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Extinctions can dramatically reshape biological communities. As a case in point,

ancient mass extinction events apparently facilitated dramatic new evolutionary

radiations of surviving lineages. However, scientists have yet to fully under-

stand the consequences of more recent biological upheaval, such as the

megafaunal extinctions that occurred globallyover the past 50 kyr. New Zealand

was the world’s last large landmass to be colonized by humans, and its

exceptional archaeological record documents a vast number of vertebrate extinc-

tions in the immediate aftermath of Polynesian arrival approximately AD 1280.

This recently colonized archipelago thus presents an outstanding opportunity

to test for rapid biological responses to extinction. Here, we use ancient

DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage

(Phocarctos spp.) apparently facilitated a subsequent northward range expansion

of a previously subantarctic-limited lineage. This finding parallels a similar

extinction–replacement event in penguins (Megadyptes spp.). In both cases, an

endemic mainland clade was completely eliminated soon after human arrival,

and then replaced by a genetically divergent clade from the remote subantarctic

region, all within the space of a few centuries. These data suggest that ecological

and demographic processes can play a role in constraining lineage distributions,

even for highly dispersive species, and highlight the potential for dynamic

biological responses to extinction.
1. Introduction
Biologists have long been intrigued by the evolutionary importance of historical

contingencies [1,2]. For example, the notion that the extinction of one lineage

can directly benefit another remains a central paradigm in evolution and ecol-

ogy [3,4]. In particular, palaeontologists have inferred that mass extinction

events in the geological record can have profound downstream consequences

for surviving taxa [5,6]. Despite the extensive attention devoted to the impacts

of ancient extinctions [7], our understanding of the biological consequences of

more recent upheaval (e.g. worldwide megafaunal extinctions over the past 50

thousand years (kyr) [8]) remains limited.

Human settlement of New Zealand approximately AD 1280 [9] led to the

sudden demise of a large component of these islands’ highly endemic and distinc-

tive avifauna, with 40 indigenous bird species going extinct within 200 years of

human arrival [10,11]. On the other hand, large dispersive coastal vertebrates
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such as penguins and pinnipeds have been assumed to have sur-

vived New Zealand’s human impacts [12], although recent data

suggest this may not always have been the case [11]. Specifically,

ancient DNA (aDNA) analysis of Megadyptes penguins indicates

that an endemic pre-historic mainland species (Megadyptes
waitaha) was eliminated soon after human arrival, and sub-

sequently replaced by the subantarctic Megadyptes waitaha
antipodes [11]. While such an unexpected finding could readily

be dismissed as an intriguing anomaly, we propose that dynamic

extinction–recolonization patterns may be a more general

phenomenon in impacted ecosystems [13–15]. This finding

seems congruent with previously described extinctions that

appear to have released dispersive taxa from the biogeographic

constraints previously imposed by the presence of sister lineages

[8,16]. Here, we test for parallel extinction–recolonization

scenarios by conducting ancient and modern DNA analyses of

pre-human Holocene fossil, archaeological and extant New

Zealand sea lion (Phocarctos) samples, and comparing these

temporal genetic data with published penguin datasets [11].
097
2. Material and methods
(a) Modern DNA extraction and sequencing
Fifty-six modern Phocarctos hookeri skin samples were collected

during the 2003–2012 breeding season from pups born at

seven breeding colonies throughout the species’ modern breed-

ing range (electronic supplementary material, table S1 and

figure S1). DNA was extracted from 2 mm2 skin samples follow-

ing a modified Chelex protocol with 5% and 4 mg proteinase K

[17] followed by ethanol precipitation. An approximately

1.2 kbp (excluding primers) fragment of the mitochondrial

DNA (mtDNA) control region (CR)/D-loop was amplified

using the primers L-NZSL d-loop-tRNA pro (50 CTCAAGGAA-

GAGGCAAGAGC 30) and H-NZSL d-loop tRNA phe (50

GAAGGGCTAGGACCAAACCT 30) [18]. PCRs (25 ml) contained

0.4 M of each primer, 1.5 mM MgCl2, 200 mM dNTPs, 0.5 Taq

(BIOTAQ, Bioline), 1 � PCR buffer and 2 ml 1 : 20 diluted DNA.

