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Analyses of evolutionary dynamics in
viruses are hindered by a time-dependent
bias in rate estimates
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Time-scales of viral evolution and emergence have been studied widely, but

are often poorly understood. Molecular analyses of viral evolutionary time-

scales generally rely on estimates of rates of nucleotide substitution, which

vary by several orders of magnitude depending on the timeframe of mea-

surement. We analysed data from all major groups of viruses and found a

strong negative relationship between estimates of nucleotide substitution rate

and evolutionary timescale. Strikingly, this relationship was upheld both

within and among diverse groups of viruses. A detailed case study of primate

lentiviruses revealed that the combined effects of sequence saturation and pur-

ifying selection can explain this time-dependent pattern of rate variation.

Therefore, our analyses show that studies of evolutionary time-scales in viruses

require a reconsideration of substitution rates as a dynamic, rather than as a

static, feature of molecular evolution. Improved modelling of viral evolutionary

rates has the potential to change our understanding of virus origins.
1. Introduction
Determining the time-scale of evolutionary change is central to understanding the

patterns and processes of viral emergence. At present, there is little consensus over

the time-scale of viral origins and their long-term evolutionary dynamics. For

instance, the phylogenetic relationships within some groups of primate lentiviruses

(Family Retroviridae), pegiviruses and hepaciviruses (Family Flaviviridae) suggest

virus–host codivergence [1] or ancient reservoirs in host species [2,3], which can be

explained only byevolutionary timeframes of thousands or millions of years. How-

ever, many of the time-scales inferred for these viruses using tip-dated molecular

clocks are much shorter, on the order of tens or hundreds of years [4,5].

Obtaining reliable time-scales depends on accurate estimates of evolutionary

rate. Although nearly all RNA viruses seem to experience very rapid evolutionary

change—usually expressed as rates of nucleotide substitution per site—far lower

rates are observed in some large double-stranded DNA (dsDNA) viruses. For

example, the nucleotide substitution rates for variola virus and herpes simplex

virus (dsDNA) have been reported to be as low as 9.32 � 10–6 and 3 � 1029

substitutions per site per year, respectively [6,7], and hence between three to six

orders of magnitude lower than that of influenza virus A (negative-sense single-

stranded RNA; 2ssRNA) at 4.1� 1023 substitutions per site per year [8]. Overall,

most RNA viruses seem to exhibit evolutionary rates of around 1023 to 1024 substi-

tutions per site per year [9]. Accordingly, the evolutionary and demographic

processes in RNA viruses can be readily observed in a matter of years or even

weeks [9,10], and it is unsurprising that many RNA viruses can adapt to escape

their host’s immune system or to infect different species. The rapid evolution of

RNA viruses reflects a high background rate of mutation, itself dependent on a

lack of mechanisms for nucleic acid repair and on short generation times [11,12].

By contrast, dsDNA viruses generally have higher replication fidelity compared

with their RNA counterparts [10,13], which largely explains their lower substitution

rates. The cell type infected can also have an impact on substitution rates in viruses.

Indeed, it has recently been shown that the turnover rate of the infected cells is

positively associated with the rate of viral evolution [14].
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In addition to varying among viral taxa and infected

cell type, evolutionary rates appear to scale negatively with the

timeframe of observation. Specifically, molecular data sampled

over a short timeframe often appear to evolve at higher rates

than those sampled over a longer time period [15,16]. Such a

time-dependent pattern has been described in a wide range of

organisms, including vertebrates [17] and insects [18]. One of

the probable causes of this pattern is purifying selection, which

acts on the genetic diversity over long timeframes by removing

large numbers of transient deleterious mutations that are still

present within short timeframes [19,20]. Consequently, rate esti-

mates over long timeframes will be systematically lower than

those obtained over short timeframes. The inadequate ‘correc-

tion’ of multiple substitutions at single nucleotide sites will

also act to reduce evolutionary rates in the long term.

