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Several animal viruses encode proteins that bind double-stranded RNA (dsRNA) to counteract host dsRNA-
dependent antiviral responses. This article discusses the structure and function of the dsRNA-binding proteins
of influenza A virus and Ebola viruses (EBOVs).

Introduction

Several host antiviral defenses are activated by
double-stranded RNA (dsRNA), including retinoic acid-

inducible gene I (RIG-I), melanoma differentiation-associated
gene 5 (MDA-5), protein kinase R (PKR), and 2¢-5¢ oligo(A)
synthetase (2¢-5¢ OAS) (Silverman 1994; Gale and Katze
1998; Jiang and others 2011; Kowalinski and others 2011).
As one countermeasure against these dsRNA-activated anti-
viral responses, several animal viruses encode proteins that
bind dsRNA. These viruses include both DNA viruses (vac-
cinia virus) (Chang and Jacobs 1993) and RNA viruses (in-
fluenza viruses, reoviruses, and Ebola viruses [EBOVs])
(Imani and Jacobs 1988; Hatada and Fukuda 1992; Lu and
others 1995; Chien and others 1997; Liu and others 1997;
Basler and others 2003; Hartman and others 2004; Cardenas
and others 2006). In this study, the focus will be on the
structure and function of the dsRNA-binding proteins en-
coded by 2 RNA viruses, influenza viruses and EBOVs.
These 2 viruses are important human pathogens, and their
dsRNA-binding proteins are potential targets for the devel-
opment of antivirals.

Influenza A Virus NS1 Protein

Influenza A viruses, which cause an annual highly con-
tagious respiratory disease in humans, infect many avian
and mammalian species and are responsible for periodic
human pandemics that can result in high mortality rates
(Wright and others 2012). Influenza A viruses are enveloped
RNA viruses that contain 8 single-stranded, negative-sense
genome segments encoding 13 or 14 proteins (Wise and
others 2012; Krug and Fodor 2013). The smallest genome
segment encodes the nonstructural protein 1 (NS1) protein,
which is synthesized at high levels in infected cells, but is
not incorporated into virus particles. The NS1 proteins of

wild-type influenza A viruses range in size from 215 to 237
amino acids long and are comprised of 2 functional domains
connected by a short linker: the N-terminal RNA-binding
domain (RBD) (amino acids 1-73), which binds dsRNA, and
the C-terminal effector domain (ED) (amino acids 85-end)
(Krug and Garcia-Sastre 2013) (Fig. 1A).

