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Abstract

The human intestinal tract is comprised of a rich and complex microbial ecosystem. This intestinal

microbota provides a large reservoir of potentially toxic molecules, including bacterial endotoxin

(i.e., lipopolysaccharide). This potent inflammatory molecule is detectable in the circulation of

healthy individuals and levels transiently increase following ingestion of energy rich meals.

Chronic exposure to circulating endotoxin has been associated with obesity, diabetes, and

cardiovascular disease. Western-style meals augment LPS translocation and by this mechanism

may contribute to the pathogenesis of these diseases. By contrast, the gut and other organs have

evolved mechanisms to detoxify endotoxin and to neutralize the potentially inflammatory qualities

of circulating endotoxin. Of specific interest to clinicians is evidence that acute postprandial

elevation of circulating endotoxin is dependent on meal composition. In this review we present an

overview of the biochemical and cellular mechanisms that lead to endotoxemia, with emphasis on

the interplay between microbial and nutritional determinants of this condition. The link between

endotoxemia, diet, and changes in the intestinal microbiota raise the possibility that dietary

interventions can, at least in part, ameliorate the detrimental outcomes of endotoxemia.
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Introduction

The gastrointestinal tracts of humans and other mammals are complex bioreactors that have

evolved to extract nutrients from diverse natural products. Critical to the functions of these
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systems are dynamic communities of microorganisms that likely have co-evolved with their

hosts to provide myriad beneficial services, including nutrient provision.1 The high-

carbohydrate diets ingested by omnivores and herbivores typically contain plant

polysaccharides that cannot be directly hydrolyzed by the mammalian gut. Instead, the

intestinal microbiota, which in adults is dominated by diverse members of the bacterial

phyla Firmicutes (e.g., clostridia) and Bacteroidetes,2–4 encodes a variety of hydrolytic

enzymes that can convert otherwise indigestible polysaccharides into relatively simple

compounds such as short-chain fatty acids (SCFAs), which are more readily absorbed by the

mammalian intestines.1 In this way, the microbiota collectively provides genomic coding

capacity -- the “microbiome”5,6 -- that supplements the function of the host genome. That

mammalian breast-milk is composed of many types of oligosaccharide that both direct the

early development of the intestinal microbiota and are fermented by this microbiota into

compounds that nourish the developing infant is testament to the deeply interlinked

relationships between host and microbiota.7,8

The intimate association of numerically rich and diverse microbial communities with the

human host potentially comes at a price. Commensal microorganisms are, in many

instances, separated from the interior of the body by a single layer of epithelial cells, which

in the case of the distal gut must form a barrier to entry of as many as 1012 microbial cells

per gram of luminal content.9 To prevent potentially lethal microbial infections, the immune

system is tuned to detect and respond to microbes that breach the epithelium. A variety of

chemical moieties that are conserved across broad ranges of microbes – termed microbe-

associated molecular patterns (MAMPs) – trigger signaling cascades in diverse host cells

that result in recruitment and activation of innate and adaptive immune effector cells to sites

of infection. Once the threat of infection is mitigated, the immune system must be down-

regulated in order to prevent prolonged, destructive inflammation. For example, an inability

to quell localized inflammatory responses to the intestinal microbiota is a hallmark of the

inflammatory bowel diseases.10

Despite diligent immune surveillance, small amounts of gut-derived bacterial MAMPs, such

as endotoxin (i.e., lipopolysaccharide, LPS), enter the circulation of healthy mammals,11

possibly as the result of particular diets. Systemic exposure to MAMPs may incite low-level,

chronic inflammation even in the absence of viable microbial cells in the bloodstream. The

deleterious effects of such persistent exposure to inflammatory inducers have been proposed

to be causal factors in the development of metabolic syndrome.12 The purpose of this review

is to provide clinicians and healthcare professionals with an overview of the biochemical

and cellular mechanisms that lead to endotoxemia, with emphasis on the interplay between

microbial and nutritional determinants of this condition.