PCR thermocyling conditions were 948C 4 min, 10 cycles of

948C 20 s, 658C (decreasing 18C per cycle), 728 C 90 s, followed

by 20 cycles of 948C 20 s, 558C 25 s, 728C 90 s, and a final exten-

sion at 728C 5 min. PCR products were purified using AcroPrep

clean up plates (Pall Corporation) following the manufacturer’s

instructions and sequenced using the primer L-NZSL d-loop

tRNA pre using Big Dye terminator technology on an ABI

3730xl (sequencing with H-NZSL d-loop-tRNA phe was not

practical owing to repetitive stretches of sequence within CR).
(b) Ancient DNA extraction and sequencing
A total of 97 pre-human Holocene fossil and early archaeological

(AD 1280–1450 based on associated archaeological remains)

P. hookeri specimens from throughout coastal New Zealand (elec-

tronic supplementary material, figure S1) and the Auckland

Islands were obtained from museum and university collections,

and in situ Holocene fossil deposits [19] (electronic supplementary

material, table S2). P. hookeri bones were identified morphologi-

cally following Worthy [18,20]. To ensure independence of

individual bones, only common elements of the left or right orien-

tation were sampled from an individual deposit, or bones were

sampled from different stratigraphic units within the site. All

aDNA extractions and PCR set-up were carried out at the Univer-

sity of Otago in a purpose-built aDNA laboratory physically

isolated from any other molecular laboratories [21] following

strict aDNA procedures to minimize contamination of samples

with exogenous DNA [22], including the use of negative controls.
DNA was extracted from 70 to 280 mg of bone (or tooth)

powder, following Rohland et al. [23]. Two overlapping frag-

ments (118 and 120 bp, respectively, excluding primers, 189 bp

in total) of the mtDNA CR were amplified using primer pairs

‘NZSLCR1f’/‘NZSLCR1r’ and ‘NZSLCR2f’/‘NZSLCR2’ [19].

PCRs (20 ml reaction) contained 0.25 mM of each primer, 1 M

of Betaine, 1 � PCR buffer, 4 mM MgCl2, 0.625 mM dNTPs,

2U of Amplitaq Gold (Life Technologies) and 2 ml DNA. PCR

thermocycling conditions were 958C 9 min, 60 cycles of 958C
20 s, 548C 30 s, 728C 30 s, and a final extension at 728C 4 min.

The 189 bp region sequenced contained all 11 variable sites of

the approximately 1.2 kbp P. hookeri mtDNA CR. Of these 11

variable sites, nine are parsimony informative. Each PCR was

replicated twice. PCR amplification and all downstream pro-

cedures were carried out in a modern genetics laboratory. PCR

products were purified using EXOSAP (1.5 U ExoI, 1U SAP; GE

Healthcare) by incubation at 378C for 30 min and 808C for

15 min, then sequenced bidirectionally from independent PCR

products using Big Dye terminator technology on an ABI 3730xl.

(c) Ancient DNA authenticity
Each DNA extract was independently amplified at least twice, and

the resulting amplicons sequenced bidirectionally from independent

PCR products to confirm sequence authenticity [24]. The sea-lion-

specific primers did not amplify DNA from any of the extraction

and PCR negative controls. If amplification and sequencing could

not be replicated, then corresponding sequences were excluded

from downstream phylogenetic analysis. In the few instances of

inconsistent DNA sequences from an individual, which were con-

sistent with what could be expected for DNA damage (G–A and

C–T transitions), the DNA extract was amplified and sequenced

bidirectionally at least twice more, and a majority rule consensus

was applied to the independent replicates [25]. After sequence

authentication, the majority of G–A and C–T transitions were

shared by multiple individuals and were geographically concordant

within the context of regional phylogeographic structure [26] (i.e.