The 3-dimensional structure of the RBD shows that it
forms a unique 6-helical head-to-tail homodimer (Chien
and others 1997; Liu and others 1997) (Fig. 1B, top). Only
one amino acid (R38/R38’) in the RBD is absolutely re-
quired for dsRNA binding (Wang and others 1999). The
binding site for dsRNA is in the pocket at the bottom of
this structure and involves amino acids in helices a2 and
a2¢. As shown by the crystal structure of the RBD in
complex with a 19-bp dsRNA (Cheng and others 2009),
the RBD binds the major groove of A form dsRNA, and
recognition is entirely with the dsRNA backbone and not
with specific base pairs (Fig. 1B, bottom). The R38/R38¢
residues from the 2 monomers form hydrogen bonds with
each other, as well as with the 2 RNA strands, thereby
anchoring the dsRNA in the protein-binding site. In ad-
dition to R38, positively charged residues in the middle of
the dsRNA-binding surface, such as R35, R37, and K41
make hydrogen bonds and electrostatic interactions with
both strands of the dsRNA. As measured using a 16-bp
dsRNA, the isolated RBD has a low affinity for dsRNA
(Kd of *1 mM) (Chien and others 2004). Higher affinity
was observed with longer dsRNAs (Aramini and others
2011), indicating some cooperativity in the binding of
NS1 molecules along the lengths of longer dsRNAs. In
addition, the full-length NS1 protein was shown to have a
5-fold higher affinity for longer dsRNAs than the isolated
RBD, indicating that the ED increases cooperative bind-
ing, possibly by enhancing oligomerization of NS1 mol-
ecules along the dsRNA chains (Aramini and others 2011;
Kerry and others 2011).
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Several early studies to determine the roles of NS1-mediated
dsRNA binding used transient transfection experiments to
overexpress the NS1 protein. These experiments showed
that the overexpressed NS1 protein inhibited many cellular
dsRNA-dependent activities, including RIG-I-mediated acti-
vation of interferon regulatory factor 3 (IRF-3) and NF-kappa
B that results in interferon-b (IFN-b) production (Talon and
others 2000; Wang and others 2000). In addition, in vitro
experiments using purified proteins showed that the NS1
protein inhibited the dsRNA activation of PKR (Lu and
others 1995). However, it was subsequently established that
these functions do not correspond to the actual function of
NS1 protein-mediated dsRNA binding in influenza A virus-
infected cells. To determine the role of NS1 dsRNA binding
in influenza A virus-infected cells, a recombinant influenza
A/Udorn/72 (Ud) virus was generated that expresses an NS1
protein in which R38 was changed to alanine (Min and others
2006). This amino acid substitution also abolishes the nuclear
localization signal (NLS) in the RBD (Greenspan and others
1988; Melen and others 2007). However, because the Ud
NS1 protein has a second NLS in the ED (Melen and others
2007), the R38A mutant NS1 protein is imported into the
nucleus (Min and others 2006). Consequently, defects in the
replication of this R38A mutant virus can be attributed
largely to the loss of dsRNA-binding activity of the NS1
protein. Neither the PKR activation nor an increase in the
IFN-b mRNA production was detected in R38 mutant virus-

infected cells. The primary defect was shown to be the in-
ability to block activation of the IFN-induced 2¢-5¢ OAS/
RNAse L pathway (Min and others 2006). Because 2¢-5¢
OAS has to be activated by dsRNA to activate RNase L
(Silverman 2007), this result demonstrated that the primary
role of dsRNA binding by the NS1 protein in infected cells
is to sequester dsRNA away from 2¢-5¢ OAS. Interestingly,
2¢-5¢ OAS has a very lower affinity for dsRNA (Hartmann
and others 2003), indicating that the NS1 protein can ef-
fectively compete for dsRNA only with cellular proteins
with low affinity for dsRNA. The amino acids of the NS1
RBD that participate in dsRNA binding also participate in
the binding of several proteins, including a-importin,
TRIM25, and the viral nucleoprotein (Melen and others
2007; Gack and others 2009; Robb and others 2011). Be-
cause this region of the NS1 RBD is crucial for multiple
functions that are required for virus infection, it should be an
excellent target for the development of new influenza virus
antivirals.

EBOV VP35 Protein

EBOVs are enveloped viruses that contain a non-
segmented, negative-sense single-stranded RNA genome.
These viruses cause hemorrhagic fever in humans and
nonhuman primates with very high mortality rates (Geisbert
and Hensley 2004). The VP35 structural protein, which

