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Extreme cost of rivalry in a monandrous
species: male – male interactions result
in failure to acquire mates and
reduced longevity

Anne Lizé, Thomas A. R. Price, Chloe Heys, Zenobia Lewis
and Gregory D. D. Hurst

Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK

Mating system variation is profound in animals. In insects, female willingness

to remate varies from mating with hundreds of males (extreme polyandry) to

never remating (monandry). This variation in female behaviour is predicted to

affect the pattern of selection on males, with intense pre-copulatory sexual

selection under monandry compared to a mix of pre- and post-copulatory

forces affecting fitness under polyandry. We tested the hypothesis that dif-

ferences in female mating biology would be reflected in different costs of

pre-copulatory competition between males. We observed that exposure to

rival males early in life was highly costly for males of a monandrous species,

but had lower costs in the polyandrous species. Males from the monandrous

species housed with competitors showed reduced ability to obtain a mate

and decreased longevity. These effects were specific to exposure to rivals com-

pared with other types of social interactions (heterospecific male and mated

female) and were either absent or weaker in males of the polyandrous species.

We conclude that males in monandrous species suffer severe physiological

costs from interactions with rivals and note the significance of male–male

interactions as a source of stress in laboratory culture.
1. Introduction
Female mating behaviour varies widely among taxa [1]. The rate at which females

remate is a fundamental parameter in evolution and ecology, impacting on dis-

ease transmission (e.g. [2]), male/female dimorphism (e.g. [3]), the degree of

sexual conflict [4] and potentially the rate of evolution of a species (reviewed in

[5]) and its propensity both to speciate (e.g. [6]) and go extinct (e.g. [7]). Within

the genus Drosophila alone, species exist where females mate once in their lifetime,

and others where females will mate with a different male within 30 minutes of

completing copulation [8,9]. These patterns of mating behaviour influence the

pattern of selection on males. Where females are monandrous, male reproductive

fitness depends solely on pre-copulatory sexual selection (success in acquiring

mates), which often involves male–male competition. By contrast, male fitness

under female polyandry depends on both pre- and post-copulatory sexual selec-

tion, which involves sperm competition and cryptic female choice of sperm [1].

Post-copulatory sexual selection can be intense, driving the evolution of, for

example, increased testes size and unusual ejaculate properties [10,11].

Recently, it has been recognized that female mating behaviour may pro-

foundly affect male life history. In Antechinus marsupial mice, synchronous

polyandry by females drives intense post-copulatory sexual selection in

males, leading to the death of the males within the breeding season [12].

More recently, longevity effects associated with continued mate-seeking behav-

iour have been observed in Drosophila melanogaster [13]. Males maintained in the

presence of female pheromones, but in the absence of a mate, died before males

that were sexually satiated or maintained without the stimulus to seek mates.
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In this paper, we examined whether monandry might

likewise produce strong life-history impacts, where male–

male interactions occur over a protracted period, rather

than during a confined breeding bout. Our study was motiv-

ated by the recent observation that males in the monandrous

species Drosophila subobscura mate for twice as long when

previously housed with rival males [14]. Previous work has

demonstrated that increases in copulation duration can

represent an adaptive response to the risk of sperm compe-

tition (reviewed in [15]). However, this explanation is

unlikely to apply to the generally monandrous D. subobscura
[16]. It was proposed that the effect in D. subobscura may

instead derive from poorer condition of males that had

been subject to social interactions. For instance, increasing

male age is known to be associated with increased copulation

duration in flies [17]. We reasoned that social interaction may

be producing a similar effect to ageing in male D. subobscura.