Postprandial Endotoxemia

Recent human clinical trials13–17 demonstrate a transient increase of circulating LPS

following consumption of an energy rich meal and suggest a mechanistic link between diet,

postprandial inflammation, and disease. Great interest has surrounded these trials because

circulating LPS is associated with inflammatory mediators,18 and obesity,18,19 diabetes,20,21

steatohepatitis,22 renal,19,23 and cardiovascular disease.24 LPS is the primary structural
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component of the outer membrane of Gram-negative bacteria. It is composed of

carbohydrate containing domains and the highly-immunogenic lipid-A domain. Extensive

species-specific variation exists between the carbohydrate containing domains whereas the

lipid-A domain is highly conserved. This conserved domain provides MAMPs for host

immune recognition by the LPS receptor, Toll-like receptor 4 (TLR4).25 Several events must

take place before LPS can bind and signal through TLR4. First, LPS must bind the secreted

LPS-binding protein (LBP), an acute phase protein synthesized in the liver and lung.26,27

The LBP-LPS complex is then capable of binding CD14, which exists in soluble and

membrane bound forms. Finally, the LPS/LBP/CD14 complex is capable of signaling

through TLR4, leading to downstream inflammatory responses.28

In 2007, Erridge, et al17 published results of a feeding trial in humans that demonstrated

postprandial endotoxemia following ingestion of a single high fat meal. Twelve healthy men

were fed a 900 kcal meal (3 slices of toast with 50 grams of butter). Median plasma LPS

concentration increased by 50% (8.2 pg/mL baseline; 12.3 pg/mL postprandial). Elevated

plasma LPS also was observed following the feeding of healthy subjects egg and sausage

muffin sandwiches and hash browns in a meal that contained similar energy and fat

content.16 More recently, Laugerette, et al reported a similar outcome following ingestion of

a moderate fat meal (882 kcal, 33% fat).13 Only one study has attempted to identify specific

macronutrients responsible for postprandial endotoxemia. In this study,15 healthy

participants were given only 300 kcal of either: glucose drink (100% carbohydrate), orange

juice (92% carbohydrate), or cream (100% fat). Only the cream caused elevation of plasma

LPS (41% increase). In a cross sectional study, Amar, et al29 measured circulating LPS in

201 French adults randomly selected from polling lists. A dietitian-reviewed 3-day food

record enabled correlation of circulating LPS with macronutrient intake. Plasma LPS

concentration was independently associated with total energy intake, but not fat intake.

Taken together, current evidence indicates that endotoxemia can result from a variety of

diets that range from 300 kcal of pure cream,15 to a more typical 882 kcal (33% fat),13 to the

relatively large 1,200 kcal (38% fat).14 The demonstration that 300 kcal of cream is

sufficient to produce endotoxemia raises the important question of whether other dietary

lipids, protein, and non-glucose carbohydrates may also induce endotoxemia. As the role of

endotoxemia in the pathogenesis of common diseases becomes better established, making

these determinations will become increasingly important.

Mechanisms of Translocation

Multiple theories seek to explain how gut-derived LPS navigates into the circulation.30 One

hypothesis proposes that impaired epithelial resistance associated with a high energy intake

permits paracellular (between epithelial cell) movement (figure 1). Evidence supporting this

model comes from Cani, et al31 who demonstrated increased intestinal permeability to an

inert fluorescent molecule in mice fed a high fat (72% kcal) diet, whereas permeability was

not detected in mice fed a standard diet. Furthermore, these animals had reduced expression

of the tight junction proteins, ZO-1 and occludin. Barrier integrity was also studied by Brun,

et al32 who utilized mice deficient in leptin (ob/ob mice) and the leptin receptor (db/db

mice). Loss of leptin, a hormone that suppresses appetite and energy intake caused both

hyperphagia and obesity in these animals. In this study, less electrical resistance and greater
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permeability to horseradish peroxidase was observed in small intestine tissue from ob/ob

and db/db mice compared with wild type mice. Immunofluorescence staining demonstrated

redistribution of tight junction proteins ZO-1 and occludin away from the cellular border.

Importantly, these mice exhibited elevated LPS in the portal circulation even when

consuming a standard diet.

Another hypothesis that could explain impaired barrier integrity following high energy

intake comes from work by Kvietys, et al33 who reported epithelial injury in response to

normal digestion in the small intestine. They perfused physiologic quantities of glucose,

hydrolyzed casein, and bile emulsified oleic acid into the jejunum of anesthetized rats. In

contrast to the benign effects of the carbohydrate and protein treatment, the oleic acid

emulsion induced a transient epithelial injury at the villous tips and increased intestinal

permeability (similar results were also found in pigs34,35 and dogs).36

Alternatively to paracellular LPS transport, a transcellular pathway (through epithelial cells)

is another potential route for LPS entry (figure 1). Cellular uptake of LPS occurs in cultured

intestinal epithelial cells.37 In a mouse model, Ghoshal, et al30 identified increased LPS in

plasma chylomicron remnants following gavage with 200ul of long-chain triolein, a

triglyceride of the long-chain oleic acid, which enters the circulation through the lymphatics

in chylomicrons. In contrast, gavage with butyrin, a triglyceride of butyric acid, enters

directly into portal circulation, but does not raise circulatory LPS levels. In this model

system, treatment with an inhibitor of chylomicron formation prevented the increase of LPS

in the circulation and mesenteric lymph nodes. An in vitro system, utilizing intestinal

epithelial monolayers, confirmed these results and in contrast to the previously mentioned

effect of oleic acid on tight junctions, no change in permeability to fluorescent dextran was

observed. The transcellular model in which lipid digestion and micelle transport facilitate