RNAviruses display the largest rate disparities among time-

scales [5,20]. An important example is the primate lentiviruses,

which include human and simian immunodeficiency viruses

(HIV and SIV, respectively). In lentiviruses, nucleotide sub-

stitution rates estimated from serial samples collected over a

few years within a single patient or host are on the order of

1023 substitutions per site per year [21]. If this rate is used to

calibrate a molecular clock, then the date of the HIV–SIV diver-

gence is estimated at approximately 150 years BP [22]. Some

early studies even reported a divergence time for these viruses

as recent as 1951, with substitution rates as high as 1022 substi-

tutions per site per year [4]. However, some phylogenetic

relationships among the viruses correspond to those of their

primate hosts, indicating some degree of codivergence over

thousands or millions of years [1,23–25]. A particularly compel-

ling case is in the lentiviruses that infect Bioko Island drills,

which separated around 10 000 years ago from their sister sub-

species on the African mainland [25,26]. The SIVs that infect the

island and mainland drill subspecies are phylogenetically dis-

tinct, such that the initial infection is likely to have occurred

before the geographical separation. In this case, a rate of the

order of 1026 nucleotide substitutions per site per year [1] is

necessary to explain the evolutionary time-scale of the virus,

and hence three orders of magnitude lower than that estimated

using virus samples from a single host.

To investigate the evolutionary determinants of these

profound temporal rate disparities among viruses, we carried

out a range of statistical and phylogenetic analyses. To make

our analysis as general as possible, we compiled estimates

of nucleotide substitution rates across all virus types in the

Baltimore classification in which viruses are grouped according

to their nucleic acid type and their method of replication [27].

Our data consisted of 181 rate estimates, including 105 new phy-

logenetic estimates. A meta-analysis of these data allowed us to

determine the main patterns of estimates of rate variation across

viral lineages. We conducted more detailed analyses of primate

lentiviruses to understand how selective constraints, mutational

saturation and phylogenetic model adequacy interact to shape

patterns of temporal rate variation.
2. Material and methods
(a) Compilation of rate estimates
We assembled a dataset of 181 estimates of rates of nucleotide

substitutions in viruses, including 76 published estimates and

105 newly obtained here. Published rate estimates were included

in the dataset if the rate estimation method was fully explained in
the original publication. For the rate estimates generated here, we

obtained nucleotide sequences from GenBank and analysed

them within a Bayesian framework (see below). Our aim was

to include estimates from a wide range of virus types within

the Baltimore classification. For consistency, we included data-

sets that corresponded to an individual virus species, or that

were published in a single study. We included only sequences

from a single gene in each analysis to minimize possible artefacts

owing to recombination (or reassortment) or conflicting gene

trees (electronic supplementary material, table S1 and data S1).

We aligned the sequences using the MUSCLE algorithm [28]

and then inspected each alignment visually. The rates were esti-

mated using the Bayesian Markov chain Monte Carlo (MCMC)

method in BEAST v. 1.7.2 [29]. Each dataset was analysed using

a constant-size coalescent model [30] with a relaxed uncorrelated

log-normal molecular clock [31]. The best-fitting substitution

model for each dataset was selected by the Bayesian information

criterion in the R package PHANGORN v. 1.6-4 [32]. Substitution

rate estimates were calibrated using the sampling times of the

sequences (i.e. tip dates). Samples from the posterior distribution

were drawn every 103 steps from a Markov chain (MCMC) of at

least 108 steps. We assessed convergence and sufficient sampling

by verifying that the effective sample size for all parameters was

at least 200, as estimated in the R package CODA [33]. If the

effective sample size was less than 200 for any of the parameters,

then we doubled the number of steps in the MCMC and halved

the sampling frequency.