Because condition is an important determinant of male abil-

ity to provide nuptial gifts and gain matings in D. subobscura
[18], we predicted that the impact of prior social interactions

may go beyond copulation duration, and be reflected in an

array of traits. To this end, we examined the impact of social

environment on a male’s ability to acquire matings and on long-

evity. We compared social environment effects across two

Drosophila species: the monandrous D. subobscura, and the clo-

sely related polyandrous species Drosophila pseudoobscura
[16,19,20]. As males of a monandrous species are only subjected

to pre-copulatory sexual selection while males of polyandrous

species are subjected to both pre- and post-copulatory sexual

selection, we expected that the presence of rivals before copu-

lation would have a more profound impact on the fitness

(reproductive success and survival) of males of the monan-

drous species than the polyandrous one.
2. Material and methods
(a) Species examined and mating procedure
Multi-female lines of D. subobscura (initially established from

nine inseminated wild females from British Columbia) and

D. pseudoobscura (N ¼ 100) were collected in 2008 from Vancouver

Island (British Columbia, Canada) and Show Low (AZ, USA),

respectively. Flies were maintained in large outbred populations

in a humidified room at 218C with a 12 L : 12 D photoperiod, on

standard corn–sugar–yeast–agar medium (ASG medium).

Experimental adult flies were raised at standard densities of 50

larvae per vial and isolated as virgins within 24 h of eclosion.

Females were kept at a standard density of five per vial. Males

were kept in a vial in the conditions described later in the methods.

Experiments were performed at 218C.
(i) Experiment 1: male response to social environment
Previous work showed that the presence of a single rival affected

copulation duration in both species [14,16,21]. Here, we exam-

ined the specificity of the male response to rivals by exposing

males to various social environments.

For each species, males were placed either individually (treat-

ment ‘single’), or with one rival male (treatment ‘one rival’), four

rival males (treatment ‘four rivals’), one heterospecific male (treat-

ment ‘heterospecific’) or one conspecific mated female (treatment

‘mated female’), from within 8 h of eclosion to 8 days old

(N total D. subobscura: single¼ 126, one rival ¼ 152, four rivals¼ 99,

heterospecific ¼ 57, mated female ¼ 63; N total D. pseudoobscura:

single¼ 58, one rival ¼ 56, four rivals ¼ 41, heterospecific ¼ 19,
mated female¼ 16). Numbers of trials were higher for D. subobscura
to reduce the risk that the lower mating rate in this species would

reduce the number of matings below which reasonable analysis of

copulation duration and latency was difficult. It was also partly

owing to the difficulty of synchronizing eclosion of the two species.

‘Heterospecifics’ corresponded to a D. pseudoobscura male for

D. subobscura and vice versa. The females used to alter social environ-

ment in the ‘mated female’ treatment were mated a day before

exposure; they were conspecific and the same age as the males

tested. As D. subobscura females are monandrous [16], they were

thus inaccessible to the tested male. However, D. pseudoobscura
females typically remate after 5 days, and so it is likely that they

will have mated with the experimental male. This means that

the experimental D. pseudoobscura male for the ‘mated female’

treatments would not have been a virgin. Moreover, the relatively

low sample size for the D. pseudoobscura trials investigating the

impact of heterospecific males and mated females also means

that the results need to be interpreted cautiously. Conspecific and

heterospecific males were right or left wing-clipped at emer-

gence to allow distinction (the clipped wing was randomized

across replicates).

After the exposure period, the male was placed in a vial into

which a single virgin female was then added. Where males

were exposed to multiple conspecific males, only one male was

randomly chosen from each vial to avoid pseudoreplication.

Sexual partners had a 3 h window to copulate, mimicking their

natural ecology. This procedure was followed for all treatments

detailed above. Male responses to treatments were assessed by

measuring their propensity to acquire a mate (proportion mating)

(N mated males D. subobscura: single¼ 97, one rival ¼ 64, four

rivals¼ 26, heterospecific ¼ 38, mated female¼ 39; N mated

males D. pseudoobscura: single ¼ 53, one rival ¼ 53, four rivals¼ 39,

heterospecific ¼ 18, mated female ¼ 14). For each mating observed,

we also recorded copulation latency (time from male introduction

into a female vial until mating occurred) and copulation duration.

(ii) Experiment 2: the effect of rivals on male ability to compete
for a female

Males were either kept singly (‘single’ males) or exposed to ‘four

rivals’ as described above, before being placed in competition for

female access in the arena of mating. To this end one ‘single’ and

one ‘four rival’ male were placed in each vial prior to adding one

virgin female (ND. subobscura: 24; ND. pseudobscura: 40). The success of

‘four rivals’ and ‘single’ males in acquiring the female as a mate

was then scored. Copulation latency and duration were also

recorded for each mating.