LPS absorption is further strengthened by evidence that LBP increases transport of LPS

from micelles to lipoproteins,38 including chylomicrons,30,39–41 HDL,42,43 and LDL.44 In

addition to lipid facilitated LPS transport, nutrient independent uptake might explain

baseline fasting levels of LPS in circulation. In support of this idea, Drewe, et al45 employed

in situ injection of fluorescently labeled LPS into ligated jejunal loops of fasted rats. They

identified LPS absorption into jejunal brush border membrane vesicles. Further studies

indicated that this process was disrupted by a metabolic (dinitrophenol) and microtubule

inhibitor (colcemid) indicating active LPS uptake. Taken together, these studies implicate

multiple, non-exclusive pathways for LPS translocation into the circulation, though transport

in micelles may best account for post-prandial endotoxemia.

Microbiota and Endotoxemia

Acute changes in gut bacteria following ingestion of high energy meals could also contribute

to endotoxemia by shifting the balance of LPS producing and non-producing

microorganisms in the gut. Recent advances in sequencing and genomics have facilitated

study of these collective organisms (the microbiota) and their collective genome (the

microbiome) at a new level of resolution. An association of endotoxemia with obesity18

makes it possible that properties unique to the obese microbiota contribute to endotoxemia.

Conflicting data support supposed differences in the microbiota when obese are compared to
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lean individuals. Although multiple studies have reported greater abundance of Firmicutes

and concomitantly reduced abundance of Bacteroidetes in obese subjects,3,5 others have

produced seemingly contradictory results.46–50 The results of interventional trials raise the

possibility that this discrepancy might be explained by the rapid adaptation of the microbiota

to ingested nutrients such that the effect of recent energy intake (weight loss vs. maintenance

vs. gain) is dominant. For example, no baseline differences in Firmicutes or Bacteroidetes

were detected comparing lean and obese humans in a controlled environment while they

consumed a weight maintenance diet.46 However, the composition of the microbiota

distinctly changed when subjects were switched between 2,400 and 3,400 kcal diets with

Firmicutes and Bacteroidetes positively and negatively associated with energy intake

respectively. A similar response in Firmicutes and Bacteroidetes was observed in individuals

who lost weight with48,51 or without3,52,53 gastric bypass surgery. It is also evident that high

fat diets alter the microbiota31,54 and that this can occur independent of the obese state.54,55

The influence of the gut microbiota, the dominant source of LPS among commensal

microbiota, on postprandial endotoxemia was demonstrated through antibiotic treatment that

reduced the gut bacterial load and caused a decrease of plasma LPS in mice fed a high fat

diet. In contrast, plasma LPS did not decrease in control animals that received antibiotics.31

In animals consuming the high fat diet, antibiotic treatment also restored expression of ZO-1

and ameliorated the adverse effects of diet on intestinal permeability. Interestingly,

manipulation of the microbiota with an oligofructose prebiotic dietary supplement

normalized plasma LPS. Several mechanisms may underlie the ability of the microbiota to

influence endotoxemia. First, the luminal concentration of LPS may be important. The ratio

of total enteric LPS (>1 gram)56 to the large surface area of the gut (>300m2) suggest that

the law of mass action may contribute to LPS translocation. However, animals subjected to

high energy diets have decreased bacterial loads per gram of cecal material.31,54,57 In

addition, Gram-negative members of the prominent Bacteroidetes phylum decrease in

abundance on such diets,55,58 whereas Gram-positive clostridiales, a prominent class of the

phylum Firmicutes, expand in abundance.54,55 Despite several recent studies linking energy

intake and the microbiota, it is not clear that high energy meals induce endotoxemia by

increasing the luminal LPS concentration. Perhaps as important as considering which

bacteria proliferate in response to high energy diets is identification of bacterial populations

that contract and may thereby transiently stimulate endotoxemia through release of LPS or

other factors.