consistent differentiation between subantarctic and mainland speci-

mens) and thus clearly do not represent DNA damage. Additionally,

close genetic similarity between archaeological subantarctic and

modern subantarctic samples strongly suggests that DNA damage

is not a significant factor in our analysis. Only five (M2, M4, M6,

M8 and M11; figure 2 and the electronic supplementary material,

table S2 and figure S2) sequences had private G–A or C–T changes

that were not shared with at least one other DNA sequence, and

these are retained in analyses as they show strong phylogenetic simi-

larity with nearby samples. All sequences are deposited in GenBank

(accession numbers KJ588766–KJ588778; KJ648152–KJ64854).

(d) Phylogenetic analysis
Contiguous sequences were constructed using GENEIOUS v. 6.1.2 [27].

The analysis was restricted to the 189 bp region sequenced for all

specimens. Inclusion of partially sequenced specimens, where

only one of the two fragments amplified in aDNA extracts, did

not change the result (electronic supplementary material, figure

S3). The most appropriate model of evolution, as determined by

MODELTEST [28] under the Akaike information criterion, was

GTR þ I þ G. Maximum-likelihood (ML) analysis was performed

in PAUP* [29] using the full heuristic search option. Parameters for

the GTR þ I þ G model were then re-estimated from the data, and

node support was calculated with 10 000 bootstrap replicates.

Bayesian trees were estimated with BEAST v. 1.7.4 [30] in two

independent runs, using 20 000 000 generations, sampling every

1000th generation and discarding 25% as burn-in. Convergence

diagnostics of Bayesian analyses were explored using TRACER

[31] and FIGTREE v. 1.4.0 [32]. The topologies of the ML and Baye-

sian trees were very similar. A network of ancient and modern

haplotypes was constructed using TCS [33] using the 95%
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parsimony criterion. AMOVAs were performed in ARLEQUIN v.

3.5.1.2 [34] to test for temporal and geographical structure

within the mainland lineage.

(e) Radiocarbon dating
Radiocarbon dates on pre-human Holocene fossil P. hookeri
remains were sourced from Collins et al. [19] and Worthy [18].

A further two pre-human Holocene fossil P. hookeri bones were

radiocarbon-dated (electronic supplementary material, table S3)

at Beta Analytic Inc. (USA). Dates are reported as radiocarbon

ages, based on Libby T1/2 ¼ 5568 years, uncorrected for calendar

variation, in years before present (present is AD 1950). Radiocar-

bon ages were calibrated using OXCAL v. 4.2 [35] and the

Marine09 calibration curve [36]. Local DR values [37] were

applied to the calibrations of radiocarbon dates (electronic sup-

plementary material, table S3). The large geographical ranges

of many pinnipeds in their adult stage can make it difficult to

select appropriate DR values for such taxa [38,39]. To account

for this issue, we also applied minimum and maximum New

Zealand DR values [37] to the adult bones radiocarbon-dated.

Calibrated ages are reported as 95.4% confidence calibrated

ages in years BC/AD.

( f ) Testing demographic scenarios
Approximate Bayesian computation (ABC; [40]) was used to quan-

titatively test different demographic scenarios against each other.

ABC is a model-based analysis method, which calculates the pos-

terior distributions of model parameters using information from

prior distributions and extensive simulations rather than calculating

the likelihood from the data directly. Bayesian serial SIMCOAL [41]

was used to simulate the temporal DNA data under four different

models: (i) a closed single population with constant size,

(ii) a closed single population incorporating a bottleneck,

(iii) two closed populations followed by re-colonization and (iv) a

two closed populations model, in which the subantarctic popu-

lation remains a constant population size, whereas the mainland

NZ population experiences a bottleneck with subsequent recovery

(population growth). The BayeSSC input files (showing the prior

ranges) can be found in the electronic supplementary material.