(iii) Experiment 3: effect of exposure to rivals early in life
on male longevity

Males were either kept singly (‘single’ males) or exposed to ‘four

rivals’ as described above. After the exposure period, males were

isolated (for the ‘four rivals’ males) and transferred to a new

fresh vial (ND. subobscura: singlelongevity ¼ 40, four rivalslongevity ¼

37; ND. pseudobscura: singlelongevity ¼ 35, four rivalslongevity ¼ 40).

Every Monday, Wednesday and Friday, the number of dead

males in each group for each species was recorded. Live males

were transferred to a new fresh vial of food weekly until all

males died. This experiment was run from mid June 2012 to

mid November 2012. Longevity assessments were performed at

188C for D. subobscura and 218C for D. pseudoobscura.

(b) Relevance of the methods to the ecology
of the species

Conditions used here are likely to approximate situations experi-

enced by these flies in nature. The two species inhabit the same
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Figure 1. Probability of successfully mating when alone with a female for (a) D. subobscura and for (b) D. pseudoobscura, when males were kept singly (single) or
with one rival (one rival), four rivals ( four rivals), a heterospecific male (heterospecific) or a mated female (mated female) prior to copulation. Different letters
represent significant differences within each graph. For statistical results, see the electronic supplementary material, table S1a,b.
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forests on Vancouver Island [22], almost certainly interacting on

breeding sites. Our rival/no rival conditions are likely to occur to

flies in nature as local density and sex ratio can be highly variable

in both species (ranging from intense male–male interactions to

almost complete absence of rivals) [23,24]. Mating trials in vials

do increase the likelihood of copulation occurring during an

interaction, but the impact is modest (female flies provided

with a refuge have a 20% lower mating rate) [25]. Both species

are crepuscular, with mating typically occurring at 218C during

a few hours around dusk and dawn [23,24]. However D. subobs-
cura is less tolerant to high temperatures than D. pseudoobscura, so

we used 188C for the D. subobscura longevity trials.

Drosophila subobscura females mature at 8 days post eclosion,

with males maturing at 2–3 days [26]. Drosophila pseudoobscura
females mature at 3 days post eclosion, and males at 1–2 days

[26]. Both species have a highly male-biased operational sex

ratio, owing to monandry in D. subobscura [16], and a 3–5 day

female remating latency in D. pseudoobscura [22]. Both species

can live for three months in ideal laboratory conditions [27],

but are much shorter lived as adults in nature [28,29]. Assuming

an 8% death rate in nature as measured for D. pseudoobscura,

40% of flies will die within a week of eclosion, which is relevant

to the mating ages we use for both species. Our longevity study

probably overestimates longevity, but longevity is frequently

used as an indicator of stress occurring at a younger age in

Drosophila [30].

(c) Statistical analysis
All statistical analyses were performed using v. R 2.12.1 [31].

Data on the proportion of males copulating were analysed

using a generalized linear model (GLM) procedure assuming a

binomial error distribution with a logit link function. Copulation

latencies and duration data were tested for normality using

Shapiro tests, and for variance heteroscedasticity using Bartlett

tests, and they were non-normally distributed. A range of trans-

formations was tried, with copulation duration normalized by Ln

transformation, and copulation latency normalized by log 10

transformation. The transformed data were then analysed using

a GLM procedure assuming a normal distribution with an iden-

tity link function [32]. Differences in responses under different

treatments were assessed by analysis of variance (ANOVA) fol-

lowed by a Tukey HSD test. Mating success in two male

mating trials was evaluated using an exact binomial test. Cox

proportional-hazard regressions were used to assess variation

in longevity for ‘single’ males and for ‘four rivals’ males. Survi-

val analysis involves the modelling of time to event data, with
death (the hazard function) being considered the ‘event’, so

that each death corresponded to one ‘event’ modelled against

time with treatments (‘single’ or ‘four rivals’) as factor (using

the Survdiff function).
3. Results
(a) Experiment 1: male response to social environment
We first examined the effect of social environment on the abil-

ity to acquire a mate in the absence competition. We observed

that exposure to ‘one rival’ or ‘four rivals’ significantly reduced

male ability to acquire a mate in the monandrous species,

D. subobscura (figure 1a; electronic supplementary material,

table S1a). In this species, exposure to one or more rivals led

to a nearly threefold reduction in male ability to acquire a

mate compared with ‘single’ males. The other types of social

environment had an effect comparable with the ‘single’ male

treatment (electronic supplementary material, table S1a). By

contrast, there was no difference among treatments in male

ability to acquire a mate in D. pseudoobscura, to gain a mating

(figure 1b; electronic supplementary material, table S1b).