Endotoxemia and Inflammation

Four of the five human feeding trials that documented postprandial endotoxemia also sought

evidence of concurrent inflammation. A meal consisting of egg and sausage muffin

sandwiches with hash browns (900 kcal, 51 g fat) caused activation of circulating

mononuclear and polymorphonuclear cells.14 The immune response included increased

generation of reactive oxygen species (ROS), as well as increased expression of

peptidoglycan-sensing TLR2, and the LPS-sensing TLR4.16 The moderate fat meal (882

kcal, 33 g fat) used to induce endotoxemia by Laugerette, et al13 increased circulating IL-6

and the TLR4 co-receptor, CD14. These findings are in line with other studies describing

acute postprandial elevation of IL-6 (Table 1). Finally, Deopurkar, et al15 compared 300
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kcal of cream, glucose drink, and orange juice. Only the cream caused a rise in plasma LPS

and mononuclear cell TLR4, yet the cream and the glucose drink increased several

inflammatory markers, including mononuclear cell NF-κB binding activity, TNF-α, and

IL-1β, indicating that not all aspects of postprandial inflammation are dependent on

endotoxemia. In fact, it remains difficult to attribute postprandial inflammation directly to

translocation of gut-derived LPS. Although an acute elevation of circulating IL-6 is typically

induced by both high-fat meals and direct LPS infusion in healthy participants (Tables 1, 2),

other mediators do not correlate. For example, the effect of a high fat meal on circulating

TNF-α and CRP is highly variable and often at odds with the consistent elevation that

follows direct LPS infusion (Tables 1, 2). Some evidence indicates that circulating LPS

following a meal is less “toxic” than native LPS. For example, Erridge, et al17 report median

postprandial LPS at 12.3 pg/mL and that human plasma supplemented with commercially

available LPS to 10 pg/mL induced adhesion molecule expression in human primary aortic

endothelial cells and TNF-α in freshly collected human monocytes. Surprisingly, plasma

samples from their clinical study were not able to produce these effects despite containing

even higher concentrations of LPS. This may reflect a weakness in the predominant method

used to quantify LPS (Limulus Amebocyte Lysate assay), which does not differentiate

between the “toxic” (diphosphoryl) and “nontoxic” (monophosphoryl) LPS59 (see later).

Moreover, LPS-independent mechanisms may account for postprandial inflammation. For

example, free fatty acids alone can induce expression of TNF-α and IL-6 in macrophages,

adipocytes, and adipose tissue in a TLR4 dependent pathway.60 Thus it remains difficult to

appraise the contribution of gut-derived LPS to postprandial inflammation in humans.

Another area of uncertainty surrounds the phenomenon of LPS tolerance, in which prior

exposure to LPS renders an individual less responsive to subsequent challenge61. Little is

known about induction of LPS tolerance in the context of postprandial endotoxemia, but

such a scenario is imaginable.

In contrast to uncertainty surrounding human data, a direct link between postprandial

endotoxemia, inflammation, and morbid sequelae was thoroughly demonstrated in animal

experiments by Cani, et al.31,58 In these studies, mice fed a high fat diet (72% fat, 28%

protein) consumed twice the energy as controls, exhibited elevated plasma LPS, and

acquired features of metabolic disease that could be reproduced by a 4-week infusion of

low-dose LPS through osmotic pumps. Both oral antibiotics that prevented endotoxemia and

the CD14−/− genotype with defective LPS signaling ameliorated nearly every inflammatory,

oxidative, and metabolic derangement in both high-fat-fed and leptin-deficient mice. Work

by de La Serre, et al54 offers insight that might reconcile the apparent conflict between

human and animal data. They took advantage of an observation that some Sprague-Dawley

rats are susceptible, while others resist, diet induced obesity. Obesity-resistant animals

avoided excess energy intake on the high fat diet and maintained expression of intestinal

alkaline phosphatase (ALPI), an enzyme that detoxifies LPS (see later). By contrast, obesity-

prone rats displayed reduced ALPI activity presumably accounting for the observed

increased intestinal permeability and TLR4 activation. Thus, the capacity of the gut to

detoxify LPS might account for variation between animal and human data.
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LPS Detoxification

It remains unclear how much of post-prandial circulating LPS is available to activate the

classical TLR4-dependent inflammatory response. There are, for example, endogenous

mechanisms at the various mucosal surfaces to detoxify/inactivate LPS. Standard assays

used to measure LPS in serum (e.g. limulus lysate assay) are not able to distinguish LPS

which is active or inactive on mammalian cells (see below).