FIG. 1. Structure of the
nonstructural protein 1 (NS1)
RNA-binding domain (RBD).
(A) Structure of the NS1 RBD
in the absence of double-
stranded RNA (dsRNA). The
a2 and a2’ helicases contain
the amino acids that bind
dsRNA. Generated from PBD
accession number 1NS1. (B)
Structure of the NS1 RBD
in complex with a 19-bp
dsRNA. From Cheng and
others (2009) with permission.
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contains 340 amino acids, is comprised of 2 domains: the N-
terminal oligomerization domain (amino acids 1–220); and
the C-terminal RBD (amino acids 221–340) (Basler and
others 2003; Hartman and others 2004; Cardenas and others
2006). There are 2 different modes of binding of the EBOV
VP5 protein and its RBD to dsRNA: binding to the blunt end
of a dsRNA, termed end-capping; and binding to the back-
bone of dsRNA (Kimberlin and others 2010; Leung and
others 2010; Hastie and others 2012). In contrast, the influ-
enza A virus NS1 protein binds only to the dsRNA backbone
(Fig. 1). The determination of the affinity of EBOV VP35 for
dsRNA is complicated because of the 2 modes of binding.
Nonetheless, the affinity of the full-length VP35 protein for a
500-bp dsRNA appears to be high (*3–4 nM) (Zinzula and
others 2012), which is probably significantly higher than the
affinity of the influenza NS1 protein for dsRNA. Several X-
ray crystal structures of VP35 RBDs bound to small dsRNAs
have been published (Kimberlin and others 2010; Leung and
others 2010). Figure 2 shows the structure of VP35 RBDs
bound to an 8-bp blunt end dsRNA (Leung and others 2010).
Assymetric RBD dimers wrap around the 2 ends of the
dsRNA. Because molecules A and B are equivalent to
molecules C and D, respectively, it is appropriate to focus on
only one of these 2 dimers, for example, the A-B dimer.
Central basic patches in molecules A and B, particularly
Arg312 and Arg322, mediate 2 different intermolecular in-
teractions. Molecules A and B interact through hydrogen
bonds that include Arg312 and Arg322 of molecule A. These
2 Args in molecule B, the end-capping RBD, have a different
function: they form direct contacts with the phosphodiester
backbone near the end of dsRNA. Molecule B also interacts

with the end of the dsRNA through hydrophobic residues. In
contrast to molecule B, amino acids in molecule A other than
those centered around Arg312 and Arg322 directly contact
the dsRNA backbone. Another study indicates that other
VP35 molecules coat the backbone of longer dsRNAs (Bale
and others 2013). Recognition of dsRNA molecules by the
V35 RBD is entirely with the dsRNA backbone and not with
specific base pairs (Kimberlin and others 2010; Leung and
others 2010), as is also the case for the influenza A virus NS1
protein.

The strong binding of VP35 to the blunt end and back-
bone of dsRNA affords protection against cellular dsRNA
sensors like RIG-I and MDA-5 that recognize both the ter-
minus and backbone of dsRNA (Kimberlin and others 2010;
Leung and others 2010; Jiang and others 2011; Kowalinski
and others 2011; Hastie and others 2012). This protection
was documented in EBOV-infected cells. EBOV recom-
binant viruses were generated to encode a VP35 protein
containing a mutation in the basic stretch of the RBD that
eliminates dsRNA binding, for example, Arg312 mutated to
alanine (Hartman and others 2008a, 2008b; Prins and others
2010). These viruses were attenuated and did not block RIG-
I-mediated activation of IRF-3 and IFN production. In fact,
these recombinant viruses were avirulent in mice and guinea
pigs (Hartman and others 2008a; Prins and others 2010),
indicating that the inhibition of this antiviral response is
required for virulence. Consequently, small molecules that
inhibit VP35 binding to dsRNA, including the VP35 di-
merization that is required for the 2 modes of dsRNA
binding, would be expected to be potent antivirals against
lethal EBOV infections.

FIG. 2. Structure of the
Ebola virus (EBOV) VP35
RBD in complex with an
8-bp dsRNA. Generated from
PBD accession number 3L25.
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Concluding Remarks

Influenza A viruses and EBOVs encode dsRNA-binding
proteins, namely, the NS1 and VP50 proteins, respec-
tively. These 2 viral dsRNA-binding proteins differ in the
mode of dsRNA binding, and in the role of their dsRNA
binding in combating host antiviral defenses in infected
cells. The influenza A virus NS1 protein binds with rela-
tively low affinity to the backbone of dsRNA and appar-
ently inhibits the function of only one dsRNA-binding
protein in infected cells, the IFN-induced 2¢-5¢ OAS en-
zyme, which has a low affinity for dsRNA (Min and others
2006). In contrast, the EBOV VP35 binds with higher
affinity to both the blunt end and backbone of dsRNA, and
this dsRNA binding is responsible for the suppression of
RIG-I-mediated activation of IRF-3 and IFN production in
infected cells (Hartman and others 2008a, 2008b; Prins
and others 2010).
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