Any type of social environment increased copulation

latency in D. subobscura compared with ‘single’ males

(figure 2a; electronic supplementary material, table S2a). By

contrast, exposure to a ‘heterospecific’ male or ‘mated female’

increased copulation latency in D. pseudoobscura compared

with ‘single’ males and to ‘one rival’ males, while exposure to

‘four rivals’ had no effect (figure 2b; electronic supplementary

material, table S2b).

In D. subobscura, exposure to a rival increased copulation

duration as previously reported, but this increase was

even stronger following exposure to ‘four rivals’, whereas

exposure to a ‘heterospecific’ male had no effect on copu-

lation duration (figure 3a). However, exposure to a ‘mated

female’ increased copulation duration to the same extent as

exposure to ‘one rival’ did (electronic supplementary

material, table S3a). By contrast, the effect of additional

rivals was not profound in D. pseudoobscura (figure 3b). The

null hypothesis that a single rival affected copulation dur-

ation was not rejected, while exposure to ‘four rivals’ did

increase copulation duration. As in D. subobscura, exposure

to a ‘heterospecific’ male had no effect on copulation
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duration, but exposure to a ‘mated female’ significantly

decreased copulation duration (electronic supplementary

material, table S3b).
(b) Experiment 2: the effect of rivals on male ability
to compete for a female

Competition assays revealed that males of both species which

had been exposed to rivals before copulation were less suc-

cessful in acquiring matings when in competition with

‘single’ males. In the monandrous species D. subobscura, the

male exposed to ‘four rivals’ was successful in only two of

24 trials (8.33%, exact binomial test: p ¼ 0.001). The male

exposed to ‘four rivals’ were also less successful in the poly-

androus species D. pseudoobscura, but the effect was smaller,

with males exposed to ‘four rivals’ successfully mated in 11

of 40 trials (27.5%, exact binomial test: p ¼ 0.006).
(c) Experiment 3: effect of exposure to rivals early
in life on male longevity

Exposure to rivals during the first 8 days of life significantly

decreased the longevity of males of the monandrous species

(D. subobscura) (Survdiff; x2
1 ¼ 42:6, p¼ 6.84�10211) (figure 4a)

but not of males of the polyandrous species (D. pseudoobscura)

(Survdiff; x2
1 ¼ 1:25, p¼ 0.264) (figure 4b).
4. Discussion
For males in a monandrous species, the fitness benefit of a

single mating is very high. This generates strong competition

for mating opportunities, and high level of investment in

obtaining matings, as reflected in adaptations such as pro-

vision of nuptial gifts. We predicted that presence of one or

more rival males in monandrous species would lead to
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costs associated with this competition. Our results demon-

strated that these costs are profound, with prior exposure to

rivals associated with decreased ability to obtain matings,

and reduced longevity. Furthermore, these costs are greater

in the monandrous D. subobscura than in the polyandrous

D. pseudoobscura. Although based on a comparison of only

two species, the result is consistent with the hypothesis that

pre-copulatory male competition should be vital to male

success in monandrous species, and so be associated with sig-

nificant effort and costs.

Previous studies in Drosophila have demonstrated a cost of

sex, in that individuals that mate more frequently die

younger (e.g. [30,33]). In D. melanogaster, there is also a long-

evity impact in males associated with mate-seeking and

courtship activity [13]. Our results demonstrate that there is

also a direct cost of intrasexual social interaction in the mon-

androus species D. subobscura, even in the absence of mate

finding, courtship and sex. Thus, intrasexual social inter-

action intensity should be accounted for as one of the major

factors associated with reproduction that affect longevity.