We included a set of published rate estimates for our

meta-analyses. These included those obtained through mutation

experiments, serial sampling of an infected host or group of hosts

and phylogenetic estimates assuming codivergence with host

species. In our meta-analysis, we distinguish between the esti-

mation methods because they encompass different evolutionary

dynamics and timeframes. We refer to the particular method as

the ‘sampling level’. In vitro estimates are those obtained through

mutation experiments, typically spanning several hours to a few

days. ‘Serial sampling’ corresponds to rates estimated by sampling

a host or group of hosts through time, with a timeframe of a few

months to five years. ‘Tip dating’ refers to the use of sampling

times for calibration in phylogenetic analyses, as in the case of

our newly reported estimates, with a timeframe ranging from one

to around 40 years. ‘Codivergence’ describes the cases in which

the internal nodes in the phylogenetic tree are calibrated by assum-

ing codivergence between the virus and the host species, with

timeframes of thousands to millions of years. For each rate estimate,

we recorded the nucleic acid type (ssRNA, dsRNA, ssDNA or

dsDNA), the sampling level and the timespan of the samples.

We note that Bayesian estimates of evolutionary rates with tip

dates for calibration can be artificially inflated. This occurs when

the sampling period fails to capture sufficient genetic change, so

that rate estimates are unduly influenced by the prior for the rate

of evolution and by the sampling times, rather than determined

by the data [6,13]. To address this problem, we conducted a

date-randomization test described by Ramsden et al. [34]. The

test consists of analysing the data while randomizing the ages of

the samples. The mean rate estimated with the correct sampling

times should not be included in the 95% credibility interval of

the estimates with the randomized sampling times. We conducted

three randomization replicates for all of our 105 newly reported

estimates. The estimates that failed this test for at least one replicate

were excluded from our subsequent meta-analysis.
(b) Meta-analysis of rate estimates
The first part of our meta-analysis consisted of determining differ-

ences in the rate estimates between viruses with different nucleic

acid types (i.e. DNA versus RNA viruses). We used a logarithmic

transformation (base 10) for the mean rate estimate, and we fitted
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an ANOVA and performed a Tukey’s HSD test. Next, we tested for

temporal trends in the rate of evolution. We used a logarithmic

transformation for the mean rate and for the sampling timeframe,

and we fitted linear regressions to these two variables, with the

rate as a function of the timeframe. We used both the complete data-

set and some subsets of the data separately. We fitted separate

regressions for the DNA and RNA viruses. We also made a distinc-

tion between the sampling levels because they may impose

different selective constraints. For example, a rate estimate based

on serial sampling from a single host will reflect different selective

constraints from one that uses samples from several host species,

such as under the assumption of virus–host codivergence [35]. In

total, we conducted 10 linear regressions, one for each nucleic

acid type (DNA and RNA) and one per sampling level (in vitro,

serial sampling, tip dating and co-divergence) within each nucleic

acid type.

The number of data points for some viruses was disproportio-

nately high with, for example, an overrepresentation of lentiviruses

and coronaviruses. This non-random sampling and phylogenetic

non-independence can mislead statistical inference. To address

this problem in our regressions, we randomly sampled one rate esti-

mate per virus genus, resulting in a reduced dataset. We obtained

1000 reduced datasets, and we fitted a linear regression to each.

For our inferences, we report the mean estimates of the slope, and

the p-value, with the corresponding 95% quantile range, also

known as the confidence interval (CI).

A shortcoming of fitting linear regressions of a quotient as a

function of its denominator is that the significance of the slope

can be spurious [36]. This risk applies to our analyses, because

we fit the rate of evolution, in units of substitutions per time

units, as a function of the timespan, in time units. To solve this

problem, one can fit the regression while randomizing the denomi-

nator. The procedure is repeated a large number of times, and the

estimates with the randomized data can be used as a null distri-

bution to assess statistical significance [37]. We used this method

for our regressions with 10 000 randomizations each time. It is

important to note, however, that posterior estimates from Bayesian

analyses are in the form of distributions rather than in the form of

point values. For this reason, this analysis has low statistical power

and serves only to capture the temporal variation in rates, rather

than offering a rigorous significance test.
(c) Lentivirus case study
To investigate the causes of rate variation in detail, we focused on

