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Background

The Fracture Risk Assessment tool (FRAX) was released in 2008 by the World Health
Organization (WHO) [1]. The FRAX algorithm uses bone mineral density (BMD), and 11
additional clinical and physiological risk factors to estimate a person’s 10 year probability of
hip and other major osteoporotic fracture [2]. The latter is defined by WHO as a hip, clinical
vertebral, distal forearm or humerus fracture. Ensrud et al., using risk prediction models
including only age and BMD or age and fracture history [3], concluded that these few risk
factors predicted 10 year risk of hip and other major osteoporotic fractures as well as FRAX-
based models. We have performed a similar evaluation using administrative claims data,
which do not include information on BMD. We derived and examined several fracture risk
prediction models to determine if demographics, history of fracture, and comorbidities, all
identifiable within administrative claims data, could be used to predict hip fracture and
major osteoporotic fractures as well as models with additional clinical information or
models derived from FRAX. This type of prediction model might be useful for large health
plans to target higher-risk individuals for more aggressive screening efforts including BMD
testing.

Methods

We performed a retrospective cohort study using the Medicare Current Beneficiary Survey
(MCBS), a rotating panel in-home survey of approximately 12,000 community or
institutional dwelling beneficiaries linked to Medicare claims data, for the years 1999-2005.
The MCBS can provide national estimates for the U.S. Medicare population due to its
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unique multi-stage sampling design. Eligible subjects for this analysis were: age >= 65
years, always having Medicare part A and B coverage, having one year of baseline data and
two years of follow up data. For analyses of each type of fracture, beneficiaries with any
claims for the particular fracture during the baseline were excluded.

We used inpatient and outpatient administrative claims data to obtain demographic, baseline
comorbidity and fracture histories, and MCBS survey data to obtain information on height,
weight, activities of daily living, body mass index (BMI), current smoking status,
osteoporosis drug usage and glucocorticoid usage. Alcohol status and fracture history were
obtained from both claims and survey data. Because the MCBS does not contain information
regarding family history of hip fractures, we used population-based data [4] to simulate this
risk factor according to previously published methods [5].

We used multivariable logistic regression modeling to evaluate the predictive ability of
models with varying degrees of complexity. The c-statistic, a measure of area under the
receiver operating characteristic (ROC) curve, was reported and compared across models.
To provide statistically valid inferences and account for sampling, we used survey logistic
regression for the analysis [6]. To obtain the weighted c statistic and its 95% confidence
interval, we applied bootstrapping methods reported by lIzrael [7].

Of the more than 12,000 beneficiaries eligible for evaluation of risk of hip fracture and other
major osteoporotic fracture, 187 experienced a hip fracture and 430 had a major osteoporotic
fracture (Table 1).In the analysis of hip fracture, the sex-specific, weighted c-statistic was
0.74 for the model using only administrative claims data containing demographic, fracture
history and comorbidities, which minimally changed to 0.75 when we added the extra
variables from MCBS. The c-statistic for the model that used FRAX score only (using BMI)
was 0.64. The analysis of major osteoporotic fractures found similar patterns with modestly
lower c statistics. The c statistics were numerically higher in men than in women, and higher
in African Americans than Caucasians, but confidence intervals were wide.

Comments

Our results indicate that simple models based on administrative claims data are useful for
predicting hip and major osteoporotic fractures. Although BMD and BMI were not available
in claims data, our models generated using only administrative data yielded comparable
results compared to more complex models with clinical risk factors or FRAX without BMD.
This result is consistent with those reported by Ensrud et al [3], and our ¢ statistics are
comparable with their results, including models with BMD. Because the follow up time in
MCBS was limited to 2 years, we could not assess the calibration of the risk prediction
models, only their discrimination. However, our well defined cohort is generalizable to the
US. Medicare population. Our findings suggesting that administrative data alone can risk-
stratify patients to identify those that should be considered higher priorities for further
fracture risk assessment including BMD testing, have implications for screening at a
population level by health plans with ready access to administrative data.
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