Sexual selection leading to ‘suicidal reproduction’ in

males has been demonstrated in the Australian redback

spider, where cannibalized males manipulate female behav-

iour to increase paternity [34]. Very recently, this has also

been observed in semelparous marsupials, where females

manipulate male behaviour to increase their own reproduc-

tive success [12]. Males in these species increase mating

effort at the expense of survival, not because adult male or
female survival is low for environmental reasons or because

males are altruistic, but ultimately because females profit

from sperm competition and their remating behaviour selects

for males that invest all their reserves into mating effort [35].

In these two examples, the reproductive system is polyan-

drous, with females remating with several males. Our

results demonstrate that even in monandrous species, pre-

copulatory sexual selection may lead to male behaviours

that severely impact upon their longevity.

There are two possible explanations for why males of

monandrous species would have their reproductive ability

heavily reduced when exposed to rivals. First, pre-copulatory

male–male interactions may be more intense in monandrous

species. The increased effort involved in this competition may

be reflected in more profound effects on physiological con-

dition, reducing their ability to seek matings. Second,

monandry is associated with increased choosiness of females

in mating, and increased probability of a virgin female reject-

ing a male [10,30]. If exposure to rivals impacts on male

condition, this reduction in condition may drastically

reduce his mating success in the face of highly selective mon-

androus females. Evidence for increased effects of rivals on

condition derives from the profound longevity impact of

housing with rivals. Evidence for differential choosiness is

suggested by the requirement for female D. subobscura to be

provided with nuptial gifts [18], and the lower acceptance

rate by D. subobscura females than D. pseudoobscura females

even for males kept alone (77 versus 91%, respectively).
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Previous work on polyandrous species highlighted the

adaptive benefits of plasticity in mating duration following

exposure to a rival (reviewed in [15]). We observed that plas-

ticity in mating duration was most profoundly observed in

D. subobscura, a monandrous species where there is little or

no sperm competition [14,16]. The general deterioration in

male condition following housing with rivals provides the

most parsimonious explanation for the prolonged copulation

duration following exposure to rivals in D. subobscura. In

other words, exhausted D. subobscura males mate for longer

and die earlier. Fatigue also increases the length of copulation

in the wolf spider [36]. Our favoured hypothesis is that rival

presence may impact on sleep patterns. Sleep is essential for

longevity in D. melanogaster [37]. In our experiment, exposure

to rivals led to increased aging rate in this monandrous

species, which could indirectly be caused by shortened

periods of sleeping. To our knowledge, the results presented

in this study are the first to demonstrate a link between

exhaustion induced by social interactions, reproductive

deficiency and decreased longevity. Our results also imply

that plasticity in mating duration can have both adaptive

(sperm competitive advantage) and non-adaptive (exhaus-

tion) causes. Thus, selection for plasticity in mating

duration may be driven by more complex forces than

simply for increasing male success in sperm competition.

In this study, the results for D. pseudoobscura are similar to

those in previous published studies, with exposure to a rival

increasing latency to mating and copulation duration [21].

However, we found little evidence that exposure to four

males had a greater impact on male mating behaviour than

exposure to a single rival. This has also been observed in

D. melanogaster [38] and is predicted by theory on risk and

intensity of sperm competition [39]. The data on response

by males to exposure to a previously mated female has to

be interpreted cautiously, because focal males are likely to

have remated with this female. Drosophila pseudoobscura
females typically remate after 4 days [20], and so are likely

to have mated with the focal male at least once. Males of

this species can mate with three females a day, each day for

several days without any loss of ability to mate [40], so the

impact of this may have been minor. More detailed exper-

iments would be needed to fully understand the impact

of the presence of females on subsequent male mating

behaviour in this species.

Our data provide support for the notion that social

environment (presence of rivals) has a large impact on con-

dition in a monandrous species. The data are notable

because D. subobscura is commonly used as a model of

stress tolerance in nature [41–43]. However, stress tolerance

studies in this species have focused on thermal effects on gen-

etic and phenotypic polymorphisms of wings and desiccation

resistance [43–45]. Our data suggest that experimental analy-

sis of stress impacts should both control and incorporate

social environment in their design.