The number of segregating sites, pairwise differences (between

the subantarctic and the mainland NZ populations, and between

time layers, pre-human/archaeological and modern), and private

haplotypes were selected to summarize the data, which resulted

in a total of 30 summary statistics. Nonlinear regression-based

machine learning [42] was applied, implemented in the freely avail-

able ‘abc’ R package [43], with log transformation in the nonlinear

regression step (except for the growth rate in model 4). Tolerance

levels of 0.001, 0.002 and 0.004 were used for the parameter

estimations. The expected deviance (deviance information criterion,

DIC; [44]) was used to infer the best-supported model, implemented

in the R package ‘abc’.
3. Results
(a) Phylogenetic analysis
DNA was successfully amplified and sequenced from 56

modern and 54 aDNA P. hookeri specimens (figure 1 and the

electronic supplementary material, figure S2). Fourteen of the

54 aDNA extracts amplified and sequenced for only one

primer pair, resulting in 40 full aDNA sequences included in

genetic analyses (electronic supplementary material, table S2).

The inclusion of partial sequences did not significantly alter

the phylogenetic results (electronic supplementary material,

figure S3); therefore, only full sequences were used in
downstream analyses. Phylogenetic analyses of modern and

aDNA sequence data reveal a clear genetic distinction between

modern versus ancient mainland New Zealand Phocarctos
(figure 2 and the electronic supplementary material, figures

S2 and S3). Fourteen haplotypes were identified from aDNA

mainland New Zealand samples, and two from pre-historic

Auckland Islands samples (figure 2 and the electronic sup-

plementary material, table S2). There is compelling evidence

for genetic turnover in mainland New Zealand: all pre-historic

mainland samples cluster together in a distinct clade not

detected in modern mainland and subantarctic samples.

Specifically, all pre-human and archaeological samples from

mainland New Zealand belong to a now-extinct evolutionary

lineage that is highly distinct (mtDNA CR divergence 2.1–

4.6%; table 1) from the newly colonized ‘subantarctic’ lineage

that replaced it (figure 1). This distinction is comparable to

the genetic distance between the now extinct M. waitaha and

M. antipodes following a similar extinction and replacement

scenario (mtDNA CR divergence 2.2–4.2%; [11]). By contrast,

there is no evidence of genetic turnover in the subantarctic,

with two of the three modern Auckland Islands haplotypes

also detected in pre-historic subantarctic (Enderby Island)

samples (figure 2 and the electronic supplementary material,

figure S2). These data confirm that the subantarctic lineage

was present on Enderby Island at the time of Polynesian occu-

pancy approximately 650 yr BP [45]. Results from AMOVA

indicate a lack of significant temporal and spatial genetic differ-

entiation among pre-historic mainland samples, but show

major mtDNA differentiation between pre-historic mainland

and subantarctic specimens (table 2). Additionally, genetic

diversity observed within extant P. hookeri and Megadyptes is

considerably lower than that detected within the now extinct

‘mainland’ lineages of these taxa (table 1 and figure 2). More-

over, the P. hookeri haplotype network (figure 2) does not

show the star-like pattern expected to characterize a recent

population expansion, nor does it show extensive ’gaps’ that

might be expected following a population decline.

The recent recolonization of P. hookeri ended a 150-year

period during which no sea lions bred on mainland New Zeal-

and [46,47]. Temporal turnover in mainland New Zealand is

highlighted by the finding that the recently colonized ‘suban-

tarctic’ lineage now occupies terrain that was inhabited by

the extinct ‘mainland’ lineage until just a few centuries ago.

Despite extensive sampling of pre-historic samples (49 speci-

mens successfully sequenced from 18 mainland localities),

there is no indication that the distinctive subantarctic lineage

was present on New Zealand’s mainland until after the

extinction of the endemic mainland clade.
(b) Radiocarbon dating
In addition to eight previously published radiocarbon dates

from mainland New Zealand P. hookeri bones [19], a further

two P. hookeri bones from natural deposits in Northland

(North Island) and Enderby Island (Auckland Islands) were

radiocarbon dated in order to confirm the suspected pre-

human age of these deposits, and the long-term presence of

P. hookeri on mainland New Zealand prior to human arrival

[19]. Along with the previously published radiocarbon

dates [19], these new dates provide further evidence for the

presence of P. hookeri on mainland New Zealand during

the Holocene, prior to human arrival (electronic supplemen-

tary material, figure S4 and table S3).
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(c) Testing demographic scenarios
Four different demographic scenarios were compared using an