HIV and SIV. This analysis allowed us to control for rate variation

among viral taxa, which is expected from differences in life histories

[38]. Data were downloaded from the Los Alamos National

Laboratory HIV database [39] (accession numbers available in the

electronic supplementary material, table S2). We selected sequences

for the ENV and POL genes with similar evolutionary time-scales to

those of our meta-analysis, ranging from the interspecific divergence

of SIV in Bioko island monkeys around 10 000 years ago, to the

diversification of HIV strains within a human host over the course

of a few months. In total, we had nine datasets for ENV and 11 for

POL (electronic supplementary material, table S2). For each dataset,

we aligned sequences using MUSCLE and visually inspected the

alignments. We conducted four sets of analyses to evaluate

the impact of saturation and purifying selection on these data.
(i) Bayesian estimation of Lentivirus evolutionary rates
We selected substitution models in PHANGORN according to the Baye-

sian information criterion and conducted Bayesian phylogenetic

analyses in BEAST v. 1.7.2. For each dataset, Bayes factors [40] indica-

ted greater support for the relaxed lognormal clock compared with

the strict clock. We also evaluated the posterior distributions of

the coefficient of rate variation, which should deviate from zero
in the presence of substantial rate variation among branches [31].

We report the results from the relaxed lognormal clock model.

For the datasets corresponding to the deepest divergences, we

used the Yule speciation prior and calibrated the analysis by

assigning a known age to a single node in the tree (electronic sup-

plementary material, table S2). For the datasets corresponding to

more recent time-scales, we compared skyline and constant-size

coalescent models using Bayes factors and used the sampling

times as calibrations. We report rate estimates only from datasets

that passed a date-randomization test with five replicates. To

check for convergence and sufficient MCMC sampling, we used

the same method described for our phylogenetic estimates in the

meta-analysis.

To determine the relationship between rate and time-scale,

we fitted a robust regression because there were few data

points. We used the same approach for statistical significance

as we did for the meta-analysis. In this case, we fit separate

regressions for the ENV and POL genes, but we did not make

a distinction between sampling levels, because there were

fewer data points than in our meta-analysis.

(ii) Analysis of selective constraints
The strength and direction of selection were inferred by estimat-

ing the numbers of non-synonymous substitutions (dN) and

synonymous substitutions (dS) per site. We inferred a maximum-

likelihood tree for each dataset using GARLI v. 1.0 [41] and

estimated dN and dS for each branch under the MG94 model in

HYPHY v. 2.12 [42]. For comparison, we calculated weighted

values for these quantities by weighting them by branch length.

We carried out linear-regression analyses for dN/dS, dN and dS as

functions of time. In the case of dN and dS, the linear model was

forced through the origin to reflect the expectation that these

values should be negligible at zero time.

(iii) Quantification of saturation
To estimate the degree of mutational saturation, we used the

entropy-based I index [43] as implemented in DAMBE v. 5.3.00

[44]. This method estimates the realized I and its critical value

if the specific alignment were fully saturated (Ic). Because the sat-

uration indices are specific to the data, we used their ratio (I/Ic)

for comparison among datasets and then fit a linear regression

of the ratio as a function of time. The regression line was

forced through the origin, because no saturation is expected at

zero time. To approximate synonymous and non-synonymous

saturation, we analysed first and second codon sites separately

from third codon sites.