There is much recent interest in intestinal alkaline phosphatase (ALPI), a 70 kDa GPI-

anchored protein expressed on the apical (luminal) aspect of intestinal epithelial cell62, in

the detoxification of LPS. In the past, ALPI had been viewed as one of the better epithelial

differentiation markers, with little understanding of the true function of this molecule within

the mucosa. More recent studies have identified ALPI as a central player in microbial

homeostasis.63–65 Surface expressed ALPI has been shown to retard Gram negative bacterial

growth and to potently neutralize LPS through a mechanism involving dephosphorylation of

1,4’-bisphosphorylated glucosamine disaccharide of LPS lipid A (figure 2).64,65 The

resulting monophosphoryl lipid-A is unable to initiate the classical LPS-dependent

inflammatory response. ALPI is active beyond the epithelial surface. It was shown to be

secreted into the lumen and impart a LPS-dephosphorylating property to the stool.63

Furthermore, intracellular colocalization with absorbed lipid droplets provide further

opportunity for LPS detoxification (figure 2).66 In a striking demonstration, administration

of calf ALPI prevented death of mice injected with a lethal dose of E. coli.67 ALPI appears

to affect live bacteria as well. In an animal model, oral administration prevented

translocation of live bacteria to the mesenteric lymph nodes following intestinal injury.63 A

role for ALPI in shaping the gut microbiota has been recently identified wherein it maintains

an environment favorable to commensal organisms and inhibitory to pathogenic Salmonella

typhimurium.68 Relevant for this review, ALPI was recently shown to be highly induced by

resolvin E1 (RvE1), an omega-3 fatty acid-derived lipid mediator which promotes the

resolution of inflammation.69 In this study, Cambell et al screened epithelial cells expressing

the RvE1 receptor by microarray and revealed a prominent and specific induction of ALPI

by RvE1. Surface expressed ALPI was shown to detoxify extracellular LPS and to retard the

growth of E. coli. Likewise, administration of RvE1 to mice in an in vivo colitis model

revealed that decreased disease activity strongly paralleled tissue ALPI levels and that

inhibition of ALPI reversed such protection. These data provide a previously unappreciated

role for ALPI in omega-3 fatty acid-mediated inflammatory resolution.

LPS sequestration may also prevent an inflammatory response during postprandial

endotoxemia. Possible mechanisms include anti-LPS antibodies70 and LBP mediated uptake

by chylomicrons,30,39–41 LDL,44 and HDL.42,43 LBP itself has a dual role; at low

concentrations it can facilitate LPS-TLR4 signaling, whereas at high concentrations LBP

paradoxically blocks the inflammatory effects of LPS.71

Other antimicrobial peptides exist which can inactivate or detoxify LPS. For example,

bactericidal/permeability increasing protein (BPI) shares structurally similarity with LBP

and is capable of binding and neutralizing LPS. BPI is a 55–60 kDa protein originally found

in neutrophil azurophilic granules, on the neutrophil cell surface, and to a lesser extent, in
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specific granules of eosinophils.72,73 Subsequently, BPI was found to be widely expressed in

various epithelial cells.74 As its name infers, BPI selectively exerts multiple antimicrobial

actions against Gram-negative bacteria, including cytotoxicity through damage to bacterial

inner / outer membranes, neutralization of bacterial lipopolysaccharide (endotoxin), as well

as serving as an opsonin for phagocytosis of gram-negative bacteria by neutrophils.75–77 The

high affinity of BPI for the lipid A region of LPS78 targets its cytotoxic activity to Gram-

negative bacteria. Binding of BPI to the Gram-negative bacterial outer membrane is

followed by a time-dependent penetration of the molecule to the bacterial inner membrane

where damage results in loss of membrane integrity, dissipation of electrochemical

gradients, and bacterial death79. BPI binds the lipid A region of LPS with high affinity80,81

and thereby prevents its interaction with other (pro-inflammatory) LPS-binding molecules,

including LBP and CD14.82 Since BPI binds the lipid A region common to all LPS, it is able

to neutralize endotoxin from a broad array of Gram-negative pathogens.75 The selective and

potent action of BPI against Gram-negative bacteria and their LPS is fully manifest in

biologic fluids, including plasma, serum, and whole blood.83 In multiple animal models of

Gram-negative sepsis and/or endotoxemia, administration of BPI congeners is associated

with improved outcome.84,85

Implications and Future Directions for Clinical Practice

Postprandial endotoxemia is dependent on dietary selection. Ghanim, et al16 found that a