ABC framework. Model 3 (recolonization model) had the

highest support values, using both rejection and nonlinear

regression model comparisons (electronic supplementary

material, table S4). Interestingly, support values were highest

for model 4 using the nonlinear regression method and accept-

ing 4000 estimates (electronic supplementary material, table

S4). However, the rejection step accepting 4000 estimates still
favours model 3 (electronic supplementary material, table

S4), providing support for model 3 in five out of six model

comparisons. Parameter estimations for model 3 are provided

in the electronic supplementary material, table S5.
4. Discussion
Spatio-temporal genetic analyses of Megadyptes and Pho-
carctos reveal strikingly similar patterns of turnover. These
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Figure 2. Parallel extinction and re-colonization of Megadyptes penguins and Phocarctos sea lions following human colonization of New Zealand. (a) Bayesian phylogram
of Megadyptes [11] penguin mtDNA control region (CR). M. waitaha sequences in red, M. antipodes in blue. (b) Distribution of Megadyptes (M. waitaha: red; M.
antipodes: blue) prior to 1450 AD and after 1792 AD [11]. (c) Bayesian phylogram of Phocarctos mtDNA CR. Pre-historic mainland Phocarctos sequences in red, sub-
antarctic and modern Phocarctos in blue. (d ) Distribution of Phocarctos ( pre-historic New Zealand [19]; red: subantarctic and modern: blue) prior to 1450 AD and after
1992 AD. (e) Extinction and recolonization timeframes for Megadyptes and Phocarctos. Early Maori (EM) represents the period from human colonization approximately
1280 AD to the extinction of avian megafauna approximately 1450 AD ( purple shaded bar) [45]; Middle – Late Maori (ML), from 1450 AD until the time of European
settlement of New Zealand by sealers in 1792; Historical (H), from 1792 until the end of commercial sealing in 1946; and modern (M) from 1946 onwards.

Table 1. Within-lineage genetic variation in Megadyptes spp. and
P. hookeri. Genetic data for Megadyptes spp. from [11], GenBank accession
numbers FJ391944 – FJ391968. n, sample size, h, haploype diversity, p,
nucleotide diversity.

taxa lineage na h p

P. hookeri ‘mainland’ 49 0.872 0.007

‘subantarctic’ 61 0.339 0.0001

Megadyptes M. waitaha 74 0.834 0.009

M. antipodes 111 0.547 0.004
aSample size (n) based on aDNA only for ‘mainland’ P. hookeri and M. waitaha
and modern and aDNA for ‘subantarctic’ P. hookeri and M. antipodes.
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extinctions of genetically distinctive, endemic mainland

lineages coincide with the arrival of humans approximately

1280 AD. [9]. Additionally, the fact that the remains of both

of these endemic coastal taxa are abundant in early Maori
middens (ca 1280–1450 AD), but are absent from later archae-

ological sites (ca 1450–1792 AD), is consistent with rapid

extinction owing to over-hunting (electronic supplementary

material, figure S4), as also occurred for iconic mainland ter-

restrial megafauna such as moa [10,48]. While temporal shifts

in haplotype/haplogroup frequencies could potentially be

caused by genetic drift alone, the loss of New Zealand’s dis-

tinctive mainland sea lion mtDNA lineage is clearly related to

the complete elimination of this pre-historic endemic

population (electronic supplementary material, table S4).