(iv) Model adequacy
To evaluate the absolute fit of the time-reversible substitution

models that are typically used in phylogenetic analysis, we

used a Bayesian approach implemented in MAPPS [45]. The

data were first analysed in MRBAYES v. 3.2 [46,47] with the

model chosen according to the Bayesian information criterion

and with the most complex time-reversible model (GTR þ I þ
with six rate categories) to obtain posterior distributions for the

model parameters. One thousand datasets of the same size as

the original were simulated using parameters sampled from

the posterior. A site-pattern statistic (T ) is obtained for each

simulated dataset, resulting in a null distribution. The T statistic

is calculated for the original dataset, known as the realized T, and

compared with the null distribution. If the substitution model

adequately describes the evolutionary process that produced

the dataset, then the realized T should fall in the centre of the

null distribution. To assess the performance of the model, we

used a Z-score as the normalized distance between the expected

and realized T, and we fit a linear regression for the Z-score as a

function of time. Results presented here correspond to those with



estimates with no
temporal structure

–2 0 2 4 6 8
log10 time (years)

–2

–4

–6

–8

–2

–4

–6

–8

lo
g 10

 r
at

e 
(s

ub
st

itu
tio

ns
 p

er
 s

ite
 p

er
 y

ea
rs

)
lo

g 10
 r

at
e 

(s
ub

st
itu

tio
ns

 p
er

 s
ite

 p
er

 y
ea

rs
)

(b)

(a)

in vitro
serial sampling
tip dating
codivergence

RNA
DNA

ENV
POL

Figure 1. (a) Meta-analysis of temporal rate variation among viral lineages. Each data point corresponds to a nucleotide rate estimate as reported in this and other
studies. The original data are in nucleotide substitutions per site per year and have been log-transformed in this figure. Colours distinguish DNA (red) and all RNA
viruses (black), which were analysed separately. (b) Temporal variation in ENV (blue) and POL (green) genes in Lentivirus. Data points are mean rate estimates for
different time-scales of primate Lentivirus evolution.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140732

4

the best-fitting time-reversible model, which was the GTR þ I þ
model for most datasets (electronic supplementary material,

table S2).
3. Results and discussion
(a) Meta-analysis of rate estimates and time-dependent

evolutionary rates in viruses
We excluded 40 rate estimates from our meta-analysis, because

they failed at least one replicate of the date-randomization test,

resulting in a total of 141 data points. The datasets lacking

temporal structure included dsDNA, ssDNA and ssRNA

viruses. Interestingly, dsDNA datasets were disproportionally

represented in the unreliable estimates; 32%, compared with

18% and 17% for the ssDNA and ssRNA viruses, respectively.

This is consistent with our expectation that sampling time-

frames of the order of years are inadequate to estimate

substitution rates in slowly evolving viruses.

Our analysis of 141 rate estimates, comprising those from

previously published studies and new rate estimates, revealed

some important aspects of rate variation among viruses. Rate

estimates were significantly different between DNA and RNA

viruses (ANOVA p ¼ 2.4 � 1024). In particular, the Tukey’s

HSD test revealed that the rates for ssRNA viruses were signifi-

cantly higher than those of ssDNA viruses ( p ¼ 7 � 1023) and

dsDNA viruses ( p ¼ 2 � 1023). This finding was consistent

with previous studies that suggested that ssRNA viruses have

particularly high evolutionary rates [9,15,48].

The rates estimated for in vitro, serial and tip-date

sampling levels largely overlapped with each other. In
contrast, the estimates that assumed virus–host codivergence

were much lower. A clear example is in the rate estimates for

viruses of the family Papillomaviridae (dsDNA). An estimate

assuming virus–host co-divergence of non-mammalian

papillomaviruses was 9.70 � 1029 substitutions per site per

year [49], which is four orders of magnitude lower than

that for human papillomavirus type 31, estimated with tip

dating at 4.58 � 1025 substitutions per site per year.

Strikingly, the estimates of rates of evolution were lower

for broader sampling levels and longer timeframes in both

DNA viruses (mean slope 20.38, CI: 20.48 to 20.16; mean

p ¼ 8.8 � 1024, CI: 0–2.32 � 1023) and in RNA viruses

(mean slope 20.17, CI: 20.27 to 0.08; mean p ¼ 2 � 1024,

CI: 0–3 � 1024). This time-dependent pattern of rate vari-

ation was also sustained within sampling levels, albeit with

lower statistical support in some cases (figure 1a and the

electronic supplementary material, table S3).