900-kcal “American Heart Association” (AHA) meal of oatmeal, milk, orange juice, raisins,

peanut butter, and English muffin prevented postprandial endotoxemia, whereas an

isocaloric meal of egg and sausage muffin sandwiches with hashbrowns could not. The

former meal also prevented rise in various markers of oxidative stress, NF-κB activity,

TLR2 and TLR4expression. They later reported that addition of 300 kcal of orange juice to

an endotoxemia-producing meal prevented any rise in circulating LPS.14 Despite ingesting

1,200 kcal, the addition of orange juice also ameliorated indicators of inflammation and

oxidative stress compared to a glucose drink and water only control. An assortment of foods

and dietary components can reduce markers of inflammation including wheat bran,86 olive

oil,87–89 walnuts,87,90 and strawberry anthocyanin.91 Additional studies are merited to

determine wither the anti-inflammatory properties of these foods are related to an effect on

LPS mediated inflammation. For example, parenteral administration of dietary components

such as quercetin92 and curcumin93 can attenuate the effects of LPS infusion, although such

a response from normal consumption of these food components remains to be demonstrated.

An important point for those practicing clinical nutrition is that expression of ALPI

decreases during fasting, and is restored upon refeeding.94 This may underlie the benefit that

patients receive from trophic feeding in acute illness.63 More practical knowledge in this

area is likely to emerge. For example, ALPI expression was augmented by an omega-3 fatty

acid derived compound, Resolvin E1, setting a precedent that specific dietary components

might influence expression of this protective enzyme.69

Much remains to be learned about the phenomenon of postprandial endotoxemia and how

diet and gut microbiota mediate chronic inflammation. Despite results from animal

experiments that convincingly demonstrate a role in pathology, whether postprandial

endotoxemia mediates postprandial inflammation and pathology in humans remains to be
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determined. It is tempting to speculate that interpersonal variability in LPS detoxification

renders some individuals susceptible and others resistant to the outcomes of endotoxemia.

To date, feeding trials have relied on healthy individuals who may have a higher capacity for

LPS detoxification compared with morbid individuals. Nevertheless, the dramatic ability of

specific foods and meals to prevent endotoxemia predicts that postprandial endotoxemia

may become an important target for nutritional intervention.
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Figure 1.
Transcellular and paracellular transport represent non-exclusive pathways for LPS

movement from the enteric lumen into circulation. In the transcellular model, lipid

absorption serves as a vehicle for LPS, which is included in micelles and later incorporated

into chylomicrons through interaction with LPS-binding protein (LBP). In the paracellular

model, fat-rich chyme results in internalization of tight junction proteins by mechanisms that

remain unclear. The impaired epithelial barrier then permits LPS to pass between epithelial

cells.
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Figure 2.
Intestinal alkalkine phosphatase (ALPI) is an important enzyme in LPS detoxification. This

highly expressed brush border enzyme is secreted into the lumen and co-localizes with

intracellular lipid, maximizing contact with LPS. Under physiologic conditions, this enzyme

converts the “toxic” LPS moiety (diphosphoryl lipid-A) to a less inflammatory form

(monophosphoryl lipid-A). Of clinical importance, expression of ALPI decreases during

fasting, but is maintained by enteral nutrition.
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Table 2

Acute Effects of LPS infusion on inflammatory indices in plasma/serum from healthy subjects

LPS Dose IL-6 TNF-α CRP Reference

2 ng/kg ↑ ↑ ↑ van der Meer112

2 ng/kg ↑ ↑ ↑ Dorresteijn113

2 ng/kg ↑ ↑ Sauermann114

2 ng/kg ↑ ↑ van Eijk115

2 ng/kg ↑ ↑ Soop116

2 ng/kg ↑ ↑ Mayr117

20 IU/kg ↑ Steiner118

20 IU/kg ↑ ↑ ↑ van Zee119

4 ng/kg ↑ ↑ Pajkrt120

4 ng/kg ↑ ↑ Pajkrt121

4 ng/kg ↑ Dekkers122

4 ng/kg ↑ ↑ de Jonge123

4 ng/kg Lauw124

4 ng/kg ↑ ↑ ↑ Bunnell125

0.8 ng/kg ↑ ↑ Reichenberg126

4 ng/kg ↑ ↑ ↑ Branger127

4 ng/kg ↑ ↑ ↑ Lynn128

4 ng/kg ↑ ↑ van Bockel129

4 ng/kg ↑ ↑ de Kruif130
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