In conclusion, we find remarkably strong impacts of

social environment on the ability of males to obtain mates,

on their ability to compete with rivals, and on their longevity.

These impacts are far stronger in a monandrous species than

in a polyandrous relative, which is likely to reflect the impor-

tance of pre-copulatory success in monandrous species. We

suggest that mating system can be used to predict the costs

of social interactions in a species, and this could be useful

for the design of effective laboratory studies, and potentially

for animal husbandry for conservation or human use.
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42. Rego C, Balanyà J, Fragata I, Matos M, Rezende EL,
Santos M. 2010 Clinal patterns of chromosomal
inversion polymorphisms in Drosophila subobscura
are partly associated with thermal preferences and
heat stress resistance. Evolution 64, 385 – 397.
(doi:10.1111/j.1558-5646.2009.00835)

43. Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra
L. 2000 Rapid evolution of a geographical cline in
size in an introduced fly. Science 287, 308 – 309.
(doi:10.1126/science.287.5451.308)

44. Gilchrist GW, Huey RB, Serra L. 2001 Rapid evolution
of wing size clines in Drosophila subobscura.
Genetica 112 – 113, 273 – 286. (doi:10.1023/
A:1013358931816)

45. Gilchrist G, Jeffers L, West B, Folk D, Suess J, Huey
RB. 2008 Clinal patterns of desiccation and
starvation resistance in ancestral and invading
populations of Drosophila subobscura. Evol. Appl. 1,
513 – 523. (doi:10.1111/j.1752-4571.2008.00040.x)

http://dx.doi.org/10.1111/evo.12125
http://dx.doi.org/10.1093/beheco/arp008
http://dx.doi.org/10.1007/BF02982781
http://dx.doi.org/10.1126/science.1163766
http://dx.doi.org/10.1126/science.1163766
http://dx.doi.org/10.1016/j.jinsphys.2012.10.008
http://dx.doi.org/10.1073/pnas.85.15.5597
http://dx.doi.org/10.1073/pnas.85.15.5597
http://dx.doi.org/10.1098/rstb.2005.1787
http://dx.doi.org/10.1098/rstb.2005.1787
http://dx.doi.org/10.1111/j.1558-5646.2007.00280.x
http://dx.doi.org/10.1111/j.1095-8312.1987.tb00438.x
http://dx.doi.org/10.1111/j.1095-8312.1987.tb00438.x
http://dx.doi.org/10.1038/373241a0
http://dx.doi.org/10.2307/1390807
http://dx.doi.org/10.1038/338760a0
http://dx.doi.org/10.1038/338760a0
http://dx.doi.org/10.1126/science.271.5245.70
http://dx.doi.org/10.1038/nature05206
http://dx.doi.org/10.1016/0003-3472(75)90069-X
http://dx.doi.org/10.1186/1471-2202-11-56
http://dx.doi.org/10.1093/beheco/arp189
http://dx.doi.org/10.1093/beheco/arp189
http://dx.doi.org/10.1098/rspb.1996.0189
http://dx.doi.org/10.1098/rspb.1996.0189
http://dx.doi.org/10.1242/jeb.037630
http://dx.doi.org/10.1111/j.1558-5646.2009.00835
http://dx.doi.org/10.1126/science.287.5451.308
http://dx.doi.org/10.1023/A:1013358931816
http://dx.doi.org/10.1023/A:1013358931816
http://dx.doi.org/10.1111/j.1752-4571.2008.00040.x

	Extreme cost of rivalry in a monandrous species: male-male interactions result in failure to acquire mates and reduced longevity
	Introduction
	Material and methods
	Species examined and mating procedure
	Experiment 1: male response to social environment
	Experiment 2: the effect of rivals on male ability to compete for a female
	Experiment 3: effect of exposure to rivals early in life on male longevity

	Relevance of the methods to the ecology of the species
	Statistical analysis

	Results
	Experiment 1: male response to social environment
	Experiment 2: the effect of rivals on male ability to compete for a female
	Experiment 3: effect of exposure to rivals early in life on male longevity

	Discussion
	Acknowledgements
	Data accessibility
	Funding statement
	References