Our meta-analysis of rate estimates across viral lineages

allows us to draw a number of general conclusions. First, our

regression analyses for DNA and RNA viruses indicate that

evolutionary timeframe explains much of the observed rate

variation. Although our model lacks the precision to allow

substitution rates to be predicted solely on the basis of the evol-

utionary timeframe, it demonstrates that a time-dependence of

substitution rates is ubiquitous among viruses. In particular,

studies that assume virus–host codivergence over thousands

or millions of years will systematically lead to lower rate esti-

mates than studies of samples collected over a period of years

or months, such as in our in vitro, serial sampling or tip-dating

estimates. In turn, rate estimates from the latter are likely

to reflect a combination of mutation and substitution rates

(i.e. they include transient deleterious mutations), whereas
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those of the former may be affected by extensive site saturation

(see below).
(b) A case study in primate lentiviruses
Our meta-analysis of evolutionary rates includes many differ-

ent virus lineages, preventing us from gaining detailed

insights into the underlying causes of time-dependent rate

estimates. We, therefore, sought to identify the causes at a

molecular level through detailed analyses of HIV and SIV.

This group of viruses is of particular interest, because there

appears to be general agreement on the time of origin of

the human pandemic caused by group M viruses [50]. How-

ever, this is not the case for those viruses infecting other

primates. In particular, the time-scale of the diversification

of the various lineages of SIV has generated considerable

debate [51–54].

Our analysis revealed that the slopes for substitution rate

as a function of time were negative in both genes analysed

(20.4 in ENV and 20.5 in POL). Although the regression

was significant in POL only ( p ¼ 0.18 for ENV and p ¼ 0.01

for POL), the overall trend is that rates decline with increasing

timeframes (figure 1b).

Similarly, our analysis of selective constraints revealed

that dN/dS decreased over time, reflecting the action of

increasing purifying selection at deeper time-scales. The

trend was significant in ENV (slope ¼ 20.40 and p ¼ 0.03)

but not POL (slope ¼ 20.11 and p ¼ 0.19; figure 2a). This
can be explained by stronger evolutionary constraints acting

on POL, which plays a key role in nucleic acid replication [55].

The regressions of dS over time were significant for

both POL (slope ¼ 2.26 � 1025, p ¼ 3.00 � 1023) and ENV
(slope ¼ 1.0 � 1023, p ¼ 0.01), whereas this was not the case

for dN (POL slope ¼ 1.53 � 1026, p ¼ 0.08; ENV slope ¼

3.9 � 1024, p ¼ 0.07; figure 2b). Synonymous mutations are

fixed at much higher rates than non-synonymous mutations,

so that the difference between these two quantities increases

over time. These findings point to stronger purifying selection

at non-synonymous compared with synonymous sites. As a

consequence, the temporal trends in dN/dS are driven by the

linear accumulation of synonymous variation over time and

the consistent removal of non-synonymous variation.

Mutational saturation can also produce an apparent decline

in substitution rates over time by causing the amount of evol-

utionary change to be underestimated [17]. Our regressions of

saturation on time (I/Ic ¼ 1) revealed different patterns for

ENV and POL. In ENV, the slope was significant and positive

(slope ¼ 0.01, p ¼ 0.01 for first and second codon sites;

slope ¼ 0.02, p ¼ 2.00 � 1023 for third codon sites). By contrast,

complete saturation was not reached in POL, and the regression

was non-significant (slope ¼ 4.48� 1026, p ¼ 0.78 for first and

second codon positions; slope ¼ 3.54 � 1025, p ¼ 0.30 for third

codon positions; figure 2c).