Numerous drivers have been proposed to explain megafau-

nal extinctions in different parts of the world [8]. For instance,

Holocene shifts inferred for Antarctic vertebrate populations

have been linked to climatic fluctuations [39]. In mainland

New Zealand, however, the distribution of Phocarctos at the

time of human arrival spanned a latitudinal range of some

138 (1500 km; electronic supplementary material, figure S1)

[19], encompassing a broad thermal envelope, such that

minor climatic fluctuations [49] occurring around the time of

human arrival are unlikely to explain the near-simultaneous



Table 2. AMOVA results assessing hierarchical genetic variation between regional and temporal sample groupings.

groups variance % variation FST P(FST)

north island versus south island 20.01455 22.97 20.02970 0.54839+20.01336

north NZ versus south NZa 20.00729 21.47 20.01471 0.43988+20.01620

archaeological versus naturalb 20.02431 24.97 20.04975 0.99218+20.00280

mainland NZ versus subantarcticc 0.11435 25.61 0.25605 0.00000+ 0.00000
aNorth NZ versus South NZ sample groupings corresponding to northern and southern clade distributions within Megadyptes waitaha [11].
bBones sampled from archaeological ( post-1280 AD) or natural ( pre-1280 AD) deposits.
cSubantarctic samples include modern sequences.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140097

6

extinctions of these lineages over such a wide spatial and ther-

mal range. Indeed, genetic divergence levels and fossil data

[19] (electronic supplementary material, figure S4) imply that

Phocarctos persisted in mainland New Zealand throughout

the Late Glacial (ca 14–11.6 kya) and Holocene (11.6 kya–pre-

sent). By contrast, the archaeological and genetic evidence for

over-hunting and extinction of New Zealand’s megafauna

during the early period of Polynesian settlement (ca
1280–1450 AD) is compelling [48,50].

Regardless of underlying causes of extinction, the dramatic

temporal turnover detected for Phocarctos and Megadyptes
populations raises the intriguing possibility that subantarctic

lineages of both taxa may have been formerly excluded from

establishing in mainland New Zealand by the presence of

their endemic mainland counterparts. While, in the case of

Megadyptes, three pre-historic M. antipodes were detected in

New Zealand’s mainland archaeological record, and inter-

preted as non-breeding vagrants from the subantarctic [11], as

yet no ‘subantarctic’ lineage Phocarctos have been detected in

pre-historic mainland samples. Based on our present sampling

of 49 pre-historic mainland individuals, however, we cannot

categorically reject the possibility that the mainland had

occasional, low frequency (e.g. less than 0.02) ‘subantarctic’

P. hookeri vagrants or breeders during pre-historic times. Further

sampling of pre-historic material is required to test for such indi-

viduals. More broadly, these findings suggest that lineage

extinction–replacement scenarios might be more common

than is currently recognized [1–7]. For instance, dynamic bio-

logical responses to extinction have also been suggested for

continental megafauna of the Northern Hemisphere [13]. In

such cases, extinction–replacement scenarios are thought to

reflect the retraction and/or expansion of lineages as a result

of a changing climate and habitat preferences, over timeframes

far exceeding those of the present study [51–53]. Additional

examples of apparent lineage replacement come from New

Zealand’s terrestrial avifauna, which is now dominated by
self-introduced, post-human arrivals following the elimination

of their original endemic relatives (e.g. Porphyrio; Circus) [54].

Over ancient timeframes, New Zealand’s palynological record

provides strong evidence for biotic turnover (extinction–repla-

cement) associated with the Oligocene drowning [55]. We

predict that future studies will reveal additional cases of lineage

extinction and replacement in response to human impacts,

especially across recently colonized ecosystems (e.g. islands of

the Pacific Ocean) [56,57]. Furthermore, additional cases of

extinction and replacement are likely to be evident within

New Zealand’s coastal fauna. We hypothesize that the appar-

ently recent establishment of an Australian blue penguin

(Eudyptula minor) lineage, for example, may reflect similar

extinction–replacement dynamics [58,59].

This study reinforces the hypothesis that processes such

as competitive exclusion and high-density blocking [59] can

potentially play important roles in mediating biological

distributions and biodiversity patterns over a wide range of

temporal and spatial scales. The apparent disconnect between

dispersal ability per se and realized distributions may help to

explain the paradox of spatial structuring of intrinsically

dispersive biotas [60].
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