are very little empirical data on oxycodone combinations with anticonvulsants such as

pregabalin or gabapentin. Pregabalin has been reported to be safe and effective in patients

with trigeminal neuralgia (114), postherpetic neuralgia, painful diabetic neuropathy (115)

and fibromyalgia (116). Although safe, pregabalin was no more effective than placebo in

treating pain associated with HIV neuropathy (117, 118). Not all neuropathic pain patients

respond to pregabalin analgesia in monotherapy (119) and pregabalin is sometimes

combined with other analgesic agents (120), including, but not limited to, oxycodone.

Analgesia is sometimes dose–limited with combination therapy because of increased side

effects (Fig. 2) (121).

Preoperative gabapentin for the management of post-surgical pain has produced mixed

results. Gabapentin did not reduce pain or morphine consumption in patients (N = 126)

undergoing total hip arthroplasty (neither acute postoperative pain nor pain in the first 6

months postsurgery) (122) or patients given interscalene brachial plexus blocks for

arthroscopic shoulder procedures (N = 60) (123). However, it did significantly reduce pain

and reduce opioid consumption in a study of 40 knee arthroscopy patients (124), in a study

Raffa et al. Page 8

Drugs Today (Barc). Author manuscript; available in PMC 2014 June 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of 70 patients undergoing orthopedic surgery to a lower extremity (125), coronary artery

bypass graft patients (N = 60) (126), nasal surgery patients (N = 60) (127), inguinal

herniorrhaphy patients (N = 60) (128) and patients requiring surgery for brachial plexus

injury (N = 20) (129). In treating severe cancer pain, an open-label study in Japan

determined that addition of gabapentin provided an additive analgesic benefit that was

statistically significant (visual analog scale) but clinically insignificant (130).

Rajpal and colleagues used 100 historical spinal surgery patients who received patient-

controlled analagesia (PCA) of either morphine (1–2 mg) or hydromorphone (0.2–0.4 mg)

with a 6–10-min lockout interval (131). These controls were compared to a prospective

group of similar surgical patients (n = 100) who received preoperatively controlled-release

oxycodone 20 mg, gabapentin 600 mg and acetaminophen 1 g. A prophylactic dose of i.v.

dolasetron was administered perioperatively.

Following surgery, these patients received controlled-release oxycodone 10–20 mg b.i.d.,

gabapentin 300 to 600 mg t.i.d., and acetaminophen 1 g t.i.d. started upon return to the

nursing unit and continuing for 3 days after surgery. Breakthrough pain was managed by

immediate-release oxycodone (5–20 mg every 3 h, as needed). The combination patients

consumed less opioids, suffered less pain and had improved patient satisfaction scores

compared to the control group. While this study does not test a specific new oxycodone/

gabapentin formulation, it indicates the potential value of these agents in a multimodal

therapeutic regimen.

No randomized, controlled trials directly comparing gabapentin to pregabalin appear in the

literature, but a recent open-label study of neuropathic pain patients (N = 146) suggests that

pregabalin may provide greater analgesia than gabapentin (132). Both gabapentin (118) and

pregabalin (133) have been shown to have opioidsparing effects when paired with a

concomitant narcotic analgesic. Studies combining gabapentin or pregabalin with

oxycodone (although not necessarily in a combination formulation, but rather as two discreet

agents) appear in Table III.

DISCUSSION

The motivation to combine therapeutic agents must be based on producing benefits for the

patient. On a practical level, oxycodone combinations reduce the pill burden and provide for

dosing convenience, and it can be hoped that these will foster better compliance. While

those alone may be worthwhile benefits, the most important clinical measures for oxycodone

combinations reside in enhancing analgesic benefits to the patient or reducing adverse

effects. The analgesic benefit from a combination formulation may be additive, subadditive

or synergistic. This analgesic benefit goes beyond “better pain relief” in that adding an agent

to oxycodone may in some cases allow for analgesia to be provided with less amount of

either agent administered alone. Since each analgesic is associated with dose-dependent

adverse effects, lowering the dose of each drug may mitigate side effects associated with

higher-dose monotherapy. By the same token, combinations may give rise to new or

magnified (synergistic) adverse effects, which is something that needs to be determined.
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Oxycodone combinations with aspirin, acetaminophen and NSAIDs have a long history and

many studies demonstrate their safety and effectiveness when carefully monitored. It is

unclear if they produce an opioid-sparing effect, but they do provide reliable analgesia and

are particularly well-suited to acute pain syndromes, since long-term use of acetaminophen,

NSAIDs and aspirin has become increasingly questionable (134, 135). Patients taking such

combination drugs should be made aware of the risks of long-term use of acetaminophen,

NSAIDs and aspirin. Many popular over-the-counter medications contain acetaminophen,

aspirin or NSAIDs but may not be prominently labeled to that effect; patients must be

counseled to avoid these drugs when taking oxycodone combinations with acetaminophen,

aspirin or NSAIDs to prevent accidental overdose. This is crucial; a study of patients’

knowledge of common medications found that just 7% knew the safe daily dose of

acetaminophen and up to 90% could not correctly state whether certain familiar medications

contained acetaminophen (136).

The few studies of oxycodone/morphine combination agents and oxycodone combinations

with pregabalin and gabapentin suggest that they may provide improved analgesic benefits

with reduced side effects. Combination drugs are important additions to the armamentarium

of pain relievers. They can offer far more than convenient “packaging”. Oxycodone

combinations merit consideration and further study.

CONCLUSIONS

Oxycodone combination drugs include dual-opioid formulations (oxycodone/morphine),

oxycodone with aspirin or NSAIDs or acetaminophen, and oxycodone paired with

gabapentin or pregabalin. These formulations each offer potential benefits in that the

combination of drugs appears to exert a safe and effective (and possibly enhanced) analgesic

effect, with possibly reduced side effects. These drugs may also offer other benefits, such as

the opioid-sparing properties of combinations of pregabalin and gabapentin (and possibly

NSAIDs and acetaminophen) with oxycodone. There is a paucity of information about the

nature of the interaction. However, the combination of oxycodone with acetaminophen,

NSAIDs and aspirin has been thoroughly studied in the literature and reported to be safe and

effective, although newly raised concerns about acetaminophen, NSAIDs and aspirin require

physicians to prescribe these agents prudently, ideally in the acute pain setting and with

counseling to patients. New combinations of oxycodone/pregabalin and oxycodone/

gabapentin, as well as dual-opioid drugs, merit greater investigation to better assess their

appropriate role in the clinical setting as analgesic agents in acute and chronic pain

syndromes.
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Figure 1.
Three-dimensional representation of the isobologram generated for the antinociceptive

interaction between oxycodone [O] (mg/kg) and morphine [M] (mg/kg). Antinociception

was assessed for each drug alone (ED50 doses = the [O] and [M] axis intercepts of the line of

additivity) and for three fixed-ratio combinations of oxycodone + morphine (75%:25%,

50%:50% and 25%:75%). The combination ED50 doses (filled circles) were between the

origin and the line of additivity (projected onto the horizontal plane in this representation),

which is indicative of a synergistic interaction (data obtained from 46).
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Figure 2.
Increased side effects with gabapentin/oxycodone versus gabapentin monotherapy in 338

patients with painful diabetic neuropathy (121). GI, gastrointestinal; CNS, central nervous

system.
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