Saturation in gene sequence data is typically addressed

using models of nucleotide substitution. Maximum-likelihood

and Bayesian phylogenetic methods are strongly sensitive to
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the choice of model, with poorly fitting models poten-

tially leading to biased estimates of evolutionary parameters

[56,57]. Some recent developments in molecular clock methods

take into account some degree of mutational saturation [58],

but the dramatically high levels of saturation we observed in

lentiviruses over long timeframes will consistently lead to an

underestimation of the evolutionary rate.

The performance of the best-fitting models did not decrease

linearly with time, as shown by the non-significant slope coef-

ficients in the regressions of performance as a function of time

( p ¼ 0.35 for ENV, p ¼ 0.59 for POL; electronic supplementary

material, table S2). However, model performance was highly

variable for datasets that represented evolutionary timeframes

greater than 100 years, suggesting that substitution patterns

become so different among datasets that model fit cannot be

assessed reliably. Therefore, we conducted the regression

analysis only for timeframes shorter than 100 years using the

iteratively reweighted least-squares method, which is robust

to small data sizes. In this case, the regression was signi-

ficant for POL (slope ¼ 0.31, p ¼ 0.02) but not for ENV
(slope ¼ 0.21, p ¼ 0.39), suggesting a linear decline in model

performance for POL over this timeframe (figure 2d). Beyond

temporal trends, these results reveal standard scores consider-

ably above zero for most datasets, reflecting poor overall fit,

regardless of the timeframe.
4. Conclusion
Purifying selection and site saturation are strongly associated

with temporal variation in rates of nucleotide substitution

and can explain the dichotomy between long- and short-

term rate estimates in viruses. Sequence data sampled over

a short timeframe capture the standing genetic diversity,

which is the combined result of non-synonymous and synon-

ymous polymorphisms. A proportion of this comprises

slightly deleterious mutations not yet removed by purifying

selection. Non-synonymous mutations tend to have greater

fitness consequences than those at synonymous sites, so

they will be more rapidly removed by purifying selection,

delaying the onset of saturation at these sites. By contrast,

rapid saturation occurs at synonymous sites, resulting in an

apparent decline in the estimated rate of evolution, which is

not entirely accounted for by the substitution models that

are commonly used. In the case of the lentiviruses, we
found a linear decline in model fit across a timeframe of

100 years, at least for one of the two genes analysed.

According to our analysis, rates of evolution almost inevi-

tably appear to decline over time because of the combined

effects of natural selection and saturation. Consequently, and

critically, estimates of rates are only applicable to the timeframe

used to obtain them and cannot readily be extrapolated to other

scales of analysis [59]. In particular, short-term rate estimates

will lead to underestimates of the timing of ancient divergence

events, whereas using long-term rate estimates will cause the

timing of recent events to be overestimated. These effects are

particularly problematic in viruses, where the ages of many

ssRNA virus families are probably orders of magnitude older

than suggested by current estimates. Although the evolution-

ary dynamics of viral emergence over short timeframes can

be accurately estimated, their long-term evolution remains elu-

sive. Our lentivirus case study illustrates this finding, and it

supports other studies that suggest that the time-scale of

these viruses may be thousands of years older than previously

estimated [23].

Recently developed methods that attempt to correct for

purifying selection have revealed that the time-scale for

measles, Ebola and avian influenza viruses might be centuries

or millennia older than previously estimated [60]. A prominent

example of the application of these methods involves the

coronaviruses (Family Coronaviridae), whose emergence was

estimated to have occurred millions of years ago rather than

around 10 000 years ago [58]. While these methods, and

others such as local clocks [61], are an important contribution,

we suggest that it is still necessary to develop a molecular clock

framework for rapidly evolving viruses that can incorporate

all of the factors investigated here, especially site saturation.

Importantly, the differences between long- and short-term

rate estimates need to be reconsidered, not as conflicting esti-

mates, but as signs of a continuous evolutionary process that

can be modelled in terms of increasing levels of saturation

and purifying selection over time. This has the potential to

change our understanding of the evolution of viruses and the

processes behind their current diversity.
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